Influence of a Single Lightning Discharge on the Intensity of an Air Electric Field and Acoustic Emission of Near-Surface Rocks

Total Page:16

File Type:pdf, Size:1020Kb

Influence of a Single Lightning Discharge on the Intensity of an Air Electric Field and Acoustic Emission of Near-Surface Rocks Solid Earth, 3, 307–311, 2012 www.solid-earth.net/3/307/2012/ Solid Earth doi:10.5194/se-3-307-2012 © Author(s) 2012. CC Attribution 3.0 License. Influence of a single lightning discharge on the intensity of an air electric field and acoustic emission of near-surface rocks S. E. Smirnov and Y. V. Marapulets Institute of Cosmophysical Research and Radio Wave Propagation (FEB RAS), Paratunka Kamchatskiy krai, Russia Correspondence to: S. E. Smirnov ([email protected]) and Y. V. Marapulets ([email protected]) Received: 2 April 2012 – Published in Solid Earth Discuss.: 7 June 2012 Revised: 27 August 2012 – Accepted: 31 August 2012 – Published: 1 October 2012 Abstract. The effect was observed as a sharp fall of the elec- precipitation, the atmospheric noise level in electric signal tric potential gradient from +80 V m−1 down to –21 V m−1. increases by two orders in comparison to changes in “fair After that the field returned to its normal level according to weather” conditions. In this case all the physical values were the formula of the capacitor discharge with 17 s characteristic measured when there was no precipitation, which allowed us time. Simultaneously, the response of the acoustic emission to measure fields as they were. Moreover, the cloud cover of surface rocks in the range of frequencies between 6.5 kHz on that day was not continuous but there were big cumu- and 11 kHz was evaluated. lus clouds. Electro-impulse effect on acoustic emission ac- tivity was earlier studied on geomaterial examples (Sobolev and Ponomarev, 2003; Sobolev et al., 2000; Bogomolov et al., 2004; Zacupin et al., 2006), and on rocks under the ef- 1 Introduction fect of impulses emitted by magnetohydrodynamic (MHD) generator (Tarasov, 1997; Tarasov et al., 1999; Tarasov and In spite of a long period of investigation of lightning pro- Tarasova, 2004). In the present study, the increase of emis- cesses, scientific interest in these phenomena has not van- sion level in the range of 6.5–11 kHz in sedimentary rocks ished. The currently accepted concept that the Earth’s elec- under the influence of a lightning discharge was registered trostatic charge is formed by planetary lightning activity re- for the first time. quires more detailed consideration of discharge and charge transition processes in a cloud. In the paper the process of re- sponse in electric field intensity of the near-ground air and in acoustic emission on a single lightning discharge is studied. 2 Measurement technique The peculiarity of atmosphere electric state in Kamchatka is a small number of lightning strokes. Cold climate does Observations were carried out in Kamchatka at “Paratunka” not allow ground surface to warm up. There are no large observatory, IKIR FEB RA S (λ = 158.25◦ E, ϕ=52.9◦ N). temperature vertical gradients in the atmosphere and, conse- Electric field intensity measurements were realized by “Pole- quently, the conditions for appearance of lightning clouds are 2” electrostatic fluxmeter, developed in a branch of the very rare. According to official data from 1937 to 1982 (45 Voeikov Main Geophysical Observatory, Scientific Research years), only 22 lightning strokes have been registered (Kon- Center of Atmosphere Remote Sensing (Imynitov, 1957). dratuk, 1983). On 2 October 2008, a unique event for this “Pole-2” was installed on a test ground at the height of 3 m region occurred. At 17:46 LT (04:46 UT) a single lightning at the distance of 200 m from the administrative building discharge not accompanied by precipitation occurred. This (Fig. 1). discharge was visually observed by one of the authors. The The area around it is cleared from trees with the radius of reaction on this discharge was observed at “Paratunka” ob- 