Electrical Methods by A

Total Page:16

File Type:pdf, Size:1020Kb

Electrical Methods by A Techniques of Water-Resources Investigations of the United States Geological Survey CHAPTER Dl APPLICATION OF SURFACE GEOPHYSICS TO GROUND-WATER INVESTIGATIONS By A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey BOOK 2 COLLECTION OF ENVIRONMENTAL DATA Electrical Methods By A. A. R. Zohdy The electrical properties of most rocks in crust in the form of large sheets, and that the upper part of the Earth’s crust are de- constantly change in intensity and in direc­ pendent primarily upon the amount of water tion. Their presence is detected easily by in the rock, the salinity of the water, and placing two electrodes in the ground sepa­ the distribution of the water in the rock. rated by a distance of about 300 meters Saturated rocks have lower resistivities than (984 feet) or more and measuring the po­ unsaturated and dry rocks. The higher the tential difference between them. The origin porosity of the saturated rock, the lower its of these telluric currents is believed to be resistivity, and the higher the salinity of in the ionosphere and is related to ionospheric the saturating fluids, the lower the resistiv­ tidal effects and to the continuous flow of ity. The presence of clays and conductive charged particles from the Sun which be- minerals also reduces the resistivity of the come trapped by the lines of force of the rock. Earth’s magnetic field. Two properties are of primary concern in If the ground in a given area is horizontal­ the application of electrical methods : (1) the ly stratified and the surface of the base­ ability of rocks to conduct an electric cur- ment rocks is also horizontal, then, at any rent, and (2) the polarization which occurs given moment, the density of the telluric cur- when an electrical current is passed through rent is uniform over the entire area. In the them (induced polarization). The electrical presence of geologic structures, however, conductivity of Earth materials can be stud­ such as anticlines, synclines, and faults, the ied by measuring the electrioal potential dis­ distribution of current density is not uni­ tribution produced at the Earth’s surface by form over the area. Furthermore, current an electric curren.t that is passed through the density is a vector quantity, and the vector Earth or by detecting the electromagnetic is larger when the telluric current flows at field produced by an alternating electric cur- right angles to the axis of an anticline than rent that is introduced into the Earth. The when the current flows parallel to the axis measurement of natural electric potentials (fig. 1). By plotting these vectors we obtain (spontaneous polarization, telluric currents, ellipses over anticlines and synclines and and streaming potentials) has also found ap­ circles where the basement rocks are hori­ plication in geologic investigations. The prin­ zontal: The longer axis of the ellipse is ori­ cipal methods using natural energy sources ented at right angles to the axis of the are (1) telluric current, (2) magneto­ geologic structure. telluric, (3) spontaneous polarization, and The measurement of telluric field intensity (4) streaming potential. is relatively simple. Four electrodes, M, N, M/, and N’ are placti on the surface of the ground at the ends of two intersecting per­ Telluric Current Method pendicular lines (fig. 2), and the potential differences are recorded on a potentiometric Telluric currents (Cagniard, 1956 ; Ber­ chart recorder or on an z-g plotter (Yungul, dichevskii, 1960; Kunetz; 1957) are natural 1968). From these measurements two corn­ electric currents that flow in the Earths ponents E,, and Ey of the telluric field can 5 TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS 8 c3 t + Figure I.--Flow of telluric current over on onticline. Ellipse and circles indicate telluric field intensity as a function of direction with respect to axis of anticline. M’ very much the same manner as a gravity map or magnetic map. However., a telluric M N map (fig. 3) delineates rock structure baaed -I-- on differences in electrical resistivity rather I. I N’ than on differences in density o:r magnetic M’M N susceptibility. Figure 2.