Proteome of the Triatomine Digestive Tract: from Catalytic to Immune Pathways; Focusing on Annexin Expression

Total Page:16

File Type:pdf, Size:1020Kb

Proteome of the Triatomine Digestive Tract: from Catalytic to Immune Pathways; Focusing on Annexin Expression fmolb-07-589435 December 3, 2020 Time: 17:27 # 1 ORIGINAL RESEARCH published: 09 December 2020 doi: 10.3389/fmolb.2020.589435 Proteome of the Triatomine Digestive Tract: From Catalytic to Immune Pathways; Focusing on Annexin Expression Marcia Gumiel1,2†‡, Debora Passos de Mattos3,4†, Cecília Stahl Vieira1,5, Caroline Silva Moraes1, Carlos José de Carvalho Moreira6, Marcelo Salabert Gonzalez3,4,5, André Teixeira-Ferreira7, Mariana Waghabi8, 1,3,4,5 9 Edited by: Patricia Azambuja and Nicolas Carels * Barbara Cellini, 1 Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio University of Perugia, Italy de Janeiro, Brazil, 2 Research Department, Universidad Privada Franz Tamayo (UNIFRANZ), La Paz, Bolivia, 3 Laboratório Reviewed by: de Biologia de Insetos, Departamento de Biologia Geral, Universidade Federal Fluminense, Niterói, Brazil, 4 Programa Dong-Woo Lee, de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil, Yonsei University, South Korea 5 Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil, Qi Wu, 6 Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil, 7 Laboratório de Toxinologia, Instituto Aarhus University, Denmark Oswaldo Cruz, Rio de Janeiro, Brazil, 8 Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, 9 *Correspondence: FIOCRUZ, Rio de Janeiro, Brazil, Laboratório de Modelagem de Sistemas Biológicos, National Institute for Science Nicolas Carels and Technology on Innovation in Neglected Diseases (INCT-IDN), Centro de Desenvolvimento Tecnológico em Saúde nicolas.carels@cdts.fiocruz.br; (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil [email protected] †These authors have contributed Rhodnius prolixus, Panstrongylus megistus, Triatoma infestans, and Dipetalogaster equally to this work maxima are all triatomines and potential vectors of the protozoan Trypanosoma cruzi ‡Present address: Marcia Gumiel, responsible for human Chagas’ disease. Considering that the T. cruzi’s cycle occurs Department of Research, Universidad inside the triatomine digestive tract (TDT), the analysis of the TDT protein profile is an Privada Franz Tamayo (UNIFRANZ), essential step to understand TDT physiology during T. cruzi infection. To characterize Calle Heroes del Acre, La Paz, Bolivia the protein profile of TDT of D. maxima, P. megistus, R. prolixus, and T. infestans, Specialty section: a shotgun liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach This article was submitted to was applied in this report. Most proteins were found to be closely related to metabolic Protein Chemistry and Enzymology, a section of the journal pathways such as gluconeogenesis/glycolysis, citrate cycle, fatty acid metabolism, Frontiers in Molecular Biosciences oxidative phosphorylation, but also to the immune system. We annotated this new Received: 31 July 2020 proteome contribution gathering it with those previously published in accordance with Accepted: 21 October 2020 Published: 09 December 2020 Gene Ontology and KEGG. Enzymes were classified in terms of class, acceptor, and Citation: function, while the proteins from the immune system were annotated by reference Gumiel M, Mattos DP, Vieira CS, to the pathways of humoral response, cell cycle regulation, Toll, IMD, JNK, Jak- Moraes CS, Moreira CJC, STAT, and MAPK, as available from the Insect Innate Immunity Database (IIID). These Gonzalez MS, Teixeira-Ferreira A, Waghabi M, Azambuja P and pathways were further subclassified in recognition, signaling, response, coagulation, Carels N (2020) Proteome of the melanization and none. Finally, phylogenetic affinities and gene expression of annexins Triatomine Digestive Tract: From Catalytic to Immune Pathways; were investigated for understanding their role in the protection and homeostasis of Focusing on Annexin Expression. intestinal epithelial cells against the inflammation. Front. Mol. Biosci. 