12 m. The construction of sensor installation is so that the servatory in electric field and in acoustic emission. In the leveled surfaces of electric field intensity at the measurement paper of Mikhailov et al. (2005), it was shown that, during point are parallel to the Earth’s surface (Fig. 2). Published by Copernicus Publications on behalf of the European Geosciences Union. measuring plate in electric field, in the result of which the value of the induced charge was not continuous but there were big cumulusperiodically clouds. Electro changes. impulse The effect charge on accumulatingacoustic emission and draining from the plate generates current in activity was earlier studied on geomaterial examplesthe load [Sobolev circuit. and The Ponomarev, current amplitude 2003; Sobolev is proportional et al., to the measured electric field intensity, to 2000; Bogomolov et al., 2004; Zacupin et al., 2006],the androtation on rocks frequency under the of effect modulation of impulses plate emitted and to by the area of measuring plate; and the phase is magnitohydrodynamic (MHD) generator [Tarasov,determined 1997; Tarasov by the et electric al., 1999; field Tarasov direction and nearTarasova, the measuring plate surface. After digitizing by 2004]. In the present study the increase of emission14-bit level ADC in thewith range 1 s samplingof 6.5 – 11 frequency, kHz in sedimentary the signal at flux-meter output is recorded on a hard rocks under the influence of a lightning discharge was registered for the first time. disk of a PC. 308 S. E. Smirnov and Y. V. Marapulets: Influence of a single lightning discharge Fig. 2. Leveled surfaces of electric field intensity within the area of sensor installation Fig. 1. “Pole-2” instrument setup at observatory test ground. Fig. 2. Leveled surfaces of electric field intensity within the area of sensor installation Fig. 1. “Pole-2” instrument setup at observatory test ground. storage with 4 s time slot (Kuptsov, 2005). This data set is used in the following study. The analyzed value is a sum- The principle of operation of “Pole-2”Measurement instrumentation of the maryelectric for every field 4 swas acoustic carried pressure outPs atin every two frequency channels. The first channel has a is the following. Electric field intensity is transformed into channel. The performed investigations stated that, under the − electric current by rotaryresolution electrostatic generator, of 0.25 which V/m oper- and theinfluence dynamic of deformations range of of± the200 order V/m.∼10 The7 (Dolgikh second et al., channel has a resolution of 2.5 ates on the basis2. Measurement of electrostatic induction. technique Electrostatic in- 2007), an increase of emission activity is observed in the fre- duction current of the measured field induces electric charge quency range of first kilohertz which coincides with source on a measuring plate. Modulator,V/m and the the shielding dynamic plate, range peri- ofscales ± 2000 of 10 V/m.−1–1 m For (Kuptsov the estimations et al., 2005). This we effectused is measurements the of both channels. Observations were carriedodically shieldsout in the Kamchatka measuring plate at in electric“Paratunka” field, in theobservatory,most vividly IKIR observed FEB during RAS, strong earthquake preparation, result of which the value of the inducedAcoustic charge periodicallyemission (AE)1–3 registration days before an eventwas (Kuptsov carried et out al., 2005). by a hydro-acoustic receiver (hydrophone) λ=158,25°Ε ϕ=52,9°Ν changes. The charge accumulating and draining from the Monitoring of meteorological parameters (air temperature ( ; ). Electricplate generates field intensity current in the measurements load circuit. The current were ampli- realizedand by humidity, “Pole-2” atmospheric electrostatic pressure, precipitation level) is tude is proportional to thewith measured the sensitivity electric field intensity,of about hundredscarried out of by mV/Pa a digital meteo-stationtogether with WS-2000. embedded Magnetic preamplifier; the