Process for Separating Psicose from Another Ketose

Total Page:16

File Type:pdf, Size:1020Kb

Process for Separating Psicose from Another Ketose Europaisches Patentamt J European Patent Office CO Publication number: 0 302 970 Office europeen des brevets A1 EUROPEAN PATENT APPLICATION © Application number: 87307086.6 © int. ci.4: C07H 3/02 ® Date of filing: 11.08.87 @ Date of publication of application: © Applicant: UOP INC. 15.02.89 Bulletin 89/07 25 East Algonquin Road Des Plaines Illinois 6001 7-501 7(US) © Designated Contracting States: AT BE CH DE FR GB IT LI NL SE @ Inventor: Chang, Chin-Hsiung 511 Revere Lane Palatine Illinois 60067(US) 0 Representative: Brock, Peter William UOP Processes International Corporation 48 Leicester Square London WC2H 7LW(GB) Process for separating psicose from another ketose. © Psicose is sepatated from at least one other ketose in an adsorption step using a type Y zeolite adsorbent having calcium cations at exchangeable cationic sites. After desorption, psicose is recovered in the extract in high purity with the other ketose or ketoses being concentrated in the raffinate. In a preferred mode of operation, the psicose separation is performed with an aqueous feed mixture of monosaccharides containing psicose along with other aldoses and ketoses. The feed is contacted with a calcium-Y type zeolite in two stages. In the first stage, psicose and fructose are selectively adsorbed, to the substantial exclusion from the extract of other aldoses. In the second stage, psicose is adsorbed from the extract of the first stage, and recovered in higher purity than the feed. Fructose is recovered substantially psicose-free in high purity in the raffinate. 200000 'GLUCOSE * I6OOOO ft: ^ 120000 ^J 80000 psicose o oc j/oooo CO ,O IO ZO 3O HO SO 6O 7O BO 9O too LLJ RETENTION VOLUMN, ML. JT/G. f Xerox Copy Centre EP 0 302 970 A1 "PROCESS FOR SEPARATING PSICOSE FROM ANOTHER KETOSE" This invention relates to the solid bed adsorptive separation of psicose (a ketose), from other ketoses and aldoses. More specifically, the invention relates to a process for separating psicose from a mixture comprising psicose, fructose and one or more additional ketoses, and-or aldoses, which process employs an adsorbent comprising a calcium-exchanged Y-type zeolite for selective adsorption of psicose from the 5 feed mixture. The use of crystalline aluminosilicates in non-hydrocarbon separations is known, for instance for separating specific carbohydrate feed mixtures. A specific example of such a separation is given in US-A- 4024331 disclosing the separation of ketoses from a mixture of ketoses and aidoses using a type X zeolite. Specific monosaccharides, such as glucose and fructose, are isolated from a feed mixture containing the w same by an adsorptive separation process using an X zeolite as taught in US-A-4442285. This invention is particularly concerned with the separation of a ketose, psicose, from another ketose, fructose, mixed with the aldoses mannose and glucose. Heretofore, no feasible method for commercially separating psicose from the other products of isomerization of aldose sugars, e.g., glucose, was available. Therefore, enzymatic means, rather than simple isomerization methods, have been used for the productiuon 75 of fructose, because the enzymatic route minimizes the production of psicose. A means for separating psicose from fructose, and other ketoses and aldoses, has now been discovered and this means that simpler, less costly isomerization methods can be used to produce fructose. There are two isomerization routes known for obtaining fructose from glucose, namely by the reaction of weak alkali with glucose and the reaction of hot pyridine with glucose, (see Chemistry of the Carbohydrates Pigman et al., Academic 20 Press Inc. NY, NY 1948, pages 41, 126-7). Similarly, isomerization of galactose) and a mixture of ketoses, (sorbose and tagatose) which may be separated by means here disclosed. Furthermore, there is consider- able interest in the various L-sugars, which are believed to below in calories and possibly non-metabolized, and which cannot be made enzymatically, but only by isomerization routes such as those mentioned above. This invention applies to the L-sugars as well as D-sugars, and is seen to be an advantageous method for 25 obtaining L-fructose, free of contamination by L-psicose. Data related to potential adsorbents for the separation of mannose from other monosaccharides are set forth in US-A-4471 1 1 4. This patent contains data related to theuse of a Y type faujasite exchanged with calcium cations as an adsorbent for the adsorbent for the separation of mannose from glucose and other monosaccharides. 30 The separation on mannose from glucose is the subject of GB-A-1 540556, in which the adsorbent is a cation exchange resin in salt form, preferably calcium form. US-A-4340724 teaches the separation by adsorption of a ketose from an aldose, with a Y zeolite exchanged with NH4, Na, K, Ca, Sr, Ba or combinations thereof at ion exchangeable sites, or will an X zeolite exchanged with Ba, Na, Sr or combinations thereof. 