1Kma Lichtarge Lab 2006

Total Page:16

File Type:pdf, Size:1020Kb

1Kma Lichtarge Lab 2006 Pages 1–5 1kma Evolutionary trace report by report maker February 17, 2010 4.3.3 DSSP 4 4.3.4 HSSP 4 4.3.5 LaTex 4 4.3.6 Muscle 4 4.3.7 Pymol 4 4.4 Note about ET Viewer 4 4.5 Citing this work 4 4.6 About report maker 5 4.7 Attachments 5 1 INTRODUCTION From the original Protein Data Bank entry (PDB id 1kma): Title: Nmr structure of the domain-i of the kazal-type thrombin inhibitor dipetalin Compound: Mol id: 1; molecule: dipetalin; chain: a; fragment: n- terminal domain-i; synonym: dipetalogastin; engineered: yes Organism, scientific name: Dipetalogaster Maximus; 1kma contains a single unique chain 1kmaA (55 residues long). This is an NMR-determined structure – in this report the first model in the file was used. CONTENTS 2 CHAIN 1KMAA 2.1 O96790 overview 1 Introduction 1 From SwissProt, id O96790, 100% identical to 1kmaA: 2 Chain 1kmaA 1 Description: Serine protease inhibitor dipetalogastin precursor 2.1 O96790 overview 1 (Dipetalin) (Fragment). 2.2 Multiple sequence alignment for 1kmaA 1 Organism, scientific name: Dipetalogaster maximus (Blood- 2.3 Residue ranking in 1kmaA 1 sucking bug). 2.4 Top ranking residues in 1kmaA and their position on Taxonomy: Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; the structure 2 Pterygota; Neoptera; Paraneoptera; Hemiptera; Euhemiptera; Hete- 2.4.1 Clustering of residues at 25% coverage. 2 roptera; Panheteroptera; Cimicomorpha; Reduviidae; Triatominae; 2.4.2 Possible novel functional surfaces at 25% Dipetalogaster. coverage. 2 Function: Thrombin inhibitor. Prevents blood clotting to allow insect to feed on blood. Also functions as an inhibitor of trypsin and 3 Notes on using trace results 3 plasmin. 3.1 Coverage 3 Subcellular location: Secreted. 3.2 Known substitutions 3 Similarity: Contains 6 Kazal-like domains. 3.3 Surface 3 About: This Swiss-Prot entry is copyright. It is produced through a 3.4 Number of contacts 3 collaboration between the Swiss Institute of Bioinformatics and the 3.5 Annotation 3 EMBL outstation - the European Bioinformatics Institute. There are 3.6 Mutation suggestions 3 no restrictions on its use as long as its content is in no way modified and this statement is not removed. 4 Appendix 3 4.1 File formats 3 2.2 Multiple sequence alignment for 1kmaA 4.2 Color schemes used 4 For the chain 1kmaA, the alignment 1kmaA.msf (attached) with 91 4.3 Credits 4 sequences was used. The alignment was downloaded from the HSSP 4.3.1 Alistat 4 database, and fragments shorter than 75% of the query as well as 4.3.2 CE 4 duplicate sequences were removed. It can be found in the attachment 1 Lichtarge lab 2006 Fig. 1. Residues 1-55 in 1kmaA colored by their relative importance. (See Appendix, Fig.5, for the coloring scheme.) to this report, under the name of 1kmaA.msf. Its statistics, from the alistat program are the following: Format: MSF Number of sequences: 91 Total number of residues: 4314 Smallest: 42 Largest: 55 Average length: 47.4 Alignment length: 55 Average identity: 37% Most related pair: 98% Most unrelated pair: 20% Fig. 2. Residues in 1kmaA, colored by their relative importance. Clockwise: Most distant seq: 42% front, back, top and bottom views. Furthermore, 3% of residues show as conserved in this alignment. The alignment consists of 46% eukaryotic ( 19% vertebrata, 14% arthropoda) sequences. (Descriptions of some sequences were not readily available.) The file containing the sequence descriptions can be found in the attachment, under the name 1kmaA.descr. 