7:589435. doi: 10.3389/fmolb.2020.589435 Keywords: chagas disease, triatomine, digestive tract, mass spectrometry, enzymes, immunity, annexin Frontiers in Molecular Biosciences| www.frontiersin.org 1 December 2020| Volume 7| Article 589435 fmolb-07-589435 December 3, 2020 Time: 17:27 # 2 Gumiel et al. The Proteome of Triatomines Digestive Tract INTRODUCTION following by multiplication or differentiation, as well as (iv) the local humoral defense mechanisms associated to the intestinal Chagas disease (Chagas, 1909, 1911) is one of the major causes bacterial microbiota after triatomine feeding (Alves et al., 2007; of acute myocarditis and progressive chronic cardiomyopathy in Nogueira et al., 2007; Gonzalez et al., 2011, 2013; da Mota et al., endemic regions of Latin America, affecting almost 6-7 million 2012; Oliveira et al., 2012; Vieira et al., 2016; Nogueira et al., 2017; people (WHO (World Health Organization), 2020). The protist Moreira et al., 2018). parasite Trypanosoma cruzi is the causative agent of Chagas To briefly summarize the molecular knowledge that has disease and its development alternates between vertebrates been recently acquired on TDT, Ribeiro et al.(2014) identified (mainly mammals, but also lizards) and triatomine hosts (Garcia thousands of genes regularly expressed, which were further et al., 1999; Ferreira et al., 2016). recognized among the 15,546 putative genes reported by Triatomines are insects classified as Hemiptera: Reduviidae Mesquita et al.(2015) in the genome of R. prolixus. Later on, with some of the most important species for Chagas disease immune-related genes were detected in Triatoma pallidipennis, transmission being Triatoma infestans, Rhodnius prolixus, and T. dimidiata, and T. infestans, using comparative transcriptomics Panstrongylus megistus (Coura and Dias, 2009; Schofield and based on gene references from the immune response of hexapods Galvão, 2009; Coura, 2015). These triatomine species have (Zumaya-Estrada et al., 2018). These studies show that the wide geographical distribution in Latin America with marked repertoire of genes in the immunological signaling pathway adaptation to domestic and peridomestic ecotopes as well as is substantially different in Hemiptera compared to Diptera. physiological features that promote T. cruzi development (Guhl, Since the methodology based on genomic sequences needs to be 2007; Coura and Dias, 2009; Noireau, 2009; Gurgel-Gonçalves complemented by the direct analysis of gene products through et al., 2012; Coura, 2015). By contrast, Dipetalogaster maxima functional genomics, a proteome analysis was, first, conducted is found in northern America, where it inhabits the sylvatic by 2D gel electrophoresis by Vieira et al.(2015) using the AM environments of Baja California Sur and Mexico. It resides in of R. prolixus and, later on, by Ouali et al.(2020) using both dry and rocky areas and usually takes its blood meal from AM and PM. These authors mainly found proteins involved in lizards, but when fasting can bite human or domestic animals detoxification, amino acids, lipids and sugar degradation; they (Guzmán-Bracho, 2001). also confirmed the existence of these proteins by reference to the Many factors influence the T. cruzi vectorial transmission, transcriptome and genome annotations by Ribeiro et al.(2014) such as: (i) The varied feeding behavior of triatomines; (ii) and Mesquita et al.(2015). The close association between triatomines and humans; (iii) In complement to sequence analyses, Antunes et al.(2013) The variety of ecotopes that triatomines occupy, which turns investigated the fecal metabolome of P. megistus, R. prolixus the control of their population difficult (Noireau et al., 2005; and T. infestans expanding the knowledge of the TDT chemical Cortez et al., 2007; Buitrago et al., 2010; Espinoza Echeverria composition. These authors reported that 80% of the metabolites et al., 2017); (iv) The wide phylogenetic divergence among the found were common to these three species, while the remaining natural clones of T. cruzi (Laurent et al., 1997); and also (v) The 20% varied among them (Antunes et al., 2013). geographic origin of T. cruzi and its vector that may constitute an Here, we aimed at investigating the complete proteomic essential factor in the parasitic cycle since local strains are usually profile of the TDT from four species: T. infestans, R. prolixus, better adapted to indigenous vector species than to exotic ones P. megistus, and D. maxima to take a step forward in the (Ryckman, 1965; Zeledón, 1987). knowledge of T. cruzi vectors biology. The shotgun proteome The life cycle of T. cruzi in the invertebrate host is restricted results described here seek to contribute to the understanding to the