- Examples of electrode arrays for measuring x and y components of telluric field. M, M’, N, and N are potential electrodes. Magneto-Telluric Method be computed, and the total field obtained by The magneto-telluric method (Berdichev­ adding E, and Ey vectorially. skii, 1960; Cagniard, 1953) of measuring re­ The intensity and direction of the telluric sistivity is similar to the telluric current current field vary with time; therefore method but has the advantage of providing measurements must be recorded simultane­ an estimate of the true resistivity of the ously at two different stations to take into layers. Measurements of amplitude variations account this variation, One station is kept in the telluric field E, and the associated statronary (base station), and the other is magnetic field H, determine earth resistivity. moved to a new location in the field (field Magnet&&uric measurementi at several station) after each set of measurements. frequencies provide information on the varia­ The ratio of the area of the ellipse at the tion of resistivity with depth because the field station to the area of a unit circle depth of penetration of electromagnetic (Keller and Frischknecht, 1966) at the base waves is a function of frequency.. A limita­ station is calculated mathematically. When tion of the method is the instrumental dif­ a contour map of equal elliptical areas is ficulty of measuring rapid fluctuations of the prepared (Migaux, 1946, 1948 ; Migaux and magnetic field. Interpretation techniques others, 1962 ; Migaux and Kunetz, 1955 ; Sch­ usually involve comparisons of observed data lumberger, 1939) it reflects the major geo­ with theoretical curves. The method is useful logic structures of the basement rocks in in exploration to depths greater tlhan can be APPLICATION OF SURFACE GEOPHYSICS 8 TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS 0 reached effectively by methods using artifi­ neering studies which lead to an understand­ cially induced currents. ing of the merits of utilizing electrical re­ To the author’s knowledge the telluric and sistivity methods for exploring the subsur­ magneto-t&uric methods have not been used face (Compagnie GBnerale de Gbphysique, extensively in the Western Hemisphere ; 1963). According to Breusse (1963)) the real however, the methods have been used exten­ progress in applying electrical methods to sively in the Eastern Hemisphere by French ground-water exploration began during and Russian geophysicists in petroleum ex­ World War II. French, Russian,and German ploration. The use of the methods in ground- geophysicists are mainly responsible for the water exploration is recommended at present development of the theory and practice of di­ only for reconnaissance of large basins. re&current electrical prospecting methods. Spontaneous Polarization and Definition and Units of Resistivity Streaming Potentials It is well known that the resistance R, in Spontaneous polarization or self-potential ohms, of a wire is directly proportional to its methods involve measurement of electric po­ length L and is inversely proportional to its tentials developed locally in the Earth by cross-sectional area A. That is: electro-chemical activity, electrofiltration ac­ tivity, or both. The most common use of self- R = L/-A, potential surveys has been in the search for or R=,,-, (1) ore bodies in contact with solutions of dif­ A ferent compositions. The result of this con- where p, the constant of proportionality, is tact is a potential difference and current flow known as the electrical resiativit,y or elec­ which may be detected at the ground surface. trical specific resistance, a characteristic of Of more interest to ground-water investiga­ the material which is independent of its tions are the potentials generated by water shape or size. According to Ohm’s law, the re­ moving through a porous medium (stream­ sistance is given by ing potentiala). Measurements of these po­ tentials have been used to locate leaks in R = AV/I, (2) reservoirs and canals (Ogilvy and others, where AV is the potential difference across 1969). the resistance and Z is the electric current Spontaneous potentials generally are no through the resistance. larger than a few tens of millivolts but in Substituting equation 1 in equation 2 and some placee may reach a few hundred milli­ rearranging we get volts. Relatively simple equipment can be used to measure the potentials, but spurious AAV (3) sources of potentials often obscure these P=t7 natural potentials. Interpretation is usually qualitative although some quantitative in­ Equation 3 may be used to determine the terpretations have been attempted. resistivity p of homogeneous and isotropic materials in the form of regular geometric shapes, such as cylinders, parallelepipeds, Direct Current-Resistivity and cubes. In a semi-infinite material the re­ sistivity at every point m,uat be dlefined. If Method the cross-sectional area and length of an element within the semi-infinite material are In the period from 1912 to 1914 (Dobrin, shrunk to infinitesimal size then the resis­ 1960) Conrad Schlumberger began his pie- tivity p may be defined as APPLICATION OF SURFACE GEOPHYSICS 9 ern United States, whereas in certain areas 20 (AV/L) in California the resistivity of fresh-water 0= r bearing sands generally ranges from 100 to ;To U/A) 250 ohm-m. In parts of Maryland resistivi­ or ties have been found to range Ibetween about EL 300 and 600 ohm-m, which is about the same p=­ range as that for ,basaltic aquifers in south- J ern 1,daho. These figures indicate that the where EL is the electric field and J is the cur- geophysicists should be familiar with the rent densi,ty.
