Climate Change, Security, Sensors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Power Supply Using Earth Battery and Solar Pael
ITSI Transactions on Electrical and Electronics Engineering (ITSI-TEEE) _______________________________________________________________________________________________ Power Supply Using Earth Battery 1Harish D, 2T S Dhanalakshmi, 3Gireesh H R 1,2,3RRCE, Bangalore electronic devices. They can also be considered to Abstract: In view of robust and cost effective use of this natural power technology by unskilled village consumers replace high voltage low current charging power most suitable combinations of the commonly available supplies or ionization power supplies. Like earth metals were selected for further detailed characteristic batteries the sea batteries also may be considered for studies. Combinations of Magnesium anode and Coke similar applications. However, air batteries can be used cathode: Zinc anode and Graphite, cathode: Aluminum for bulk power production and grid system operation [3]. anode and Carbon cathode; Zinc anode and Copper In view of global energy crisis to be caused by natural cathodes gave 2.05, 1.40, 1.10 and 0.9 volts per cell. Typical end of oil and gas within next 50 to60 years time [9-11], rated power of a single Zn-Cu cell was measured to be few it has become very important to look for alternative tens of microamperes. Small power electronic devices such energy sources to hold back the human race from as calculators, electronic watches, baby toys and cell phones and white light LEDs were operated on site. The engagement to a great energy war [12-13]. Although, voltage level was found to increase linearly by connecting uranium [14] and coal [9] would continue to exist for multiple earth battery cells in series like commercial lead few centuries but they cannot replace oil and gas despite acid battery. -
(1) Patent Number: 4,572,582 Ryeczek 45 Date of Patent: Feb
United States Patent (19) (1) Patent Number: 4,572,582 Ryeczek 45 Date of Patent: Feb. 25, 1986 54) METHOD OF MINING METALS LOCATED 3,288,648 11/1966 Jones ............................... 166/248 X N THE EARTH 3,547,192 12/1970 Claridge et al. .................... 166/248 3,819,231 6/1974 Fehliner ................................... 299/4 76 Inventor: John J. Ryeczek, R.D. #1, Box 190C, Primary Examiner-George A. Suchfield Point Marion, Pa. 15474 Attorney, Agent, or Firm-Webb, Burden, Robinson & 21 Appl. No.: 599,994 Webb 22) Filed: Apr. 13, 1984 57 ABSTRACT An earth battery which includes a first electrode which Related U.S. Application Data is a veined material located in the earth, a second elec 62) Division of Ser. No. 384,781, Jun. 4, 1982, Pat. No. trode electrically connected to the surface of the earth 4,457,988. and disposed in a hole which extends from the surface 51 Int. Cl." ....................... E21C 41/06; E21C 41/14 of the earth into the first electrode, an electrolyte dis 52) U.S. C. ........................................ 299/5; 166/248; posed in the hole and in contact with the first and sec 299/7; 299/8 ond electrodes, and means for electrically connecting 58) Field of Search ............................... 299/7, 8, 5, 4; the first electrode to the surface of the earth. A seam of 166/248, 65 R; 429/47, 13, 10 coal is preferred as the first electrode. A method of mining metals located in the earth using the earth bat 56 References Cited tery and a method of drilling holes in the earth are also U.S. -
The Ball Lightning Conundrum
most famous deadis due to ball lightning occun-ed in 1752 or 1753, when die Swedish sci entist Professor Georg Wilhelm Richman was The Ball attempting to repeat Benjamin Franklin's observa dons with a lightning rcxl. An eyewitness report ed that when Richman w;is "a foot away from the iron rod, the] looked at die elecuical indicator Lightning again; just then a palish blue ball of fire, ;LS big as a fist, came out of die rod without any contaa whatst:)ever. It went right to the forehead of die Conundrum professor , who in diat instant fell back without uttering a sound."' Somedmes a luminous globe is said to rapidly descend 6own die path of a linear lightning WILLIAM D STANSFIELD strike and stop near the ground at die impact site. It may dien hover motionless in mid-air or THE EXISTENCE OF BALL UGHTNING HAS move randomly, but most often horizontally, at been questioned for hundreds of years. Today, die relatively slow velocities of walking speed. the phenomenon is a realit>' accepted by most Sometimes it touches or bounces along or near scientists, but how it is foniied and maintiiined the ground, or travels inside buildings, along has yet to be tully explained. Uncritical observers walls, or over floors before being extingui.shed. of a wide variety of glowing atmospheric entities Some balls have been observed to travel along may be prone to call tliem bail lightning. Open- power lines or fences. Wind does not .seem to minded skepdas might wish to delay judgment have any influence on how diese balls move. -
Telluric and Ocean Current Effects on Buried Pipelines and Their Cathodic Protection Systems