triatomine digestive tract (TDT) (Zeledón, 1987; Garcia of the factors that may influence the triatomine competence for et al., 1999; Gonzalez et al., 1999; Cortez et al., 2012; Dias transmitting Chagas disease. et al., 2015; Ferreira et al., 2016). Therefore, T. cruzi suffers Through shotgun proteomic approach (nano-LC/MS/MS), the influence of different factors present in the lumen of insect we identified proteins expressed in midgut epithelial cells gut (Mello et al., 1996; Moreira et al., 2003; Azambuja et al., and rectum enriched fraction of the TDT from the four 2004, 2017; Garcia et al., 2010b; Castro et al., 2012; Nogueira triatomine species analyzed in this study. We found that et al., 2015; Vieira et al., 2016); these factors
Recommended publications
  • Cystatins in Immune System
    Journal of Cancer 2013, Vol. 4 45 Ivyspring International Publisher Journal of Cancer 2013; 4(1): 45-56. doi: 10.7150/jca.5044 Review Cystatins in Immune System Špela Magister1 and Janko Kos1,2 1. Jožef Stefan Institute, Department of Biotechnology, Ljubljana, Slovenia; 2. University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia. Corresponding author: Janko Kos, Ph. D., Department of Biotechnology, Jožef Stefan Institute, &Faculty of Pharmacy, University of Ljubljana, Slovenia; [email protected]; Phone+386 1 4769 604, Fax +3861 4258 031. © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/ licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. Received: 2012.10.22; Accepted: 2012.12.01; Published: 2012.12.20 Abstract Cystatins comprise a large superfamily of related proteins with diverse biological activities. They were initially characterised as inhibitors of lysosomal cysteine proteases, however, in recent years some alternative functions for cystatins have been proposed. Cystatins pos- sessing inhibitory function are members of three families, family I (stefins), family II (cystatins) and family III (kininogens). Stefin A is often linked to neoplastic changes in epithelium while another family I cystatin, stefin B is supposed to have a specific role in neuredegenerative diseases. Cystatin C, a typical type II cystatin, is expressed in a variety of human tissues and cells. On the other hand, expression of other type II cystatins is more specific. Cystatin F is an endo/lysosome targeted protease inhibitor, selectively expressed in immune cells, suggesting its role in processes related to immune response.
    [Show full text]
  • Trypanosoma Cruzi Immune Response Modulation Decreases Microbiota in Rhodnius Prolixus Gut and Is Crucial for Parasite Survival and Development
    Trypanosoma cruzi Immune Response Modulation Decreases Microbiota in Rhodnius prolixus Gut and Is Crucial for Parasite Survival and Development Daniele P. Castro1*, Caroline S. Moraes1, Marcelo S. Gonzalez2, Norman A. Ratcliffe1, Patrı´cia Azambuja1,3, Eloi S. Garcia1,3 1 Laborato´rio de Bioquı´mica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundac¸a˜o Oswaldo Cruz (Fiocruz), Rio de Janeiro, Rio de Janeiro, Brazil, 2 Laborato´rio de Biologia de Insetos, Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal Fluminense (UFF) Nitero´i, Rio de Janeiro, Brazil, 3 Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, Rio de Janeiro, Brazil Abstract Trypanosoma cruzi in order to complete its development in the digestive tract of Rhodnius prolixus needs to overcome the immune reactions and microbiota trypanolytic activity of the gut. We demonstrate that in R. prolixus following infection with epimastigotes of Trypanosoma cruzi clone Dm28c and, in comparison with uninfected control insects, the midgut contained (i) fewer bacteria, (ii) higher parasite numbers, and (iii) reduced nitrite and nitrate production and increased phenoloxidase and antibacterial activities. In addition, in insects pre-treated with antibiotic and then infected with Dm28c, there were also reduced bacteria numbers and a higher parasite load compared with insects solely infected with parasites. Furthermore, and in contrast to insects infected with Dm28c, infection with T. cruzi Y strain resulted in a slight decreased numbers of gut bacteria but not sufficient to mediate a successful parasite infection. We conclude that infection of R. prolixus with the T. cruzi Dm28c clone modifies the host gut immune responses to decrease the microbiota population and these changes are crucial for the parasite development in the insect gut.