Recommended publications
  • Telluric and Ocean Current Effects on Buried Pipelines and Their Cathodic Protection Systems
    Catalog No. L51909 Telluric and Ocean Current Effects on Buried Pipelines and Their Cathodic Protection Systems Contract PR-262-0030 Prepared for the Pipeline Corrosion Supervisory Committee Pipeline Research Committee of Pipeline Research Council International, Inc. Prepared by the following Research Agencies: CORRENG Consulting Service Inc. Geological Survey of Canada Authors: R.A. Gummow – Correng D.H. Boteler, Ph.D. and L. Trichtchenko, Ph.D. – GSC Publication Date: December 2002 “This report was furnished to the Pipeline Research Council International, Inc. (PRCI) under the terms of PRCI Project PR-262-0030, between PRCI and CORRENG Consulting Service Inc. The contents of this report are published as received from CORRENG Consulting Service Inc. The opinions, findings, and conclusions expressed in the report are those of the author and not necessarily those of PRCI, its member companies, or their representatives. Publication and dissemination of this report by PRCI should not be considered an endorsement by PRCI or CORRENG Consulting Service Inc., or the accuracy or validity of any opinions, findings, or conclusions expressed herein. In publishing this report, PRCI makes no warranty or representation, expressed or implied, with respect to the accuracy, completeness, usefulness, or fitness for purpose of the information contained herein, or that the use of any information, method, process, or apparatus disclosed in this report may not infringe on privately owned rights. PRCI assumes no liability with respect to the use of, or for damages resulting from the use of, any information, method, process or apparatus disclosed in this report. The text of this publication, or any part thereof, may not be reproduced or transmitted in any form by any means, electronic or mechanical, including photocopying, recording, storage in an information retrieval system, or otherwise, without the prior written approval of PRCI.” Pipeline Research Council International Catalog No.
    [Show full text]
  • Electrical Structure of the Stratosphere and Mesophere
    1969 (6th) Vol. 1 Space, Technology, and The Space Congress® Proceedings Society Apr 1st, 8:00 AM Electrical Structure of the Stratosphere and Mesophere Willis L. Webb U.S. Army Electronics Command Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Webb, Willis L., "Electrical Structure of the Stratosphere and Mesophere" (1969). The Space Congress® Proceedings. 1. https://commons.erau.edu/space-congress-proceedings/proceedings-1969-6th-v1/session-16/1 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. ELECTRICAL STRUCTURE OF THE STRATOSPHERE AND MESOSPHERE Will is L. V/ebb Atmospheric Sciences Laboratory U S Army Electronics Command White Sands Missile Range, New Mexico Synoptic rocket exploration of the strato­ exploration of the earth's upper atmosphere using spheric circulation has revealed the presence of small rocket vehicles was initiated to extend the hemispheric tidal circulations that are indicated region of meteorological study to higher alti­ to be in part characterized by systematic vertical tudes* . This meteorological rocket network (MRN) motions in low latitudes of the sunlit hemisphere. has expanded the atmospheric volume currently sub­ These vertical motions are powered by meridional ject to meteorological scrutiny from limitations oscillations in the stratospheric circulation pro­ of the order of 30-km peak altitude to a current duced by solar heating of the stratopause region synoptic data ceiling of the order of 80 km.