Catalog No. L51909 Telluric and Ocean Current Effects on Buried Pipelines and Their Cathodic Protection Systems Contract PR-262-0030 Prepared for the Pipeline Corrosion Supervisory Committee Pipeline Research Committee of Pipeline Research Council International, Inc. Prepared by the following Research Agencies: CORRENG Consulting Service Inc. Geological Survey of Canada Authors: R.A. Gummow – Correng D.H. Boteler, Ph.D. and L. Trichtchenko, Ph.D. – GSC Publication Date: December 2002 “This report was furnished to the Pipeline Research Council International, Inc. (PRCI) under the terms of PRCI Project PR-262-0030, between PRCI and CORRENG Consulting Service Inc. The contents of this report are published as received from CORRENG Consulting Service Inc. The opinions, findings, and conclusions expressed in the report are those of the author and not necessarily those of PRCI, its member companies, or their representatives. Publication and dissemination of this report by PRCI should not be considered an endorsement by PRCI or CORRENG Consulting Service Inc., or the accuracy or validity of any opinions, findings, or conclusions expressed herein. In publishing this report, PRCI makes no warranty or representation, expressed or implied, with respect to the accuracy, completeness, usefulness, or fitness for purpose of the information contained herein, or that the use of any information, method, process, or apparatus disclosed in this report may not infringe on privately owned rights. PRCI assumes no liability with respect to the use of, or for damages resulting from the use of, any information, method, process or apparatus disclosed in this report. The text of this publication, or any part thereof, may not be reproduced or transmitted in any form by any means, electronic or mechanical, including photocopying, recording, storage in an information retrieval system, or otherwise, without the prior written approval of PRCI.” Pipeline Research Council International Catalog No. -
Reliable Energy Sources As a Foundation for Reliable Intermittent Systems
Reliable Energy Sources as a Foundation for Reliable Intermittent Systems Dhananjay Jagtap Pat Pannuto [email protected] [email protected] University of California, San Diego University of California, San Diego ABSTRACT be accessible to change batteries [11]. This is the case when de- This paper defines architectural and operational principles for sim- ploying sensor networks for structural or condition monitoring ple and reliable energy harvesting devices that can be used in service in industrial environments [38] or for environmental monitoring of high-level applications. For many maintenance and monitoring applications where there is no built infrastructure. This is part of tasks, we propose that it is more valuable to have reliable, trusted what makes energy harvesting designs so exciting: they present affirmations that nothing has changed than it is to know theexact the potential for set-it-and-forget it systems that can go anywhere moment that something has failed. This presents an opportunity for and last forever [16]. a new class of highly reliable, but not necessarily timely, intermit- What often makes energy harvesting designs challenging, how- tent devices. These are devices that are capable of sending messages ever, is that energy sources are unreliable, unpredictable, or un- at reasonable, fixed intervals (e.g. once an hour or once a day). They controllable. Early designs simply ran whenever they could for as cannot activate more often, but they also promise not to activate long as they could [10, 31, 35]. However, this wholly uncontrolled less often. To establish this reliability, we look to opportunities for intermittency made it difficult for device and system designers energy scavenging that are often ignored as their instantaneous to build applications. -
Batteries and Primitive Survival E-Book
Batteries and Primitive Survival (An e-Book that is word searchable and printable) (3 Nov 2008) Table of Contents Introduction: Knowledge from many sources including my own research and development have been brought together to show how to intelligently use battery storage technology in a long term primitive survival situation. Lead-Acid batteries for use as primary source storage and smaller rechargeable/non-rechargeables for portability will be viewed in many different ways for practicality during primitive survival. The way to read this book is to read chapter one then jump to areas of interest, realizing that the proper storage of the correct chosen batteries and the making of efficient chargers are ideally needed before the emergency times start. This book is designed to be a reference work and is dedicated to those who wish to survive the coming pole shift. (by Mikel) Chapter 1: Basic Battery Survival 101 (7 pages) This chapter gives an overview summery of the basics knowledge needed to start one into primitive survival using storage cells and batteries. The remaining chapters detail and answer the questions needed to help survive in a primitive environment for an extended time. Chapter 2: Long Term Battery Storage and Self Discharge Rates (12 pages) This chapter details how to prepare batteries for long term storage. What are the choices of batteries and how to store them for the long term. The manufactures recommendations are detailed. A description of what to do as you take them out of storage for the first time is also detailed. Chapter 3: Efficient Battery Chargers for Survival (20 pages) Most of the currently efficient commercial battery chargers that I have tested have a maximum efficiency of about 20-38% of source energy delivered to the destination battery. -