2.3 Residue ranking in 1kmaA The 1kmaA sequence is shown in Fig. 1, with each residue colored according to its estimated importance. The full listing of residues in 1kmaA can be found in the file called 1kmaA.ranks sorted in the attachment. 2.4 Top ranking residues in 1kmaA and their position on the structure In the following we consider residues ranking among top 25% of residues in the protein . Figure 2 shows residues in 1kmaA colored by their importance: bright red and yellow indicate more conser- ved/important residues (see Appendix for the coloring scheme). A Pymol script for producing this figure can be found in the attachment. 2.4.1 Clustering of residues at 25% coverage. Fig. 3 shows the top 25% of all residues, this time colored according to clusters they Fig. 3. Residues in 1kmaA, colored according to the cluster they belong to: belong to. The clusters in Fig.3 are composed of the residues listed red, followed by blue and yellow are the largest clusters (see Appendix for in Table 1. the coloring scheme). Clockwise: front, back, top and bottom views. The Table 1. corresponding Pymol script is attached. cluster size member color residues red 13 8,15,16,17,19,20,22,23,25,27 2.4.2 Possible novel functional surfaces at 25% coverage. One 29,46,48 group of residues is conserved on the 1kmaA surface, away from (or susbtantially larger than) other functional sites and interfaces reco- gnizable in PDB entry 1kma. It is shown in Fig. 4. The right panel Table 1. Clusters of top ranking residues in 1kmaA. shows (in blue) the rest of the larger cluster this surface belongs to. The residues belonging to this surface ”patch” are listed in Table 2 3 NOTES ON USING TRACE RESULTS 3.1 Coverage Trace results are commonly expressed in terms of coverage: the resi- due is important if its “coverage” is small - that is if it belongs to some small top percentage of residues [100% is all of the residues in a chain], according to trace. The ET results are presented in the form of a table, usually limited to top 25% percent of residues (or to some nearby percentage), sorted by the strength of the presumed evolutionary pressure. (I.e., the smaller the coverage, the stronger the pressure on the residue.) Starting from the top of that list, mutating a couple of residues should affect the protein somehow, with the exact Fig. 4. A possible active surface on the chain 1kmaA. The larger cluster it effects to be determined experimentally. belongs to is shown in blue. 3.2 Known substitutions One of the table columns is “substitutions” - other amino acid types 2, while Table 3 suggests possible disruptive replacements for these seen at the same position in the alignment. These amino acid types residues (see Section 3.6). may be interchangeable at that position in the protein, so if one wants to affect the protein by a point mutation, they should be avoided. For Table 2. example if the substitutions are “RVK” and the original protein has res type substitutions(%) cvg antn an R at that position, it is advisable to try anything, but RVK. Conver- 23 Y Y(100) 0.04 sely, when looking for substitutions which will not affect the protein, 27 C C(98)G(1) 0.06 S-S one may try replacing, R with K, or (perhaps more surprisingly), with 22 T T(96)S(2)D(1) 0.07 V. The percentage of times the substitution appears in the alignment 48 C C(98)D(1) 0.11 S-S is given in the immediately following bracket. No percentage is given 8 C C(83)G(5)N(9) 0.14 S-S in the cases when it is smaller than 1%. This is meant to be a rough .