35 The separation of psicose from other ketoses is stated US-A-4096036 to be possible with ion exchange resins capable of complexing with a polyol at a first temperature, and dissociating the complex at a second temperature in a thermal parametric pumping apparatus. Accordingly, the present invention concerns the problem of providing a process forthe separation of a ketose from feed mixture which is the alkaline- or pyridine-catalyzed isomerization product of an alddohex- 40 ose or aldopentose. This problem is solved by using a Y type zeolite with calcium cations at cation exchanged sites. In one embodiment, this invention provides a process for separating psicose from an aqueous feed misture containing psicose and at least one other ketose, contacting said mixture with an adsorbent comprising a type Y zeolite having calcium cations at exchangeable cationic sites, thereby selectively 45 adsorbing said psicose, separating the nonadsorbed portion of the feed mixture from the adsorbent, and thereafter recovering psicose by contacting the psicose-containing adsorbent with desorbent. In another embodiment, this invention provides a process for recovering fructose substantially free of psicose from a feed mixture comprising fructose and psicose and at least one other monosaccharide selected from glucose and mannose, by contacting said feed mixture with a first adsorbent comprising a so type Y zeolite having calcium cations at exchangeable sites, thereby selectively adsorbing said psicose and said fructose, separating the nonadsorbed portion of the feed mixture from the adsorbent, recovering an extract mixture comprising said psicose and said fructose from said first adsorbent, and then contacting said extract mixture with a second adsorbent comprising a type Y zeolite having calcium cations at exchangeable sites, thereby selectively adsorbing said psicose, separating the nonadsorbed portion of said extract mixture from the second adsorbent to form a substantially psicose-free raffinate containing fructose, EP 0 302 970 A1 and thereafter recovering said psicose by desorption of the second adsorbent. In either embodiment, the psicose may be recovered by desorption using, for example, water as desorbent. Alternatively, the psicose may be selectively adsorbed in the first step to produce a raffinate containing 5 fructose and other monosaccharides in the original feed mixture. The psicose can be recovered by desorption under desorption conditions with water as desorbent. Subsequently, the raffinate phase contain- ing non-adsorbed fructose can again be contacted with a Ca-exchanged Y zeolite, the fructose being selectively adsorbed by the zeolite, and recovered as one product by desorption with water. Other details and embodiments of the present invention relate to specific feed mixtures, adsorbents, desorbent materials, w operating conditions and flow cofigurations, all of which are hereinafter disclosed in the following discussion of the present invention. The single Figure of the Drawings provides a graphical representation of relative concentration of specified sugars versus retention volume for the process of the present invention. At the outset the definitions of various terms used through the specification will be useful in making rs clear the operation and advantages of this process. A "feed mixture" is a mixture containing one or more extract components and one or more raffinate components to be separated by this process. The term "feed stream" indicates a stream of a feed mixture which passes to the adsorbent used in the process. An "extract component" is a component that is more selectively adsorbed by the adsorbent, while a 20 "raffinate component" is a component that is less selectively adsorbed. The term "desorbed material" means generally a material capable of desorbing an extract component. The term "desorbent stream" or "desorbent input stream" means a stream of desorbent material which is passed to the adsorbent. The term "raffinate stream" or "raffinate output stream" means a stream by which a raffinate component is removed from the adsorbent. The composition of the raffinate stream can vary from essentially 100% desorbent 25 material to essentially 100% raffinate compounds. The term "extract stream" or "extract output stream" means a stream in which an extract material which has been desorbed by a desorbent material is removed from the adsorbent. The composition of the extract stream, likewise, can vary from essentially 100% desorbent material to essentially 100% extract components. At least a portion of the extract stream, and preferably at least a portion of the raffinate stream, from the adsorption - desorption process are passed to 30 separation means, typically fractionators or evaporators, where at least a portion of desorbent material is separated to produce an extract product and a raffinate product. The term "extract product" and "raffinate product" mean products produced by the process containing, respectively, an extract component and a raffinate component in higher concentrations than those found in the extract stream and the raffinate stream. The adsorbent materials used according to this invention comprise type Y crystalline aluminosilicates 35 having calcium cations at cation exchange sites.