    [Show full text]
  • When Hiking Through Latin America, Be Alert to Chagas' Disease
    When Hiking Through Latin America, Be Alert to Chagas’ Disease Geographical distribution of main vectors, including risk areas in the southern United States of America INTERNATIONAL ASSOCIATION 2012 EDITION FOR MEDICAL ASSISTANCE For updates go to www.iamat.org TO TRAVELLERS IAMAT [email protected] www.iamat.org @IAMAT_Travel IAMATHealth When Hiking Through Latin America, Be Alert To Chagas’ Disease COURTESY ENDS IN DEATH segment upwards, releases a stylet with fine teeth from the proboscis and Valle de los Naranjos, Venezuela. It is late afternoon, the sun is sinking perforates the skin. A second stylet, smooth and hollow, taps a blood behind the mountains, bringing the first shadows of evening. Down in the vessel. This feeding process lasts at least twenty minutes during which the valley a campesino is still tilling the soil, and the stillness of the vinchuca ingests many times its own weight in blood. approaching night is broken only by a light plane, a crop duster, which During the feeding, defecation occurs contaminating the bite wound periodically flies overhead and disappears further down the valley. with feces which contain parasites that the vinchuca ingested during a Bertoldo, the pilot, is on his final dusting run of the day when suddenly previous bite on an infected human or animal. The irritation of the bite the engine dies. The world flashes before his eyes as he fights to clear the causes the sleeping victim to rub the site with his or her fingers, thus last row of palms. The old duster rears up, just clipping the last trees as it facilitating the introduction of the organisms into the bloodstream.
    [Show full text]
  • A New Species of Rhodnius from Brazil (Hemiptera, Reduviidae, Triatominae)
    A peer-reviewed open-access journal ZooKeys 675: 1–25A new (2017) species of Rhodnius from Brazil (Hemiptera, Reduviidae, Triatominae) 1 doi: 10.3897/zookeys.675.12024 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A new species of Rhodnius from Brazil (Hemiptera, Reduviidae, Triatominae) João Aristeu da Rosa1, Hernany Henrique Garcia Justino2, Juliana Damieli Nascimento3, Vagner José Mendonça4, Claudia Solano Rocha1, Danila Blanco de Carvalho1, Rossana Falcone1, Maria Tercília Vilela de Azeredo-Oliveira5, Kaio Cesar Chaboli Alevi5, Jader de Oliveira1 1 Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Araraquara, SP, Brasil 2 Departamento de Vigilância em Saúde, Prefeitura Municipal de Paulínia, SP, Brasil 3 Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brasil 4 Departa- mento de Parasitologia e Imunologia, Universidade Federal do Piauí (UFPI), Teresina, PI, Brasil 5 Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), São José do Rio Preto, SP, Brasil Corresponding author: João Aristeu da Rosa ([email protected]) Academic editor: G. Zhang | Received 31 January 2017 | Accepted 30 March 2017 | Published 18 May 2017 http://zoobank.org/73FB6D53-47AC-4FF7-A345-3C19BFF86868 Citation: Rosa JA, Justino HHG, Nascimento JD, Mendonça VJ, Rocha CS, Carvalho DB, Falcone R, Azeredo- Oliveira MTV, Alevi KCC, Oliveira J (2017) A new species of Rhodnius from Brazil (Hemiptera, Reduviidae, Triatominae). ZooKeys 675: 1–25. https://doi.org/10.3897/zookeys.675.12024 Abstract A colony was formed from eggs of a Rhodnius sp. female collected in Taquarussu, Mato Grosso do Sul, Brazil, and its specimens were used to describe R.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Vectors of Chagas Disease, and Implications for Human Health1