(1) guide - due to rounding errors these percentages often do not add up 25 N N(80)D(14)S(4) 0.18 to 100%. T(1) 29 L L(74)F(12)M(1) 0.20 3.3 Surface A(9)R(2) To detect candidates for novel functional interfaces, first we look for 46 G Q(1)G(91)F(1) 0.22 residues that are solvent accessible (according to DSSP program) by 2 V(1)C(2)A(1) at least 10A˚ , which is roughly the area needed for one water mole- E(1)H(1) cule to come in the contact with the residue. Furthermore, we require 6 C C(64)R(4).(23) 0.24 S-S that these residues form a “cluster” of residues which have neighbor A(1)E(1)L(1) within 5A˚ from any of their heavy atoms. S(3)V(1) Note, however, that, if our picture of protein evolution is correct, the neighboring residues which are not surface accessible might be Table 2. Residues forming surface ”patch” in 1kmaA. equally important in maintaining the interaction specificity - they should not be automatically dropped from consideration when choo- sing the set for mutagenesis. (Especially if they form a cluster with the surface residues.) Table 3. res type disruptive 3.4 Number of contacts mutations Another column worth noting is denoted “noc/bb”; it tells the num- 23 Y (K)(QM)(NEVLAPIR)(D) ber of contacts heavy atoms of the residue in question make across 27 C (KER)(FQMWHD)(NYLPI)(SVA) the interface, as well as how many of them are realized through the 22 T (R)(K)(FWH)(QM) backbone atoms (if all or most contacts are through the backbone, 48 C (R)(K)(FWH)(EQM) mutation presumably won’t have strong impact). Two heavy atoms 8 C (ER)(K)(FWH)(MD) are considered to be “in contact” if their centers are closer than 5A˚ . 25 N (FYWH)(R)(TEVMA)(KCG) 29 L (Y)(R)(T)(EH) 3.5 Annotation 46 G (KER)(D)(QH)(FYMW) If the residue annotation is available (either from the pdb file or 6 C (R)(K)(E)(H) from other sources), another column, with the header “annotation” appears.
Recommended publications
  • Vectors of Chagas Disease, and Implications for Human Health1
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Denisia Jahr/Year: 2006 Band/Volume: 0019 Autor(en)/Author(s): Jurberg Jose, Galvao Cleber Artikel/Article: Biology, ecology, and systematics of Triatominae (Heteroptera, Reduviidae), vectors of Chagas disease, and implications for human health 1095-1116 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Biology, ecology, and systematics of Triatominae (Heteroptera, Reduviidae), vectors of Chagas disease, and implications for human health1 J. JURBERG & C. GALVÃO Abstract: The members of the subfamily Triatominae (Heteroptera, Reduviidae) are vectors of Try- panosoma cruzi (CHAGAS 1909), the causative agent of Chagas disease or American trypanosomiasis. As important vectors, triatomine bugs have attracted ongoing attention, and, thus, various aspects of their systematics, biology, ecology, biogeography, and evolution have been studied for decades. In the present paper the authors summarize the current knowledge on the biology, ecology, and systematics of these vectors and discuss the implications for human health. Key words: Chagas disease, Hemiptera, Triatominae, Trypanosoma cruzi, vectors. Historical background (DARWIN 1871; LENT & WYGODZINSKY 1979). The first triatomine bug species was de- scribed scientifically by Carl DE GEER American trypanosomiasis or Chagas (1773), (Fig. 1), but according to LENT & disease was discovered in 1909 under curi- WYGODZINSKY (1979), the first report on as- ous circumstances. In 1907, the Brazilian pects and habits dated back to 1590, by physician Carlos Ribeiro Justiniano das Reginaldo de Lizárraga. While travelling to Chagas (1879-1934) was sent by Oswaldo inspect convents in Peru and Chile, this Cruz to Lassance, a small village in the state priest noticed the presence of large of Minas Gerais, Brazil, to conduct an anti- hematophagous insects that attacked at malaria campaign in the region where a rail- night.