Recommended publications
  • Determining the Effect of Small Doses of Fructose and Its Epimers on Glycemic Control
    Determining the Effect of Small Doses of Fructose and its Epimers on Glycemic Control by Jarvis Clyde Noronha A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Nutritional Sciences University of Toronto © Copyright by Jarvis Clyde Noronha 2017 ii Determining the Effect of Small Doses of Fructose and its Epimers on Glycemic Control Jarvis Clyde Noronha Master of Science Department of Nutritional Sciences University of Toronto 2017 Abstract Given that sugars have emerged as the dominant nutrient of concern in diabetes, there is a need for the development of alternative sweeteners. To assess the role of small doses (5g, 10g) of fructose and allulose on postprandial glucose metabolism, we conducted an acute randomized controlled trial in individuals with type 2 diabetes. We found that small doses of allulose, but not fructose, modestly reduced the postprandial glycemic response to a 75g oral glucose load. To assess whether low-dose (< 50-g/day) fructose and all its epimers (allulose, tagatose and sorbose) lead to sustainable improvements in long-term glycemic control, we conducted a systematic review and meta-analysis of controlled feeding trials. The available evidence suggested that fructose and tagatose led to significant reductions in HbA1c and fasting glucose. Our findings highlight the need for long-term randomized controlled trials to confirm the viability of fructose and its epimers as alternative sweeteners. iii Table of Contents Contents Abstract ...........................................................................................................................
    [Show full text]
  • FDA Finalizes Allulose Guidance and Requests Information on Other Sugars Metabolized Differently Than Traditional Sugars
    FDA Finalizes Allulose Guidance and Requests Information on Other Sugars Metabolized Differently Than Traditional Sugars October 19, 2020 Food, Drug, and Device FDA has taken two notable actions regarding the sugars declaration in the Nutrition Facts Label (NFL) and Supplement Facts Label (SFL). On Friday, the agency released a final guidance regarding the declaration of allulose, confirming that this monosaccharide need not be included in the declaration of “Total Sugars” or “Added Sugars,” though it must be included in the “Total Carbohydrates” declaration in the NFL. Today, FDA published a Federal Register notice requesting information about and comments on the nutrition labeling of other sugars that are metabolized differently than traditional sugars. We briefly summarize both documents below to help inform stakeholder comments on the notice, which are due to FDA by December 18, 2020. Allulose Final Guidance Allulose, or D-psicose, is a monosaccharide that can be used as a substitute for traditional sugar in food and beverage products. For purposes of nutrition labeling, FDA has generally 1 defined nutrients based on their chemical structure.0F Accordingly, when FDA updated its NFL and SFL regulations in 2016, the agency reiterated the definition of “Total Sugars” as the sum of 2 all free monosaccharides and disaccharides (e.g. glucose, fructose, and sucrose).1F FDA also added to these regulations a definition of “Added Sugars” – sugars added during the processing 3 of food, or packaged as such – and required their declaration in the NFL and SFL.2F Although the agency recognized that there are sugars that are metabolized differently than traditional sugars, FDA did not make a determination at that time as to whether allulose should be excluded from “Total Carbohydrate,” “Total Sugars,” or “Added Sugars” Declarations.