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Denisia Jahr/Year: 2006 Band/Volume: 0019 Autor(en)/Author(s): Jurberg Jose, Galvao Cleber Artikel/Article: Biology, ecology, and systematics of Triatominae (Heteroptera, Reduviidae), vectors of Chagas disease, and implications for human health 1095-1116 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Biology, ecology, and systematics of Triatominae (Heteroptera, Reduviidae), vectors of Chagas disease, and implications for human health1 J. JURBERG & C. GALVÃO Abstract: The members of the subfamily Triatominae (Heteroptera, Reduviidae) are vectors of Try- panosoma cruzi (CHAGAS 1909), the causative agent of Chagas disease or American trypanosomiasis. As important vectors, triatomine bugs have attracted ongoing attention, and, thus, various aspects of their systematics, biology, ecology, biogeography, and evolution have been studied for decades. In the present paper the authors summarize the current knowledge on the biology, ecology, and systematics of these vectors and discuss the implications for human health. Key words: Chagas disease, Hemiptera, Triatominae, Trypanosoma cruzi, vectors. Historical background (DARWIN 1871; LENT & WYGODZINSKY 1979). The first triatomine bug species was de- scribed scientifically by Carl DE GEER American trypanosomiasis or Chagas (1773), (Fig. 1), but according to LENT & disease was discovered in 1909 under curi- WYGODZINSKY (1979), the first report on as- ous circumstances. In 1907, the Brazilian pects and habits dated back to 1590, by physician Carlos Ribeiro Justiniano das Reginaldo de Lizárraga. While travelling to Chagas (1879-1934) was sent by Oswaldo inspect convents in Peru and Chile, this Cruz to Lassance, a small village in the state priest noticed the presence of large of Minas Gerais, Brazil, to conduct an anti- hematophagous insects that attacked at malaria campaign in the region where a rail- night.
    [Show full text]
  • Best Presentation
    Survey of Public Showed Preference for Healthcare Environ Diagnostic ment 15% Energy Healthca 13% re 47% Food & Nutrition 15% Others 11% Chagas Disease – Our Real World Problem Chagas Disease – Our Real World Problem “Chagas disease, caused by the protozoan Trypanosoma cruzi, is responsible for a greater disease burden than any other parasitic disease in the New World” Limitations in Diagnostics Immunocompromised Coinfection with HIV Infants Variable efficiency Evolution of surface antigens Differences between strains Investigating the Feasibility of Our Diagnostics Would screening all infants impact epidemiology? Would our diagnostic be a viable investment? Can our project make a real difference? Prof Yves Carlier, expert in Infectious Diseases (Université Libre de Bruxelles) Provided us with useful insights into Chagas disease throughout our project Epidemiological Model Shows a Congenital Chagas Diagnostic is Viable Total infected without diagnostic Population Total infected with diagnostic Years Epidemiological Model Shows a Congenital Chagas Diagnostic is Viable Total infected >130,000 fewer infected individuals without diagnostic $61 mil in healthcare costs saved annually Total infected with Population diagnostic 37,000 DALYs per year eliminated Years Prof Mike Bonsall, Professor of Mathematical Biology (University of Oxford) Helped us gain a better understanding of the principles of disease modelling, and equipped us with the skills to create our own epidemiological model for Chagas disease Canonical Diagnostic Circuitry INPUT CIRCUIT