    [Show full text]
  • Redalyc.Towards an Understanding of the Interactions of Trypanosoma
    Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil Azambuja, Patrícia; A. Ratcliffe, Norman; S. Garcia, Eloi Towards an understanding of the interactions of Trypanosoma cruzi and Trypanosoma rangeli within the reduviid insect host Rhodnius prolixus Anais da Academia Brasileira de Ciências, vol. 77, núm. 3, set., 2005, pp. 397-404 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32777304 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Anais da Academia Brasileira de Ciências (2005) 77(3): 397-404 (Annals of the Brazilian Academy of Sciences) ISSN 0001-3765 www.scielo.br/aabc Towards an understanding of the interactions of Trypanosoma cruzi and Trypanosoma rangeli within the reduviid insect host Rhodnius prolixus PATRÍCIA AZAMBUJA1, NORMAN A. RATCLIFFE2 and ELOI S. GARCIA1 1Department of Biochemistry and Molecular Biology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brasil 2Biomedical and Physiologial Research Group, School of Biological Sciences, University of Wales Swansea, Singleton Park, Swansea, SA28PP, United Kingdom Manuscript received on March 3, 2005; accepted for publication on March 30, 2005; contributed by Eloi S. Garcia* ABSTRACT This review outlines aspects on the developmental stages of Trypanosoma cruzi and Trypanosoma rangeli in the invertebrate host, Rhodnius prolixus. Special attention is given to the interactions of these parasites with gut and hemolymph molecules and the effects of the organization of midgut epithelial cells on the parasite development.
    [Show full text]
  • Disintegrins from Hematophagous Sources
    Toxins 2012, 4, 296-322; doi:10.3390/toxins4050296 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Review Disintegrins from Hematophagous Sources Teresa C. F. Assumpcao *, José M. C. Ribeiro * and Ivo M. B. Francischetti * Vector Biology Section, Laboratory of Malaria Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA * Authors to whom correspondence should be addressed; E-Mails: [email protected] (T.C.F.A.); [email protected] (J.M.C.R.); [email protected] (I.M.B.F.) Received: 23 February 2012; in revised form: 12 April 2012 / Accepted: 13 April 2012 / Published: 26 April 2012 Abstract: Bloodsucking arthropods are a rich source of salivary molecules (sialogenins) which inhibit platelet aggregation, neutrophil function and angiogenesis. Here we review the literature on salivary disintegrins and their targets. Disintegrins were first discovered in snake venoms, and were instrumental in our understanding of integrin function and also for the development of anti-thrombotic drugs. In hematophagous animals, most disintegrins described so far have been discovered in the salivary gland of ticks and leeches. A limited number have also been found in hookworms and horseflies, and none identified in mosquitoes or sand flies. The vast majority of salivary disintegrins reported display a RGD motif and were described as platelet aggregation inhibitors, and few others as negative modulator of neutrophil or endothelial cell functions. This notably low number of reported disintegrins is certainly an underestimation of the actual complexity of this family of proteins in hematophagous secretions. Therefore an algorithm was created in order to identify the tripeptide motifs RGD, KGD, VGD, MLD, KTS, RTS, WGD, or RED (flanked by cysteines) in sialogenins deposited in GenBank database.
    [Show full text]
  • Mitteilungen Der Dgaae 18
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/251383302 “Living Syringes”: Use of Hematophagous Bugs as Blood Samplers from Small and Wild Animals Article · May 2011 DOI: 10.1007/978-3-642-19382-8_11 CITATIONS READS 10 314 3 authors: André Stadler Christian Karl Meiser Alpenzoo Ruhr-Universität Bochum 20 PUBLICATIONS 41 CITATIONS 14 PUBLICATIONS 164 CITATIONS SEE PROFILE SEE PROFILE Guenter Schaub Ruhr-Universität Bochum 187 PUBLICATIONS 5,617 CITATIONS SEE PROFILE All content following this page was uploaded by Guenter Schaub on 14 December 2015. The user has requested enhancement of the downloaded file. HALLE (SAALE ) 2012 MITT . DTSCH . GES . ALL G . AN G EW . ENT . 18 “Living syringes”: use of triatomines as blood samplers from small and wild animals Günter A. Schaub1, Arne Lawrenz2 & André Stadler2 1Zoology/Parasitology Group, Ruhr-University Bochum 2Zoological Garden Wuppertal Zusammenfassung: Die Blutabnahme ist bei kleinen Tieren und Wildtieren sehr schwierig. Bei der konventionellen Entnahme werden die Tiere sehr gestresst und evtl. verletzt. Auch eine vorherige Narkose ist problematisch. Triatominen (Reduviidae, Hemiptera) sind die größten Blut saugenden Insekten und saugen an allen Endothermen, aber auch warmen Amphibien und Reptilien. Die fünf Nymphenstadien dieser Insekten nehmen – entsprechend ihrem Wachstum – zunehmend mehr Blut auf. Deshalb ist je nach erforderlicher Blutmenge beim Einsatz als „lebende Spritze“ ein entsprechendes Nymphenstadium einzusetzen. Das aufgenommene Blut wird im Magen gespeichert und durch den Entzug der wässrigen Blutbestandteile konzentriert, aber fast nicht verdaut. Das Blut kann direkt nach der Blutaufnahme der Raubwanze leicht mit einer Spritze aus dem Magen entnommen und zur Bestimmung der Blut- und physiologischen Parameter eingesetzt werden, außerdem zur Bestimmung von Hormon- und Antikörper-Konzentrationen sowie zum Nachweis von Parasiten.