Ball Lightning As a Self- Organized Complexity
Ball Lightning as a Self- Organized Complexity Erzilia Lozneanu, Sebastian Popescu and Mircea Sanduloviciu Department of Plasma Physics “Al. I. Cuza” University 6600 Iasi, Romania [email protected] The ball lightning phenomenon is explained in the frame of a self-organization scenario suggested by experiments performed on the spontaneously generated complex spherical space charge configuration in plasma. Originated in a hot plasma, suddenly created in a point where a lightning flash strikes the Earth surface, the ball lightning appearance proves the ability of nature to generate, by self-organization, complex structures able to ensure their own existence by exchange of matter and energy with the surroundings. Their subsequent evolution depends on the environment where they are born. Under contemporary Earth conditions the lifetime of such complexities is relatively short. A similar self-organization mechanism, produced by simple sparks in the earl Earth's atmosphere (chemically reactive plasma) is suggested to explain the genesis of complexities able to evolve into prebiotic structures. 1. Introduction The enigmatic ball lightning phenomenon has stimulated the people interest for a very long time. Thus the ball lightning appearance was noted with more than a hundred years ago in prestigious periodicals as for example “Nature”. The vast literature on ball lightning comprises books entirely dedicated to this subject [1-3], review papers focussed on this topic [4-7], as well as data banks. The data banks contain collections of characteristics for lightning balls that where occasionally observed under different circumstances. For example, in the United States, lightning balls have been observed by about 5% of the adult population at some time of their lives [8]. -
1875 Patent on Earth Batteries
1875 Patent on Earth Batteries There has recently been a question on Earth batteries on the Free energy newsgroup as so many were unaware of the existence of such a device and must admit that I was ignorant of the device myself until I came across this patent and so I reproduce an except from the patent application below. "The object of my invention is to produce a current of electricity from an earth battery or batteries capable of generating a constant current of considerable intensity to be used for lightning rod and other purposes where voltaic batteries using solutions are now applied. It is known that if different elements-for instance sheets of zinc and copper-be buried or placed in the earth ,a current of electricity is generated; but I have discovered that if such elements be partly embedded in sulphur so that the dampness of the earth may act in conjunction with the sulphur on the metals, a more intense will be created. I utilise this in the following way: The current is collected by insulated wires coiled around nickel plated steel magnets ,which are planted north and south in the earth to receive the magnetic current of the earth; a secondary coil or coils of insulated wire surrounds the coil or coils around the magnets and receives by induction, electricity from both the voltaic and magneto-electro batteries. In the drawing, the voltaic battery is composed of several pieces or plates of chemically pure zinc B, and the same number of copper, A they are embedded in a cake of sulphur C and are connected by a large insulated wire D, which being the primary coil between dissimilar elements is extended, without insulation to the base of the sulphur cake C, and also in a spiral coil or coils around steel magnets E, which are pointed magnetised and nickel plated. -
Electrical Structure of the Stratosphere and Mesophere
1969 (6th) Vol. 1 Space, Technology, and The Space Congress® Proceedings Society Apr 1st, 8:00 AM Electrical Structure of the Stratosphere and Mesophere Willis L. Webb U.S. Army Electronics Command Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Webb, Willis L., "Electrical Structure of the Stratosphere and Mesophere" (1969). The Space Congress® Proceedings. 1. https://commons.erau.edu/space-congress-proceedings/proceedings-1969-6th-v1/session-16/1 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. ELECTRICAL STRUCTURE OF THE STRATOSPHERE AND MESOSPHERE Will is L. V/ebb Atmospheric Sciences Laboratory U S Army Electronics Command White Sands Missile Range, New Mexico Synoptic rocket exploration of the strato exploration of the earth's upper atmosphere using spheric circulation has revealed the presence of small rocket vehicles was initiated to extend the hemispheric tidal circulations that are indicated region of meteorological study to higher alti to be in part characterized by systematic vertical tudes* . This meteorological rocket network (MRN) motions in low latitudes of the sunlit hemisphere. has expanded the atmospheric volume currently sub These vertical motions are powered by meridional ject to meteorological scrutiny from limitations oscillations in the stratospheric circulation pro of the order of 30-km peak altitude to a current duced by solar heating of the stratopause region synoptic data ceiling of the order of 80 km. -