receiver is in- fluxmeter, developed in a Branchto the of rotation Voeikov frequency Main of modulation Geophysical plate and Observatory, to the area Scientificfield H, D, Z Researchcomponents Center were measured by a fluxgate mag- of measuring plate; the phase is determined by the electric stalled in an artificial pool at netometerthe distance FRG withof 54 the meters accuracy from of 0.01 the nT andelectric 1 s sam- field sensor. The pit of 1x1x1 field direction near the measuring plate surface. After digi- pling frequency. Time synchronization was made by GPS re- of Atmosphere Remote Sensingtizing [Imynitov, by 14-bit ADC 1957]. with 1“Pole-2” s sampling frequency,was installed the signal on a testceiver. ground at the height of at flux-meter output is recordedwas made on a hard in disk near of asurface PC. rocks and filled with water. Application of the hydrophone installed in a pool 3 m at the distance of 200 m fromMeasurement the administrative of the electric building field was carried(Fig.1). out in two channels. The first channel has a resolution of 0.25 V m−1 and the dynamic range ofallowed± 200 V mus−1 to. The register second chan-geoacoustic3 Main signal results in andthe discussion range of 0.1 Hz – 11 kHz, which is greater than ordinary The area around it isnel cleared has a resolution from trees of 2.5 Vwith m−1 andthe the radius dynamic of range 12 ofm. The construction of sensor − ± 2000 V m 1. For the estimationsseismometers. we used Signals measurements from theOn hydrophone 2 October 2008 after in the being region ofdigitized the observatory, by 16-order there ADC with 44100 Hz fre- of both channels. was changeable cloudiness with big cumulus clouds. Precip- installation is so that the leveledAcoustic surfaces emission of electric (AE) registration field intensity was carried at out the by measurement a itation was not point observed are fromparallel 14:00 to 19:00 LT (UT + 13 h). hydro-acoustic receiver (hydrophone)quency rate with are the recorded sensitivity ofon a hardFrom adisk cloud of that a appeared PC.
Recommended publications
  • E-Region Auroral Ionosphere Model
    atmosphere Article AIM-E: E-Region Auroral Ionosphere Model Vera Nikolaeva 1,* , Evgeny Gordeev 2 , Tima Sergienko 3, Ludmila Makarova 1 and Andrey Kotikov 4 1 Arctic and Antarctic Research Institute, 199397 Saint Petersburg, Russia; [email protected] 2 Earth’s Physics Department, Saint Petersburg State University, 199034 Saint Petersburg, Russia; [email protected] 3 Swedish Institute of Space Physics, 981 28 Kiruna, Sweden; [email protected] 4 Saint Petersburg Branch of Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN), 199034 Saint Petersburg, Russia; [email protected] * Correspondence: [email protected] Abstract: The auroral oval is the high-latitude region of the ionosphere characterized by strong vari- ability of its chemical composition due to precipitation of energetic particles from the magnetosphere. The complex nature of magnetospheric processes cause a wide range of dynamic variations in the auroral zone, which are difficult to forecast. Knowledge of electron concentrations in this highly turbulent region is of particular importance because it determines the propagation conditions for the radio waves. In this work we introduce the numerical model of the auroral E-region, which evaluates density variations of the 10 ionospheric species and 39 reactions initiated by both the solar extreme UV radiation and the magnetospheric electron precipitation. The chemical reaction rates differ in more than ten orders of magnitude, resulting in the high stiffness of the ordinary differential equations system considered, which was solved using the high-performance Gear method. The AIM-E model allowed us to calculate the concentration of the neutrals NO, N(4S), and N(2D), ions + + + + + 4 + 2 + 2 N ,N2 , NO ,O2 ,O ( S), O ( D), and O ( P), and electrons Ne, in the whole auroral zone in the Citation: Nikolaeva, V.; Gordeev, E.; 90-150 km altitude range in real time.