    [Show full text]
  • Proteases of Haematophagous Arthropod Vectors
    Santiago et al. Parasites & Vectors (2017) 10:79 DOI 10.1186/s13071-017-2005-z REVIEW Open Access Proteases of haematophagous arthropod vectors are involved in blood-feeding, yolk formation and immunity - a review Paula Beatriz Santiago1, Carla Nunes de Araújo1,2, Flávia Nader Motta1,2, Yanna Reis Praça1,3, Sébastien Charneau4, Izabela M. Dourado Bastos1 and Jaime M. Santana1* Abstract Ticks, triatomines, mosquitoes and sand flies comprise a large number of haematophagous arthropods considered vectors of human infectious diseases. While consuming blood to obtain the nutrients necessary to carry on life functions, these insects can transmit pathogenic microorganisms to the vertebrate host. Among the molecules related to the blood-feeding habit, proteases play an essential role. In this review, we provide a panorama of proteases from arthropod vectors involved in haematophagy, in digestion, in egg development and in immunity. As these molecules act in central biological processes, proteases from haematophagous vectors of infectious diseases may influence vector competence to transmit pathogens to their prey, and thus could be valuable targets for vectorial control. Keywords: Proteases, Haematophagy, Digestion, Yolk formation, Immunity, Ticks, Triatomines, Mosquitoes Background leishmaniasis, malaria, sleeping sickness, lymphatic filaria- Haematophagous arthropod vectors are spread world- sis and onchocerciasis are all examples of vector-borne wide. They are of medical and veterinary importance diseases with global impact on morbidity and mortality since their blood-feeding habit provides a scenario for (Table 1) since they affect more than one billion individ- the transmission of a variety of pathogens, including uals and cause over one million deaths every year [2]. virus, bacteria, protozoans and helminths [1].
    [Show full text]
  • Hemiptera, Reduviidae, Triatominae
    Cesaretto et al. Parasites Vectors (2021) 14:340 https://doi.org/10.1186/s13071-021-04847-7 Parasites & Vectors SHORT REPORT Open Access Trends in taxonomy of Triatomini (Hemiptera, Reduviidae, Triatominae): reproductive compatibility reinforces the synonymization of Meccus Stål, 1859 with Triatoma Laporte, 1832 Natália Regina Cesaretto1†, Jader de Oliveira2,3†, Amanda Ravazi1, Fernanda Fernandez Madeira4, Yago Visinho dos Reis1, Ana Beatriz Bortolozo de Oliveira4, Roberto Dezan Vicente1, Daniel Cesaretto Cristal3, Cleber Galvão5* , Maria Tercília Vilela de Azeredo‑Oliveira4, João Aristeu da Rosa3 and Kaio Cesar Chaboli Alevi1,3 Abstract Background: Meccus’ taxonomy has been quite complex since the frst species of this genus was described by Burmeister in 1835 as Conorhinus phyllosoma. In 1859 the species was transferred to the genus Meccus and in 1930 to Triatoma. However, in the twentieth century, the Meccus genus was revalidated (alteration corroborated by molecular studies) and, in the twenty‑frst century, through a comprehensive study including more sophisticated phylogenetic reconstruction methods, Meccus was again synonymous with Triatoma. Events of natural hybridization with produc‑ tion of fertile ofspring have already been reported among sympatric species of the T. phyllosoma subcomplex, and experimental crosses demonstrated reproductive viability among practically all species of the T. phyllosoma sub‑ complex that were considered as belonging to the genus Meccus, as well as between these species and species of Triatoma. Based on the above, we carried out experimental crosses between T. longipennis (considered M. longipennis in some literature) and T. mopan (always considered as belonging to Triatoma) to evaluate the reproductive compat‑ ibility between species of the T.