    [Show full text]
  • International Newsletter Research Institute for Sustainable Humanosphere, Kyoto University, Japan
    No. 29 March 2015 International Newsletter Research Institute for Sustainable Humanosphere, Kyoto University, Japan =Foreword= International Research Activities at RISH in 2014 Professor Junji Sugiyama Chair of the Public Relations Committee of RISH, Kyoto University In 2004, Director Prof. Hiroshi only at Kyoto University, but also re- Matsumoto launched a new interdis- searchers and groups across the coun- ciplinary Research Institute for Sus- try and around the world. Thanks to tainable Humanosphere, a coopera- the efforts of the faculty and support- partnerships. One good example is tive institute designed to serve as a ing communities, the Research Insti- our MOU with Nanjing Foresty Uni- hub for the discovery of creative solu- tute for Sustainable Humanosphere, versity in China, which was both re- tions for sustainable development. In Kyoto University, has successfully newed and extended. The committee the decade since, the institute has accomplished its mission by over- continues to encourage more produc- brought together researchers with ex- coming barriers across academic dis- tive partnerships as it helps strength- pertise ranging from wood science to ciplines through innovation and co- en the quality and effectiveness of radio science. The spirit of interdisci- operation. On June 6, 2014, RISH research on global issues. According plinary collaboration has expanded commemorated its 10-year anniversa- to Prof. Sanga-Ngoie, research and into partnerships with experts not ry. academic institutions in Africa and International activities have pro- South America are good candidates duced 19 cooperative Memoranda of for future partnerships. Understanding (MOU): seven with There are currently increasing foreign counterparts in Asian, three in concerns about social accountability Europe, and two with North Ameri- and the role of public information.
    [Show full text]
  • A Review of the Application of Telluric and Magnetotelluric Methods in Geophysical Exploration
    Tropical Journal of Science and Technology, 2020, 1(1), 35 - 47 ISSN: 2714-383X (Print) 2714-3848 (Online) Available online at credencepressltd.com A review of the application of telluric and magnetotelluric methods in geophysical exploration 1Babarinde Boye Timothy and 2Nwankwo Levi I. 1Department of Physics, Kwara State College of Education, Ilorin, Nigeria. 2Geophysics Group, Department of Physics, Federal University Kashere, Gombe State, Nigeria. Corresponding author: [email protected] Abstract This study presents a review of the application of telluric and magnetotelluric field techniques in understanding the subsurface structures of the earth, which stems from the analytical solution of the Maxwell‟s basic wave equations of electromagnetic theory. The work articulates the fundamentals of a magnetotelluric survey, showing how it is applied in the field, and an explanation of its use in solving geophysical problems. Case histories and the advantages and limitations of employing telluric and magnetotelluric field techniques are also discussed. Keywords: Telluric, magnetotelluric, subsurface, geophysical exploration, geoelectrical 1. Introduction provide a wide and continuous spectrum of The last few decades have witnessed EM field waves. These fields induce increased use of natural-source geophysical currents into the Earth, which are measured techniques particularly for petroleum, gas at the surface and contain information about and geothermal explorations, and geo- subsurface resistivity structures (Tamrat, engineering problems. In addition to this, 2010). Magnetotelluric can also be described continuous monitoring of magnetotelluric as a geophysical method that measures (MT) signals to study the earthquake naturally occurring, time-varying magnetic precursor phenomena is now a new initiative and electric fields from which it is possible (Harinarayana, 2008).
    [Show full text]
  • 12Th International Conference and School
    St. Petersburg State University 12th International Conference and School “PROBLEMS OF GEOCOSMOS” Book of Abstracts St. Petersburg, Petrodvorets, October 8–12, 2018 St. Petersburg 2018 Chairman: Prof. V.S. Semenov St. Petersburg State University, Russia Vice-chairman: Dr. S.V. Apatenkov St. Petersburg State University, Russia Organizing Committee: Dr. N.Yu. Bobrov,. St. Petersburg State University, Russia Dr. V.V. Karpinsky, St. Petersburg State University, Russia Dr. M.V. Kubyshkina, St. Petersburg State University, Russia Dr. T.A. Kudryavtseva, St. Petersburg State University, Russia Dr. E.L. Lyskova, St. Petersburg State University, Russia N.P. Legenkova, St. Petersburg State University, Russia Dr. I.A. Mironova, St. Petersburg State University, Russia M.V. Riabova, St. Petersburg State University, Russia R.V. Smirnova, St. Petersburg State University, Russia Program Committee: Dr. A.V. Divin, St. Petersburg State University, Russia Prof. I.N. Eltsov, Institute of Petroleum Geology and Geophysics SB RAS, Russia Prof. N.V. Erkaev, Institute of Computational Modelling SB RAS, Russia Prof. B.M. Kashtan, St. Petersburg State University, Russia Dr. P.V. Kharitonskii, St. Petersburg State University, Russia Prof. Yu.A. Kopytenko, SPbF IZMIRAN, Russia Dr. A.A. Kosterov, St. Petersburg State University, Russia Dr. V.E. Pavlov, Schmidt Institute of Physics of the Earth, RAS, Russia Prof. V.N. Troyan, St. Petersburg State University, Russia Prof. V.A. Sergeev, St. Petersburg State University, Russia Dr. E.S. Sergienko, St. Petersburg State University, Russia Dr. N.A. Tsyganenko, St. Petersburg State University, Russia Prof. T.B. Yanovskaya, St. Petersburg State University, Russia Dr. N.V. Zolotova, St. Petersburg State University, Russia 2 CONTENTS SECTION EG.