    [Show full text]
  • Appendix I Glossary
    Appendix I Glossary Editor: A.P.M. Baede A → indicates that the following term is also contained in this Glossary. Adjustment time centrimetric precision. Altimetry has the advantage of being a See: →Lifetime; see also: →Response time. measurement relative to a geocentric reference frame, rather than relative to land level as for a →tide gauge, and of affording quasi- Aerosols global coverage. A collection of airborne solid or liquid particles, with a typical size between 0.01 and 10 µm and residing in the atmosphere for Anthropogenic at least several hours. Aerosols may be of either natural or Resulting from or produced by human beings. anthropogenic origin. Aerosols may influence climate in two ways: directly through scattering and absorbing radiation, and Atmosphere indirectly through acting as condensation nuclei for cloud The gaseous envelope surrounding the Earth. The dry formation or modifying the optical properties and lifetime of atmosphere consists almost entirely of nitrogen (78.1% volume clouds. See: →Indirect aerosol effect. mixing ratio) and oxygen (20.9% volume mixing ratio), The term has also come to be associated, erroneously, with together with a number of trace gases, such as argon (0.93% the propellant used in “aerosol sprays”. volume mixing ratio), helium, and radiatively active →greenhouse gases such as →carbon dioxide (0.035% volume Afforestation mixing ratio), and ozone. In addition the atmosphere contains Planting of new forests on lands that historically have not water vapour, whose amount is highly variable but typically 1% contained forests. For a discussion of the term →forest and volume mixing ratio. The atmosphere also contains clouds and related terms such as afforestation, →reforestation, and →aerosols.
    [Show full text]
  • Telluric and Ocean Current Effects on Buried Pipelines and Their Cathodic Protection Systems
    Catalog No. L51909 Telluric and Ocean Current Effects on Buried Pipelines and Their Cathodic Protection Systems Contract PR-262-0030 Prepared for the Pipeline Corrosion Supervisory Committee Pipeline Research Committee of Pipeline Research Council International, Inc. Prepared by the following Research Agencies: CORRENG Consulting Service Inc. Geological Survey of Canada Authors: R.A. Gummow – Correng D.H. Boteler, Ph.D. and L. Trichtchenko, Ph.D. – GSC Publication Date: December 2002 “This report was furnished to the Pipeline Research Council International, Inc. (PRCI) under the terms of PRCI Project PR-262-0030, between PRCI and CORRENG Consulting Service Inc. The contents of this report are published as received from CORRENG Consulting Service Inc. The opinions, findings, and conclusions expressed in the report are those of the author and not necessarily those of PRCI, its member companies, or their representatives. Publication and dissemination of this report by PRCI should not be considered an endorsement by PRCI or CORRENG Consulting Service Inc., or the accuracy or validity of any opinions, findings, or conclusions expressed herein. In publishing this report, PRCI makes no warranty or representation, expressed or implied, with respect to the accuracy, completeness, usefulness, or fitness for purpose of the information contained herein, or that the use of any information, method, process, or apparatus disclosed in this report may not infringe on privately owned rights. PRCI assumes no liability with respect to the use of, or for damages resulting from the use of, any information, method, process or apparatus disclosed in this report. The text of this publication, or any part thereof, may not be reproduced or transmitted in any form by any means, electronic or mechanical, including photocopying, recording, storage in an information retrieval system, or otherwise, without the prior written approval of PRCI.” Pipeline Research Council International Catalog No.
    [Show full text]
  • Aeronomy and Astrophysics
    Aeronomy and astrophysics A southern high-latitude geomagnetic index: AES-80 C.G. MACLENNAN, Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974 P. B ALLATORE, Istito de Fisica della Spazio Interplanetario, Consiglio Nazionale della Ricerche, c.p. 27, 00044 Frascati, Rome, Italy M.J. ENGEBRETSON, Department of Physics, Augsburg College, Minneapolis, Minnesota 55454 L.J. LANZEROTTI, Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974 eomagnetic measurements obtained at McMurdo Sta- G tion (Arrival Heights) and at two of the U.S. automatic geophysical observatories (AGO-1; AGO-4) are being com- bined with measurements made at Casey and Dumont D'Urville to construct a Southern Hemisphere geomagnetic index for the geomagnetic latitude 80°S. The calculation of the index is modeled on the calculation of the Northern Hemi- sphere auroral electrojet index AE and is thus called the AES- 80 index. The AE index was developed to monitor geomagnetic activity at auroral zone latitudes in the Northern Hemisphere (Davis and Sugiura 1966) and indicates the level of auroral electrojet currents and in particular the occurrence of sub- storms (Baumjohann 1986). It is calculated as the difference between the upper (AU) and the lower (AL) envelope of mag- netograms from 12 observatories located at northern geomag- netic latitudes between 60° and 70° and rather uniformly distributed over all longitudes. Because of the land mass dis- tribution in Antarctica, it is impossible to have ground obser- vatories located uniformly at geomagnetic latitudes between 60° and 70°S (see figure 1). Unlike in the Northern Hemisphere, Figure 1. Map of Antarctica, with the stations used to calculate the however, it is possible in Antarctica to have reasonable ground AES-80 index shown as filled circles.