    [Show full text]
  • Control of Chagas Disease A
    WHO Technical Report Series 905 CONTROL OF CHAGAS DISEASE A Second report of the WHO Expert Committee aA World Health Organization Geneva i COC Cover1 1 2/16/02, 9:18 AM The World Health Organization was established in 1948 as a specialized agency of the United Nations serving as the directing and coordinating authority for international health matters and public health. One of WHO’s constitutional func- tions is to provide objective and reliable information and advice in the field of human health, a responsibility that it fulfils in part through its extensive programme of publications. The Organization seeks through its publications to support national health strat- egies and address the most pressing public health concerns of populations around the world. To respond to the needs of Member States at all levels of development, WHO publishes practical manuals, handbooks and training material for specific categories of health workers; internationally applicable guidelines and standards; reviews and analyses of health policies, programmes and research; and state-of- the-art consensus reports that offer technical advice and recommendations for decision-makers. These books are closely tied to the Organization’s priority activi- ties, encompassing disease prevention and control, the development of equitable health systems based on primary health care, and health promotion for individuals and communities. Progress towards better health for all also demands the global dissemination and exchange of information that draws on the knowledge and experience of all WHO’s Member countries and the collaboration of world leaders in public health and the biomedical sciences. To ensure the widest possible availability of authoritative information and guidance on health matters, WHO secures the broad international distribution of its publica- tions and encourages their translation and adaptation.
    [Show full text]
  • Dipetalogaster Maxima): Exploring Morphological Adaptations in Pre-Adult and Adult Stages
    Revista Mexicana de Biodiversidad Revista Mexicana de Biodiversidad 90 (2019): e902664 Life history Ontogenetic changes in wild chagasic bugs (Dipetalogaster maxima): exploring morphological adaptations in pre-adult and adult stages Cambios ontogenéticos en la chinche silvestre (Dipetalogaster maxima): explorando adaptaciones morfológicas en estados preadultos y adultos Rafael Bello-Bedoy a, *, Haran Peiro-Nuño a, Alex Córdoba-Aguilar b, Carlos Alberto Flores-López a, Guillermo Romero-Figueroa a, María Clara Arteaga c, Ana E. Gutiérrez-Cabrera d, Leonardo De la Rosa-Conroy c a Facultad de Ciencias, Universidad Autónoma de Baja California, Carretera Transpeninsular, Ensenada- Tijuana, 3917, Playitas, 22860 Ensenada, Baja California, Mexico b Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado postal 70-275, Ciudad Universitaria, 04510 Ciudad de México, Mexico c Departamento de Biología de la Conservación, Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Tijuana- Ensenada 3918, Zona Playitas, 22860 Ensenada, Baja California, Mexico d Conacyt-Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Avenida Universidad 655, Col. Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera, 62100 Cuernavaca, Morelos, Mexico *Corresponding author: [email protected] (R. Bello-Bedoy) Received: 29 June 2018; accepted: 14 November 2018 Abstract Triatomine insects are vectors of Trypanosoma cruzi (Chagas, 1909), the causing agent of Chagas disease. We studied the morphological ontogenetic changes of Dipetalogaster maxima (Uhler, 1894), an endemic Chagas vector of Baja California Sur, Mexico. We measured and compared among nymphal stages and adults and, between sexes phenotypic traits linked to the following functions: a) feeding: proboscis length and width; b) vision: head length and width; c) mobility: pronotum width and length and; feeding capacity and fecundity: abdomen length in 5 nymphal stages and in adults of both sexes, respectively.