    [Show full text]
  • 01317: Telluric Current Considerations in the Cp
    TELLURIC CURRENT CONSIDERATIONS IN THE CP DESIGN FOR THE MARITIMES AND NORTHEAST PIPELINE B.C. Rix Corrosion Service Company Limited 10 Akerley Blvd., Suite 41 Dartmouth, Nova Scotia, Canada B3B 1J4 D.H. Boteler Geological Survey of Canada Geomagnetic Laboratory 1 Observatory Crescent Ottawa, Ontario, Canada K1A 0Y3 ABSTRACT The Maritimes and Northeast Pipeline on the east coast of North America is constructed through an area where large geomagnetic disturbances can be expected. Because of this it was decided to include consideration of telluric current effects in the design of the cathodic protection (CP) system for the new pipeline. An evaluation was made of the electric fields expected to be produced by geomagnetic disturbances. A computer model was set up to examine the pipeline response to these electric fields. This allowed calculations of the pipe-to-soil potentials produced with different coating resistances and placement of insulating flanges and groundbeds, which therefore allow various cathodic protection schemes to be evaluated before construction. The modeling showed that putting insulating flanges into the pipe created extra sites where large pipe-to-soil potentials would be produced. Accordingly it was decided to make the pipe electrically continuous and drain the telluric currents off at the ends of the pipeline using potential-controlled rectifiers. This paper describes the CP system installed to mitigate the telluric current effects and presents observations of telluric currents both before and after commissioning of the CP system. Keywords: cathodic protection, telluric currents, geomagnetic disturbances, potential control INTRODUCTION The Sable Offshore Energy Project includes both the offshore production and onshore transportation of natural gas.
    [Show full text]
  • An Interpretation of Induced Electric Currents in Long Pipelines Caused by Natural Geomagnetic Sources of the Upper Atmosphere
    AN INTERPRETATION OF INDUCED ELECTRIC CURRENTS IN LONG PIPELINES CAUSED BY NATURAL GEOMAGNETIC SOURCES OF THE UPPER ATMOSPHERE WALLACE H. CAMPBELL U.S. Geological Survey MS 964, Denver Federal Center, Box 25046, Denver, CO 80225, U.S.A. Abstract. Electric currents in long pipelines can contribute to corrosion effects that limit the pipe's lifetime. One cause of such electric currents is the geomagnetic field variations that have sources in the Earth's upper atmosphere. Knowledge of the general behavior of the sources allows a prediction of the occurrence times, favorable locations for the pipeline effects, and long-term projections of corrosion contributions. The source spectral characteristics, the Earth's conductivity profile, and a corrosion- frequency dependence limit the period range Of the natural field changes that affect the pipe. The corrosion contribution by induced currents from geomagnetic sources should be evaluated for pipelines that are located at high and at equatorial latitudes. At midlatitude locations, the times of these natural current maxima should be avoided for the necessary accurate monitoring of the pipe-to-soil potential. 1. Introduction With the introduction of long manmade electric conductors on the Earth's surface over 100 yr ago, there arose a concern about the surging electric currents of natural origin that sporadically appeared in such systems. It was soon realized that the spontaneous currents in telegraph wires were associated with aurorae and geomagnetic storms (Barlow, 1849; Clement, 1860; Prescott, 1860, 1866; Hansteen, 1860; Burbank, 1905; Chapman and Bartels, 1940; Harang, 1951; and Stormer, 1955). Similar current fluctuation problems were reported in submarine communication cables (Saunders, 1880, 1881; Axe, 1968; and Meloni et al., 1983) and long power transmission lines (Davidson, 1940; Slother and Albertson, 1967; Albertson and Van Baelen, 1970; Albertson et al., 1974; Akasofu and Merritt, 1979; Akasofu and Aspnes, 1982; Boerner et al., 1983; and Pirjola, 1983).