    [Show full text]
  • UPPER ATMOSPHERE RESEARCH at INPE B.R. Clbmesha Department of Geophysics and Aeronomy Instituto De Pesquisas Espaciais
    UPPER ATMOSPHERE RESEARCH AT INPE B.R. CLbMESHA Department of Geophysics and Aeronomy Instituto de Pesquisas Espaciais - INPE ABSTRACT Upper atmosphere research at INPE is mainly concerned with the chemistry and dynamics of the stratosphere, upper mesosphere and lower thermosphere, and the middle thermo- sphere. Experimental work includes lidar observations of the stratospheric aerosol, measurements of stratospheric ozone by Dobson spectrophotometers and by balloon and rocket-borne sondes, lidar measurements of atmospheric sodium, and photom- etric observations of 0, 02 , OH and Na emissions, including interferometric measurements of the 016300 emission for the purpose of determining thermospheric winds and temperature. The airglow observations also include measurements of a number of emissions produced by the precipitation of ener- getic neutral particles generated by charge exchange in the ring current. Some recent results of INPE's upper atmosphere program are presented.ii» this paper. ' ' n/ .71. 1- INTRODUCTION INPK maintains an active program of research into a number of aspects of upper atmosphere science, including both experimental and theoretical studies of the dynamics and chemistry of the stratosphere, mesosphere and lower thermosphere. Hxperimental work involves mainly ground-based optical techniques, although balloon and rocket-borne sondes are used for studies of stratospheric ozone, and a rocket-borne photometer payload is under development for measurements of a number of emissions from the thermosphere. Theoretical studies include numerical model- ling with special reference to a number of minor constituents related to the experimental measurements. In the following sec- tions we present a brief description of INPE's experimental fa- cilities in the area of upper atmosphere science, and outline some recent results.
    [Show full text]
  • Status of NSF Space Physics
    Status of NSF Space Physics Rich Behnke Therese Moretto, Bob Robinson, Anja Stromme, and Ray Walker National Academy – March 7,2013 • Status and Updates • NSF Response to the Academy’s “Solar and Space Physics: A Science for a Technological Society 2 The Five Geospace Programs • Solar Physics -- Paul Bellaire has retired, new PD has been selected – but not signed. • Magnetospheric Physics – Ray Walker • Aeronomy – Anja Stromme • Geospace Facilities – Bob Robinson • Space Weather and Instrumentation -- Therese Moretto Aeronomy (AER) • Typically around 95 proposals per year, about 1/3 funded. Budget is about $11M • Home of CEDAR • Program Director --Anja Stromme (SRII) 4 Magnetospheric Physics (MAG) • typically around 90 proposals per year, 1/3 funded. Budget is about $8.5M. • Home of GEM • Program Director – Ray Walker (UCLA) 5 Solar Physics Program (STR) •Typically around 80 proposals per year, 1/3 funded. Budget is about $8.5M •Home of SHINE •Program Director – Paul Bellaire/TBA 6 The Geospace Facilities Program (GS) Program Director – Bob Robinson • Six incoherent scatter radar sites (five awards:~$12M) • Lidar Consortium (six institutions: ~$1M) • Miscellaneous facility-related awards (facility supplements, CAREER, REU, Workshops, schools: ~1M) SuperDARN is being expanded • The Mid-latitude SuperDARN Array ( AGS’s first midscale project): New SuperDARN radars have been constructed and are operational at: Fort Hays, Kansas; Christmas Valley, Oregon; and Adak, Alaska • Negotiations are underway with Portuguese officials in the Azores