Using Fireballs to Uncover the Mysteries of Ball Lightning 18 February 2008, by Miranda Marquit
Using fireballs to uncover the mysteries of ball lightning 18 February 2008, By Miranda Marquit “People have been pondering ball lightning for a Mitchell explains, the accelerator for the synchrotron couple of centuries,” says James Brian Mitchell, a is more than a kilometer in circumference: “We can scientist the University of Rennes in France. get measurements here that we couldn’t get in Mitchell says that different theories of how it forms, many other places.” and why it burns in air, have been considered, but until now there were no experimental indications of “We passed an x-ray beam through the fireball we what might be happening as part of the ball made, and saw that it was scattered. This indicated lightning phenomenon. that there were particles inside the fireball.” Not only were Mitchell and his peers able to determine Now, working with fellow Rennes scientist that nanoparticles must exist in fireballs similar to LeGarrec, as well as Dikhtyar and Jerby from Tel ball lightning, but they were also able to take Aviv University and Sztucki and Narayanan at the measurements. “Particle size, density, distribution European Synchrotron Radiation Facility in and even decay rate were measured using this Grenoble, France, Mitchell can prove that technique,” he says. nanoparticles likely exist in ball lightning. The results of the work by Mitchell and his colleagues Mitchell’s work with fireballs isn’t finished. can be found in Physical Review Letters: When PhysOrg.com spoke to him for this article, he “Evidence for Nanoparticles in Microwave- was back in Grenoble taking more measurements. -
An Experimental Model of Ball Lightning
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2004 An Experimental Model of Ball Lightning Madras Parameswaran Sriram University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Electrical and Electronics Commons Recommended Citation Sriram, Madras Parameswaran, "An Experimental Model of Ball Lightning. " Master's Thesis, University of Tennessee, 2004. https://trace.tennessee.edu/utk_gradthes/2204 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Madras Parameswaran Sriram entitled "An Experimental Model of Ball Lightning." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Electrical Engineering. Igor Alexeff, Major Professor We have read this thesis and recommend its acceptance: Douglas J Birdwell, Paul B Crilly Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by Madras Parameswaran Sriram entitled “An Experimental Model of Ball Lightning”. I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Electrical Engineering. -
International Newsletter Research Institute for Sustainable Humanosphere, Kyoto University, Japan
No. 29 March 2015 International Newsletter Research Institute for Sustainable Humanosphere, Kyoto University, Japan =Foreword= International Research Activities at RISH in 2014 Professor Junji Sugiyama Chair of the Public Relations Committee of RISH, Kyoto University In 2004, Director Prof. Hiroshi only at Kyoto University, but also re- Matsumoto launched a new interdis- searchers and groups across the coun- ciplinary Research Institute for Sus- try and around the world. Thanks to tainable Humanosphere, a coopera- the efforts of the faculty and support- partnerships. One good example is tive institute designed to serve as a ing communities, the Research Insti- our MOU with Nanjing Foresty Uni- hub for the discovery of creative solu- tute for Sustainable Humanosphere, versity in China, which was both re- tions for sustainable development. In Kyoto University, has successfully newed and extended. The committee the decade since, the institute has accomplished its mission by over- continues to encourage more produc- brought together researchers with ex- coming barriers across academic dis- tive partnerships as it helps strength- pertise ranging from wood science to ciplines through innovation and co- en the quality and effectiveness of radio science. The spirit of interdisci- operation. On June 6, 2014, RISH research on global issues. According plinary collaboration has expanded commemorated its 10-year anniversa- to Prof. Sanga-Ngoie, research and into partnerships with experts not ry. academic institutions in Africa and International activities have pro- South America are good candidates duced 19 cooperative Memoranda of for future partnerships. Understanding (MOU): seven with There are currently increasing foreign counterparts in Asian, three in concerns about social accountability Europe, and two with North Ameri- and the role of public information.