    [Show full text]
  • Climate Change, Security, Sensors
    acoustics Article Climate Change, Security, Sensors Giovanni P. Gregori 1,2,3,4 1 IDASC—Istituto di Acustica e Sensoristica O. M. Corbino (CNR), 00133 Rome, Italy; [email protected] 2 IEVPC— International Earthquake and Volcano Prediction Center, Orlando, FL 32860, USA 3 IASCC—Institute for Advanced Studies in Climate Change, Aurora, CO 80014, USA 4 ISSO—International Seismic Safety Organization, Headquarters, 64031 Arsita (TE), Italy Received: 16 April 2020; Accepted: 29 June 2020; Published: 3 July 2020 Abstract: A concise threefold illustration is given: (i) of climate change on the gigayear (Ga) time scale through the nanosecond (nsec) time scale, (ii) of the role of the performance of solid materials, concerning both manmade and natural structures with reference to security, and (iii) of the exploitation of the electrostatic energy of the atmospheric electrical circuit—which is an enormous reservoir of natural “clean” energy. Several unfortunate misunderstandings are highlighted that bias the present generally agreed beliefs. The typical natural pace of the Earth’s “electrocardiogram”, ~27.4 Ma, is such that, at present, for the first time humankind must challenge an Earth’s “heartbeat”. A correct use of sensors is needed to get an efficient monitoring of the ongoing climate change. Both anthropic and natural drivers are to be considered. A brief reminder is given about sensors that ought to monitor solid materials—with application (i) to every kind of machinery, building, viaduct or bridge, vehicle, aircraft, rocket, etc. and (ii) for a correct (and unprecedented) monitoring of the electric field at ground, which is the prerequisite for the exploitation of the electrostatic energy of the atmosphere.
    [Show full text]
  • Geomagnetic Variations at Kilbourne Hole, New Mexico J
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/26 Geomagnetic variations at Kilbourne Hole, New Mexico J. N. Towle and D. V. Fitterman, 1975, pp. 281 in: Las Cruces Country, Seager, W. R.; Clemons, R. E.; Callender, J. F.; [eds.], New Mexico Geological Society 26th Annual Fall Field Conference Guidebook, 376 p. This is one of many related papers that were included in the 1975 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • The Earth's Electrical Surface Potential
    The Earth’s Electrical Surface Potential A summary of present understanding (January 2007) by Gaetan Chavalier, PhD, Director of Research, California Institute for Human Science, Graduate School & Research Center, Encinitas, CA An explanation of the forces that drive the electrical activity on the earth’s surface. A basis for the concept of “earthing.” Contents I. Introduction 2 II. The Global Electrical Circuit 3 Properties of the global electrical circuit 3 Generators of the circuit 5 Basic model 6 III. Electrical Properties of the Earth’s Surface 11 The natural environment 12 Interactions of telluric currents with man-made systems 14 Communication cables 15 Powerlines 16 Pipelines 17 Railways 17 Corrosion 18 Biological Effects 18 IV. Electrical Properties of the Earth’s Atmosphere 25 Solar radiations 29 The ionospheric wind 30 Solar wind 30 Solar wind – magnetosphere coupling 31 Magnetosphere – ionosphere coupling 32 Ionosphere – thermosphere coupling 33 Variability in the solar wind 33 V. Overall Influences on Earth’s Surface Electric Potential 35 Solar Radiations 36 Rain 38 High-Voltage Power Lines 38 References 39 Glossary 41 Historical notes: Additional information is provided throughout the document as “historical notes” for those interested in greater detail. Glossary: Technical terms are explained in an expansive glossary found on pages 41-97. - 1 - I. Introduction For billions of years life has evolved on the earth. Only recently has man begun to wear shoes; and even more recently has man developed rubber and plastics (insulating materials) that are used to make shoes which insulate man completely from the earth. Today, a large portion of the population lives or works in high rise buildings.