    [Show full text]
  • CEDAR an Aeronomy Initiative
    Eos, Vol. 68, No. 2, January 13, 1987 Rep. 4, Bur. Gravimetrique Int., Toulouse, data, terrestrial gravity and other data, Rep. Bernard Moynot re­ France, 1982. 322, Dep. of Geodetic Sci. and Surveying, ceived his degree in mathe­ Balmino, G., C. Brossier, A. Cazenave, and F. Ohio State Univ., Columbus, 1982. matics from the Ecole Nor­ Nouel, Geoid of the Kerguelen Islands area Rapp, R. H., The determination of geoid un­ male Superieure of Paris determined from GEOS 3 Altimeter data, dulations and gravity anomalies from Sea­ in 1963. In 1956, he be­ /. Geophys. Res., 84, 3827, 1979. sat altimeter data,/ Geophys. Res., 88, 1552, gan working with the Cen­ Cazenave, A., B. Lago, and K. Dominh, 1983a. tre National d'Etudes Spa­ Thermal parameters of the oceanic litho- Rapp, R. H., The development of the Janu­ tiales, performing research sphere estimated from geoid height data, J. ary 1983 1° x 1° mean free-air anomaly in satellite geodesy and nu­ Geophys. Res., 88, 1105, 1983. data tape, internal report, Dept. of Geodet­ merical analysis. He is now Haxby, W. F., G. D. Karner, J. F. Labrecque, ic Sci. and Surveying, Ohio State Univ., Co­ with the Bureau Gravime­ and J. K. Weissel, Digital images of com­ lumbus, 1983ft. trique International in Toulouse. bined oceanic and continental data sets and Reigber, C, H. Muller, W. Bosch, G. Bal­ Michel Sarrailh gradu­ their use in tectonic studies, Eos Trans. mino, and B. Moynot, GRIM gravity model ated from the Institut de AGU, 64, 995, 1983. improvement using LAGEOS (GRIM 3- Physique du Globe in Lazarewicz, A.
    [Show full text]
  • Electrical Structure of the Stratosphere and Mesophere
    1969 (6th) Vol. 1 Space, Technology, and The Space Congress® Proceedings Society Apr 1st, 8:00 AM Electrical Structure of the Stratosphere and Mesophere Willis L. Webb U.S. Army Electronics Command Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Webb, Willis L., "Electrical Structure of the Stratosphere and Mesophere" (1969). The Space Congress® Proceedings. 1. https://commons.erau.edu/space-congress-proceedings/proceedings-1969-6th-v1/session-16/1 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. ELECTRICAL STRUCTURE OF THE STRATOSPHERE AND MESOSPHERE Will is L. V/ebb Atmospheric Sciences Laboratory U S Army Electronics Command White Sands Missile Range, New Mexico Synoptic rocket exploration of the strato­ exploration of the earth's upper atmosphere using spheric circulation has revealed the presence of small rocket vehicles was initiated to extend the hemispheric tidal circulations that are indicated region of meteorological study to higher alti­ to be in part characterized by systematic vertical tudes* . This meteorological rocket network (MRN) motions in low latitudes of the sunlit hemisphere. has expanded the atmospheric volume currently sub­ These vertical motions are powered by meridional ject to meteorological scrutiny from limitations oscillations in the stratospheric circulation pro­ of the order of 30-km peak altitude to a current duced by solar heating of the stratopause region synoptic data ceiling of the order of 80 km.