    [Show full text]
  • Metathoracic Glands and Associated Evaporatory Structures in Reduvioidea (Heteroptera: Cimicomorpha), with Observation on the Mode of Function of the Metacoxal Comb
    Eur. J. Entomol. 103: 97–108, 2006 ISSN 1210-5759 Metathoracic glands and associated evaporatory structures in Reduvioidea (Heteroptera: Cimicomorpha), with observation on the mode of function of the metacoxal comb CHRISTIANE WEIRAUCH American Museum of Natural History, Division of Invertebrate Zoology, Central Park West at 79th Street, New York, NY 10024, USA; e-mail: [email protected] Key words. Heteroptera, Reduviidae, metathoracic gland, morphology, defensive gland, dissemination of secretion Abstract. Structures that assist in spreading secretions produced by the metathoracic glands were examined in Reduviidae and Pachynomidae (Heteroptera). The systematic distribution of a row of long and stout setae on the metacoxa, the metacoxal comb, was reinvestigated in a representative sample in both taxa. Observations on living Dipetalogaster maximus (Reduviidae: Triatominae) corroborated the interpretation of this metacoxal comb as an evaporatory device, which assists in atomizing the gland secretions. In addition to the metacoxal comb, a row of stout setae on the metacetabulum – a metacetabular comb – was found in several Reduvii- dae, which interacts with the metacoxal comb during rotation of the metacoxa. In addition to those atomizing devices, cuticular modifications surrounding the opening of the metathoracic gland, which presumably form evaporatoria, were discovered in Ectricho- diinae. The meshwork-like structure of this cuticle resembles the cuticular modifications found associated with the opening of the Brindley’s gland in Reduviidae, but differs from the mushroom-like evaporatoria around the metathoracic glands in most Cimi- comorpha and Pentatomomorpha. Thus, two fundamentally different mechanisms to spread secretions of the metathoracic gland – atomization and evaporation – are present in Reduviidae. INTRODUCTION located metathoracic Brindley’s gland (Brindley, 1930; A complex gland system in the metathorax of the adult Carayon, 1962).
    [Show full text]
  • Proteome of the Triatomine Digestive Tract: from Catalytic to Immune Pathways; Focusing on Annexin Expression
    fmolb-07-589435 December 3, 2020 Time: 17:27 # 1 ORIGINAL RESEARCH published: 09 December 2020 doi: 10.3389/fmolb.2020.589435 Proteome of the Triatomine Digestive Tract: From Catalytic to Immune Pathways; Focusing on Annexin Expression Marcia Gumiel1,2†‡, Debora Passos de Mattos3,4†, Cecília Stahl Vieira1,5, Caroline Silva Moraes1, Carlos José de Carvalho Moreira6, Marcelo Salabert Gonzalez3,4,5, André Teixeira-Ferreira7, Mariana Waghabi8, 1,3,4,5 9 Edited by: Patricia Azambuja and Nicolas Carels * Barbara Cellini, 1 Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio University of Perugia, Italy de Janeiro, Brazil, 2 Research Department, Universidad Privada Franz Tamayo (UNIFRANZ), La Paz, Bolivia, 3 Laboratório Reviewed by: de Biologia de Insetos, Departamento de Biologia Geral, Universidade Federal Fluminense, Niterói, Brazil, 4 Programa Dong-Woo Lee, de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil, Yonsei University, South Korea 5 Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil, Qi Wu, 6 Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil, 7 Laboratório de Toxinologia, Instituto Aarhus University, Denmark Oswaldo Cruz, Rio de Janeiro, Brazil, 8 Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, 9 *Correspondence: FIOCRUZ, Rio de Janeiro, Brazil, Laboratório de Modelagem de Sistemas
    [Show full text]