    [Show full text]
  • Effects of D-Allulose on Glucose Tolerance and Insulin Response to A
    Clinical care/Education/Nutrition Open access Original research BMJ Open Diab Res Care: first published as 10.1136/bmjdrc-2020-001939 on 26 February 2021. Downloaded from Effects of D- allulose on glucose tolerance and insulin response to a standard oral sucrose load: results of a prospective, randomized, crossover study Francesco Franchi ,1 Dmitry M Yaranov,1 Fabiana Rollini,1 Andrea Rivas,1 Jose Rivas Rios,1 Latonya Been,1 Yuma Tani,2 Masaaki Tokuda,3 Tetsuo Iida,2 Noriko Hayashi,2 Dominick J Angiolillo,1 Arshag D Mooradian1 To cite: Franchi F, Yaranov DM, ABSTRACT Rollini F, et al. Effects of D- Introduction Current dietary guidelines recommend Significance of this study allulose on glucose tolerance limiting sugar intake for the prevention of diabetes and insulin response to a mellitus (DM). Reduction in sugar intake may require sugar What is already known about this subject? standard oral sucrose load: substitutes. Among these, D- allulose is a non- calorie rare ► D- allulose is defined one of the rare sugars, results of a prospective, which has been shown in animal and clinical randomized, crossover study. monosaccharide with 70% sweetness of sucrose, which has shown anti- DM effects in Asian populations. However, studies, conducted mostly in Asian populations, BMJ Open Diab Res Care to have postprandial plasma glucose suppres- 2021;9:e001939. doi:10.1136/ there is limited data on the effects of D- allulose in other sive effects with antiobesity and antidiabetic bmjdrc-2020-001939 populations, including Westerners. Research design and methods This was a prospective, effects. copyright. randomized, double- blind, placebo- controlled, crossover What are the new findings? ► Supplemental material is study conducted in 30 subjects without DM.
    [Show full text]
  • Natural Alternative Sweeteners and Diabetes Management
    Current Diabetes Reports (2019) 19:142 https://doi.org/10.1007/s11892-019-1273-8 LIFESTYLE MANAGEMENT TO REDUCE DIABETES/CARDIOVASCULAR RISK (B CONWAY AND H KEENAN, SECTION EDITORS) Natural Alternative Sweeteners and Diabetes Management Emily Mejia1 & Michelle Pearlman2 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Purpose of Review The goal of this review is to discuss the data on natural alternative sweeteners and their effects on glucose homeostasis and other metabolic parameters within the past five years. We sought to answer whether common natural alternative sweeteners have a positive or negative effect on glucose control in both human and animal models, and whether the data supports their widespread use as a tool to help reduce the prevalence of diabetes and associated comorbid conditions. Recent Findings Recent studies suggest that natural alternative sweeteners may reduce hyperglycemia, improve lipid metabo- lism, and have antioxidant effects particularly in those that have baseline diabetes. Summary Diabetes and metabolic syndrome have become a global healthcare crisis and the sugar overconsumption plays a major role. The use of artificial sweeteners has become more prevalent to improve insulin resistance in those with diabetes, obesity, and metabolic syndrome, although the evidence does not support this result. There are however some promising data to suggest that natural alternative sweeteners may be a better alternative to sugar and artificial sweeteners. Keywords Natural alternative sweeteners . Diabetes . Stevia . Sugar alcohols . Rare sugars Introduction retinopathy, nephropathy, cerebrovascular disease, peripheral vascular disease, and cardiovascular disease [2–4]. Type 2 Diabetes mellitus (DM) is a metabolic disorder that results DM (T2DM) often coexists with other metabolic disorders from glucose dysregulation.
    [Show full text]
  • Calorie Restriction Mimetics: Upstream-Type Compounds for Modulating Glucose Metabolism
    nutrients Review Calorie Restriction Mimetics: Upstream-Type Compounds for Modulating Glucose Metabolism Hideya Shintani 1 , Tomoya Shintani 2,* , Hisashi Ashida 3 and Masashi Sato 4 1 Department of Internal Medicine, Saiseikai Izuo Hospital, Osaka 551-0032, Japan; [email protected] 2 United Graduate School of Agricultural Science, Ehime University, Matsuyama 790-8577, Japan 3 Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan; [email protected] 4 Faculty of Agriculture, Kagawa University, Kagawa 761-0701, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-6-6621-5122 Received: 6 November 2018; Accepted: 18 November 2018; Published: 22 November 2018 Abstract: Calorie restriction (CR) can prolong the human lifespan, but enforcing long-term CR is difficult. Therefore, a compound that reproduces the effect of CR without CR is needed. In this review, we summarize the current knowledge on compounds with CR mimetic (CRM) effects. More than 10 compounds have been listed as CRMs, some of which are conventionally categorized as upstream-type CRMs showing glycolytic inhibition, while the others are categorized as downstream-type CRMs that regulate or genetically modulate intracellular signaling proteins. Among these, we focus on upstream-type CRMs and propose their classification as compounds with energy metabolism inhibition effects, particularly glucose metabolism modulation effects. The upstream-type CRMs reviewed include chitosan, acarbose, sodium-glucose cotransporter 2 inhibitors, and hexose analogs such as 2-deoxy-D-glucose, D-glucosamine, and D-allulose, which show antiaging and longevity effects. Finally, we discuss the molecular definition of upstream-type CRMs.