    [Show full text]
  • Influence of a Single Lightning Discharge on the Intensity of an Air Electric Field and Acoustic Emission of Near-Surface Rocks
    Solid Earth, 3, 307–311, 2012 www.solid-earth.net/3/307/2012/ Solid Earth doi:10.5194/se-3-307-2012 © Author(s) 2012. CC Attribution 3.0 License. Influence of a single lightning discharge on the intensity of an air electric field and acoustic emission of near-surface rocks S. E. Smirnov and Y. V. Marapulets Institute of Cosmophysical Research and Radio Wave Propagation (FEB RAS), Paratunka Kamchatskiy krai, Russia Correspondence to: S. E. Smirnov ([email protected]) and Y. V. Marapulets ([email protected]) Received: 2 April 2012 – Published in Solid Earth Discuss.: 7 June 2012 Revised: 27 August 2012 – Accepted: 31 August 2012 – Published: 1 October 2012 Abstract. The effect was observed as a sharp fall of the elec- precipitation, the atmospheric noise level in electric signal tric potential gradient from +80 V m−1 down to –21 V m−1. increases by two orders in comparison to changes in “fair After that the field returned to its normal level according to weather” conditions. In this case all the physical values were the formula of the capacitor discharge with 17 s characteristic measured when there was no precipitation, which allowed us time. Simultaneously, the response of the acoustic emission to measure fields as they were. Moreover, the cloud cover of surface rocks in the range of frequencies between 6.5 kHz on that day was not continuous but there were big cumu- and 11 kHz was evaluated. lus clouds. Electro-impulse effect on acoustic emission ac- tivity was earlier studied on geomaterial examples (Sobolev and Ponomarev, 2003; Sobolev et al., 2000; Bogomolov et al., 2004; Zacupin et al., 2006), and on rocks under the ef- 1 Introduction fect of impulses emitted by magnetohydrodynamic (MHD) generator (Tarasov, 1997; Tarasov et al., 1999; Tarasov and In spite of a long period of investigation of lightning pro- Tarasova, 2004).
    [Show full text]
  • Earth’S Crust
    International Symposium ECLIPSE 99, 13th-15th Aug., 1999, Istanbul -Published in Ast. Soc. Pacific Conf. Series Vol. 205, pp:208-215. (2000) Monitoring of the telluric currents origined by atmospheric events in Boyali, northwestern Turkey ILYAS CAGLAR and CIHANGIR ERYILDIZ Istanbul Technical University, Faculty of Mines, Istanbul, Türkiye. Email:[email protected] Abstract Telluric currents have a number of origins caused by naturel events such as activities electrochemistry, atmospheric electricity, ionospheric conditions, solar activity and geomagnetism. Telluric currents circulate continuously in the upper regions of the earth’s crust. Between 21 and 27 Boyali Black Sea August 1991, ground based observations of the telluric currents weremade at Boyali, Kastamonu Trache (northwestern Turkey). During the continuous monitoring, the telluric (origined by Pc geomagnetic NAFZ pulsations) and the other currents are simultaneously recorded on a paper. It is readily apparent that Tarakli the persistent variations and the micropulsations have different patterns caused by high atmospheric Anatolia electricity due to local lightnings, and by geomagnetic field of the Earth. The additional examples Introduction The alternating electromagnetic field of the earth that has a regional nature and is intimately related to the phenomena on the sun and in the ionosphere (Fig. 1 and Fig. 2). It is long since they therefore are Aegean Sea known to be closely related to terrestrial and extra-terrestrial phenomena. The electromagnetic field apparently arises as a result of current systems set up mechanically in the ionosphere. These Figure 4. The regional location of the telluric monitoring site electromagnetic waves are noted at the earth’s surface as variations in the geomagnetic field and the telluric current field.
    [Show full text]