    [Show full text]
  • PRL, Ahmedabad ATMOSPHERIC PHYSICS
    PRL, Ahmedabad ATMOSPHERIC PHYSICS Books 1 BRASSEUR G AERONOMY OF THE MIDDLE ATMOSPHERE: CHEMISTRY AND PHYSICS OF THE STRATOSPHERE AND MESOSPHERE (UN COURSE). 551.510.5 BRA. B16453 2 BRASSEUR G AERONOMY OF THE MIDDLE ATMOSPHERE: CHEMISTRY AND PHYSICS OF THE STRATOSPHERE AND MESOSPHERE (UN COURSE). 551.510.5 BRA. B16666 3 BRASSEUR G AERONOMY OF THE MIDDLE ATMOSPHERE: CHEMISTRY AND PHYSICS OF THE STRATOSPHERE AND MESOSPHERE (UN COURSE). 551.510.5 BRA. B16664 4 BRASSEUR G AERONOMY OF THE MIDDLE ATMOSPHERE: CHEMISTRY AND PHYSICS OF THE STRATOSPHERE AND MESOSPHERE (UN COURSE). 551.510.5 BRA. B16665 5 BRASSEUR G AERONOMY OF THE MIDDLE ATMOSPHERE: CHEMISTRY AND PHYSICS OF THE STRATOSPHERE AND MESOSPHERE (UN COURSE). 551.510.5 BRA. B16663 6 GARRATT JR ATMOSPHERIC BOUNDARY LAYER. 551.510.5 GAR. B18859 7 GREEN J ATMOSPHERIC DYNAMICS (UN COURSE). 55.51 GRE. B16654 8 GREEN J ATMOSPHERIC DYNAMICS (UN COURSE). 551.51 GRE. B16621 9 GREEN J ATMOSPHERIC DYNAMICS (UN COURSE). 551.51 GRE. B16631 10 GREEN J ATMOSPHERIC DYNAMICS (UN COURSE). 551.51 GRE. B16669 11 IRIBARNE JV ATMOSPHERIC PHYSICS. 551.510.5 IRI. B11738 12 BURGER JJ ED ATMOSPHERIC PHYSICS FROM SPACELAB PROCEEDINGS OF THE 11TH ESLAB SYMPOSIUM HELD AT FRASCATI, ITALY IN 1976 (ASTROPHYS & SPACE SCI LIB V 61). 551.507.3(063) BUR. B8044 13 SISKIND DE ED ATMOSPHERIC SCIENCE ACROSS THE STRATOPAUSE. 551.51 SIS. B17271 14 KYLE TG ATMOSPHERIC TRANSMISSION EMISSION & SCATTERING. 551.51 KYL. B14788 15 HOBBS PV BASIC PHYSICAL CHEMISTRY FOR THE ATMOSPHERIC SCIENCES : A COMPANATIONAL INSTITUTE OF OCEANOGRAPHYN TEXT TO "INTRODUCTION TO ATMOSPHERIC CHEMISTRY".
    [Show full text]
  • Careers in Atm Scien. Factsheet
    Fact ����� National Aeronautics and Space Administration ������� �������� ������ Hampton, Virginia 23681-2199 FS-2002-12-65-LaRC Choosing a Career in Atmospheric Science Atmospheric science is the study of the physics and 2. Data analysis and modeling — the examination of chemistry of clouds, gases, and aerosols (airborne the data produced by the experiments and the particles) that surround the planetary bodies of development of theoretical models to interpret the the solar system. Research in atmospheric science data. The result is an improvement of our under- includes such varied areas of interest as: standing of atmospheric motions and chemistry, climate change, and weather forecasting. This area • Climatology — the study of long-term weather and requires experience in computer science, temperature trends mathematics, chemistry, physics, meteorology, • Dynamic meteorology — the study of the motions radiative transfer, or fluid dynamics. of the atmosphere • Meteorology —the study of weather and climate. 3. Laboratory studies — the examination of • Cloud physics — the formation and evolution of the chemical and physical processes that occur clouds and precipitation in the atmosphere, including cloud microphysics, • Atmospheric chemistry — the chemical photochemical reactions, and absorption and composition of the atmosphere emission of radiation by atmospheric gases and • Atmospheric physics — the study of processes particles. This area requires experience in such as heating and cooling of the atmosphere quantitative laboratory techniques, chemistry, or • Aeronomy — the study of the upper atmosphere spectroscopy. • Oceanography — the study of the Earthʼs oceans and how they affect the atmosphere The majority of atmospheric scientists in the United States work for the Federal Government. The largest Most atmospheric scientists study the atmosphere of number of civilian atmospheric scientists work for the the Earth, while others study the atmospheres of the National Weather Service and other branches of the planets and moons in our solar system.