  • Hemiptera: Reduviidae: Triatominae) to the Genus Paratriatoma †
    insects Communication Formal Assignation of the Kissing Bug Triatoma lecticularia (Hemiptera: Reduviidae: Triatominae) to the Genus Paratriatoma † Vinicius Fernandes de Paiva 1 , Jader de Oliveira 2 , Cleber Galvão 3,* , Silvia Andrade Justi 4,5,6, José Manuel Ayala Landa 7 and João Aristeu da Rosa 8 1 Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, SP, Brazil; [email protected] 2 Laboratório de Entomologia em Saúde Pública, Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, SP, Brazil; [email protected] 3 Laboratório Nacional e Internacional de Referência em Taxonomia de Triatomíneos, Instituto Oswaldo Cruz, Fiocruz, Pavilhão Rocha Lima, Rio de Janeiro 21040-360, RJ, Brazil 4 The Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, Suitland, MD 20746, USA; [email protected] 5 Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA 6 Department of Entomology, Smithsonian Institution National Museum of Natural History, Washington, DC 20013, USA 7 Independent Researcher, Pleasanton, CA 94566, USA; [email protected] 8 School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara 14800-903, SP, Brazil; [email protected] Citation: de Paiva, V.F.; Oliveira, J.d.; * Correspondence: [email protected] Galvão, C.; Justi, S.A.; Landa, J.M.A.; † This published work and the nomenclatural acts it contains have been registered in ZooBank, the online Rosa, J.A.d. Formal Assignation of registration system for the ICZN (International Code of Zoological Nomenclature). The LSID (Life Science the Kissing Bug Triatoma lecticularia Identifier) for this publication is: LSIDurn:lsid:zoobank.org:pub:62986EA0-10B0-4BE8-8180-2EF684FE2414.
    [Show full text]
  • Heteroptera: Reduviidae) Fernando Otálora-Luna1*, Antonio J Pérez-Sánchez1, Claudia Sandoval1 and Elis Aldana2
    Otálora-Luna et al. Revista Chilena de Historia Natural (2015) 88:4 DOI 10.1186/s40693-014-0032-0 REVIEW Open Access Evolution of hematophagous habit in Triatominae (Heteroptera: Reduviidae) Fernando Otálora-Luna1*, Antonio J Pérez-Sánchez1, Claudia Sandoval1 and Elis Aldana2 Abstract All members of Triatominae subfamily (Heteroptera: Reduviidae), potential vectors of Trypanosoma cruzi, etiologic agent of the Chagas disease, feed on blood. Through evolution, these bugs have fixed special morphological, physiological, and behavioral aptations (adaptations and exaptations) adequate to feed on blood. Phylogeny suggests that triatomines evolved from predator reduvids which in turn descended from phytophagous hemipterans. Some pleisiomorphic traits developed by the reduvid ancestors of the triatomines facilitated and modeled hematophagy in these insects. Among them, mouthparts, saliva composition, enzymes, and digestive symbionts are the most noticeable. However, the decisive step that allowed the shift from predation to hematophagy was a change of behavior. The association of a predator reduvid with nesting vertebrate (≈110 to 32 Ma) permitted the shift from an arthropod prey to a vertebrate host. In this work, we review the phylogeny and dispersion of triatomines and the current controversy over the monophyly or polyphyly of this group. We also discuss how these insects were able to overcome, and even have taken advantage of, diverse ancestral and physical barriers to adapt to sucking blood of nidicolous vertebrates. We provide a Spanish version of this work. Keywords: Latin America; Chagas' disease; Phylogeny; Blood-sucking habit; Triatomines Introduction due to their clear involvement in the domestic and peri- The triatomines are an insect subfamily of the Reduviidae domestic transmission cycles.
    [Show full text]