    [Show full text]
  • Morelloflavone and Its Semisynthetic Derivatives As Potential Novel Inhibitors of Cysteine and Serine Proteases
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/276087209 Morelloflavone and its semisynthetic derivatives as potential novel inhibitors of cysteine and serine proteases ARTICLE in JOURNAL OF MEDICINAL PLANT RESEARCH · APRIL 2015 Impact Factor: 0.88 · DOI: 10.5897/JMPR2014.5641 DOWNLOADS VIEWS 2 17 8 AUTHORS, INCLUDING: Ihosvany Camps Claudio Viegas-jr Universidade Federal de Alfenas Universidade Federal de Alfenas 35 PUBLICATIONS 128 CITATIONS 6 PUBLICATIONS 22 CITATIONS SEE PROFILE SEE PROFILE Available from: Ihosvany Camps Retrieved on: 08 September 2015 Vol. 9(13), pp. 426-434, 3 April, 2015 DOI: 10.5897/JMPR2014.5641 Article Number: A42115152263 ISSN 1996-0875 Journal of Medicinal Plants Research Copyright © 2015 Author(s) retain the copyright of this article http://www.academicjournals.org/JMPR Full Length Research Paper Morelloflavone and its semisynthetic derivatives as potential novel inhibitors of cysteine and serine proteases Vanessa Silva Gontijo1, Jaqueline Pereira Januário1, Wagner Alves de Souza Júdice2, Alyne Alexandrino Antunes2, Ingridy Ribeiro Cabral1, Diego Magno Assis3, Maria Aparecida Juliano3, Ihosvany Camps4, Marcos José Marques4, Claudio Viegas Junior1 and Marcelo Henrique dos Santos1* 1Department of Exact Science, Laboratory of Phytochemistry and Medicinal Chemistry, Federal University of Alfenas, MG, Brazil. 2Interdisciplinary Center of Biochemical Investigation, Mogi das Cruzes University, Mogi das Cruzes, SP, Brazil. 3Department of Biophysics, Federal University of São Paulo, SP, Brazil. 4Department of Biological Sciences, Laboratory of Molecular Biology, Federal University of Alfenas, MG, Brazil. Received 9 October, 2014; Accepted 11 March, 2015 This article reports the three biflavonoids isolated from the fruit pericarp of Garcinia brasiliensis Mart.
    [Show full text]
  • Redalyc.Towards an Understanding of the Interactions of Trypanosoma
    Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil Azambuja, Patrícia; A. Ratcliffe, Norman; S. Garcia, Eloi Towards an understanding of the interactions of Trypanosoma cruzi and Trypanosoma rangeli within the reduviid insect host Rhodnius prolixus Anais da Academia Brasileira de Ciências, vol. 77, núm. 3, set., 2005, pp. 397-404 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32777304 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Anais da Academia Brasileira de Ciências (2005) 77(3): 397-404 (Annals of the Brazilian Academy of Sciences) ISSN 0001-3765 www.scielo.br/aabc Towards an understanding of the interactions of Trypanosoma cruzi and Trypanosoma rangeli within the reduviid insect host Rhodnius prolixus PATRÍCIA AZAMBUJA1, NORMAN A. RATCLIFFE2 and ELOI S. GARCIA1 1Department of Biochemistry and Molecular Biology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brasil 2Biomedical and Physiologial Research Group, School of Biological Sciences, University of Wales Swansea, Singleton Park, Swansea, SA28PP, United Kingdom Manuscript received on March 3, 2005; accepted for publication on March 30, 2005; contributed by Eloi S. Garcia* ABSTRACT This review outlines aspects on the developmental stages of Trypanosoma cruzi and Trypanosoma rangeli in the invertebrate host, Rhodnius prolixus. Special attention is given to the interactions of these parasites with gut and hemolymph molecules and the effects of the organization of midgut epithelial cells on the parasite development.