    [Show full text]
  • International Newsletter Research Institute for Sustainable Humanosphere, Kyoto University, Japan
    No. 29 March 2015 International Newsletter Research Institute for Sustainable Humanosphere, Kyoto University, Japan =Foreword= International Research Activities at RISH in 2014 Professor Junji Sugiyama Chair of the Public Relations Committee of RISH, Kyoto University In 2004, Director Prof. Hiroshi only at Kyoto University, but also re- Matsumoto launched a new interdis- searchers and groups across the coun- ciplinary Research Institute for Sus- try and around the world. Thanks to tainable Humanosphere, a coopera- the efforts of the faculty and support- partnerships. One good example is tive institute designed to serve as a ing communities, the Research Insti- our MOU with Nanjing Foresty Uni- hub for the discovery of creative solu- tute for Sustainable Humanosphere, versity in China, which was both re- tions for sustainable development. In Kyoto University, has successfully newed and extended. The committee the decade since, the institute has accomplished its mission by over- continues to encourage more produc- brought together researchers with ex- coming barriers across academic dis- tive partnerships as it helps strength- pertise ranging from wood science to ciplines through innovation and co- en the quality and effectiveness of radio science. The spirit of interdisci- operation. On June 6, 2014, RISH research on global issues. According plinary collaboration has expanded commemorated its 10-year anniversa- to Prof. Sanga-Ngoie, research and into partnerships with experts not ry. academic institutions in Africa and International activities have pro- South America are good candidates duced 19 cooperative Memoranda of for future partnerships. Understanding (MOU): seven with There are currently increasing foreign counterparts in Asian, three in concerns about social accountability Europe, and two with North Ameri- and the role of public information.
    [Show full text]
  • I. Introduction
    INTRODUCTION I. Introduction A. The Aeronomy Laboratory: Our Aims, Approach, and Organization aer•on•o•my (a(e)r-an´-o-me) n. [fr. Gk aero-] Our aim: Understanding atmospheric a branch of science that deals with the processes to improve environmental predic- atmosphere of the earth and the other planet with tion. The Aeronomy Laboratory carries out reference to their chemical composition, physical fundamental research on the chemical, dynam- properties, relative motion, and responses to ical, and radiative processes of the Earth's at- radiation from space. mosphere to improve the capability to ob- serve, understand, and predict its behavior. In addition to helping improve the fundamental understanding of the atmosphere, the Aeronomy Laboratory also assists our scientific community in their periodic taking stock of the current state of understanding and in their description of this understanding in "user-friendly" terms to those who use this scientific information. Sections II – IV of this summary describe, in more detail, the Laboratory's research – its rationale, approach, accomplishments, payoffs, and plans – all in the context of the environmental issues of today. The research approaches used: Integrated laboratory, field, and theoretical studies. The Laboratory's research involves: • investigations under controlled conditions in the laboratory, • field measurements in a variety of environments (both in a campaign mode and via regular observations), and • regional and global theoretical modeling. A hallmark of the Laboratory is the integration of these three endeavors to build a better predic- tive understanding. Laboratory investigations characterize fundamental properties of chemical reactions, which are needed by predictive models and are also a test bed for the development of new analytical techniques.
    [Show full text]