    [Show full text]
  • The Occurrence of Rhodnius Prolixus Stal, 1859, Naturally Infected By
    Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 93(2): 141-143, Mar./Apr. 1998 141 The studied area, Granja Florestal, Teresópolis, RESEARCH NOTE can be characterized as a secondary rain forest with poor human dwellings on the forests borders. The local population live basically on small agricul- The Occurrence of ture and hunting. Weekly searches were performed between September and March (1994-95) and in- Rhodnius prolixus Stal, 1859, cluded palm-trees, bracts of pteridophyta, bird and Naturally Infected by mammal nests, leafages and bromeliaceae. The collected insects were maintained in glass Trypanosoma cruzi in the flasks, fed through a membrane (ES Garcia et al. State of Rio de Janeiro, 1975 Rev Brasil Biol 35: 207-210) and the nymphs were allowed to moult. Seven isolates of T. cruzi Brazil (Hemiptera, were obtained through inoculation of swiss mice with the feces of the infected bugs. Axenic me- Reduviidae, Triatominae) dium derived metacyclic forms (105) from each Ana Paula Pinho, Teresa Cristina M isolate and were intraperitoneally inoculated in five swiss outbred mice weighing 18-20g. No mortal- Gonçalves*, Regina Helena ity occurred and only rare flagellates during a 2-3 Mangia**, Nédia S Nehme Russell**, day period could be observed in the fresh blood + Ana Maria Jansen/ preparations examined every other day, during two Departmento de Protozoologia *Departmento de months. Furthermore, the experimental infection Entomologia **Departmento de Bioquímica e by the isolates was stable as confirmed by the posi- Biologia Molecular, Instituto Oswaldo Cruz, Av. tive hemocultures made three months after the in- Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brasil oculation.
    [Show full text]
  • Drug Repurposing and Polypharmacology to Fight SARS-Cov-2 Through Inhibition of the Main Protease
    Drug repurposing and polypharmacology to ght SARS-CoV-2 through the inhibition of the main protease Luca Pinzi Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy Annachiara Tinivella Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy Fabiana Caporuscio Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy Giulio Rastelli ( [email protected] ) Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy Research Article Keywords: COVID-19, SARS-2-CoV-2, Drug repurposing, Polypharmacology, Structure-Based, Molecular docking, BEAR Posted Date: December 1st, 2020 DOI: https://doi.org/10.21203/rs.3.rs-27222/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Drug repurposing and polypharmacology to fight SARS-CoV-2 through inhibition of the main protease Luca Pinzi1, Annachiara Tinivella1, 2, Fabiana Caporuscio1, Giulio Rastelli1* 1 Molecular Modelling and Drug Design Lab, Life Sciences Department, University of Modena and Reggio Emilia, Modena, Italy. 2 Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy. * Correspondence: Prof. Giulio Rastelli, Life Sciences Department, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy. [email protected] Keywords: COVID-19, SARS-2-CoV-2, Drug repurposing, Polypharmacology, Structure-Based, Molecular docking, BEAR. Abstract Therapeutic options are urgently needed to fight the outbreak of a novel coronavirus (SARS-CoV-2), which causes the COVID-19 disease and is spreading rapidly around the world.
    [Show full text]
  • Crystal Structure of the Parasite Inhibitor Chagasin In
    Crystal structure of the parasite inhibitor chagasin in complex with papain allows identification of structural requirements for broad reactivity and specificity determinants for target proteases Izabela Redzynia1,*, Anna Ljunggren2,*, Anna Bujacz1, Magnus Abrahamson2, Mariusz Jaskolski3,4 and Grzegorz Bujacz1,4 1 Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Technical University of Lodz, Poland 2 Department of Laboratory Medicine, Division of Clinical Chemistry and Pharmacology, Lund University, Sweden 3 Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland 4 Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland Keywords A complex of chagasin, a protein inhibitor from Trypanosoma cruzi, and Chagas disease; cruzipain; cysteine papain, a classic family C1 cysteine protease, has been crystallized. Kinetic proteases; papain; protein inhibitors studies revealed that inactivation of papain by chagasin is very fast ) ) (k = 1.5 · 106 m 1Æs 1), and results in the formation of a very tight, Correspondence on m G. Bujacz, Institute of Technical Biochemis- reversible complex (Ki =36p ), with similar or better rate and equilib- try, Faculty of Biotechnology and Food rium constants than those for cathepsins L and B. The high-resolution Sciences, Technical University of Lodz, ul. crystal structure shows an inhibitory wedge comprising three loops, which Stefanowskiego 4/10, 90-924 Lodz, Poland forms a number of contacts responsible for the high-affinity binding. Com- Fax: +48 42 636 66 18 parison with the structure of papain in complex with human cystatin B Tel: +48 42 631 34 31 reveals that, despite entirely different folding, the two inhibitors utilize very E-mail: [email protected] similar atomic interactions, leading to essentially identical affinities for the M.
    [Show full text]