    [Show full text]
  • D-Allulose Is a Substrate of Glucose Transporter Type 5 (GLUT5) in the Small Intestine
    Food Chemistry 277 (2019) 604–608 Contents lists available at ScienceDirect Food Chemistry journal homepage: www.elsevier.com/locate/foodchem D-Allulose is a substrate of glucose transporter type 5 (GLUT5) in the small intestine T ⁎ Kunihiro Kishidaa, , Gustavo Martinezb, Tetsuo Iidac, Takako Yamadac, Ronaldo P. Ferrarisb,1, Yukiyasu Toyodad,1 a Department of Science and Technology on Food Safety, Kindai University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan b Department of Pharmacology, Physiology, and Neurosciences, New Jersey Medical School, Rutgers University, 185 S. Orange Avenue, Newark, NJ 07101-1749, USA c Research and Development, Matsutani Chemical Industry Company, Limited, 5-3 Kita-Itami, Itami, Hyogo 664-8508, Japan d Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan ARTICLE INFO ABSTRACT Keywords: D-Allulose has been reported to have beneficial health effects. However, the transport system(s) mediating in- D-Allulose testinal D-allulose transport has not yet been clearly identified. The aim of this study was to investigate whether Intestinal absorption intestinal D-allulose transport is mediated by glucose transporter type 5 (GLUT5). When D-allulose alone was GLUT5 gavaged, plasma D-allulose levels were dramatically higher in rats previously fed fructose. This suggests en- hanced intestinal D-allulose absorption paralleled increases in GLUT5 expression observed only in fructose-fed rats. When D-allulose was gavaged with D-fructose, previously observed increases in plasma D-allulose levels were dampened and delayed, indicating D-fructose inhibited transepithelial D-allulose transport into plasma. Tracer D- 14 [ C]-fructose uptake rate was reduced to 54.8% in 50 mM D-allulose and to 16.4% in 50 mM D-fructose, sug- 14 gesting D-allulose competed with D-[ C]-fructose and the affinity of D-allulose for GLUT5 was lower than that of D-fructose.
    [Show full text]
  • GRAS Notifications to FDA – a Review of Ingredients with Intended Use In
    GRAS Ingredients for Use in Medical Foods GRAS Ingredients for Use in Medical Foods: An Overview of FDA Regulation Ginny Bank, Cheryl Dicks, MS, RAC 1 © GRAS Associates 2016 www.gras-associates.com GRAS Ingredients for Use in Medical Foods Contents Introduction ..................................................................................................... 3 FDA Medical Food Regulation Overview ........................................................ 4 GRAS Notifications to FDA – A Review of Ingredients with Intended Use in Medical Foods ................................................................................................. 6 Ready to seek GRAS status for your medical food ingredient? ................. 11 Regulatory Services Include: ..................................................................... 11 Uncover greater market opportunities for your ingredient ......................... 12 Contact GRAS Associates today ............................................................... 12 Appendix A – Summary of GRAS Notifications Submitted to FDA for Ingredients Intended for Use in Medical Foods .......................................... 13 2 © GRAS Associates 2016 www.gras-associates.com GRAS Ingredients for Use in Medical Foods Introduction The medical food arena is a growing specialty product category that presents food and dietary supplement manufactures with interesting business opportunities for market expansion of an ingredient or final product. The Business Insights: The Emerging Market for Medical Foods Nutraceuticals
    [Show full text]
  • D-Psicose Nutrasource, Inc.Inc
    ORIGINAL SUBMISSION 000001 GRAS exemption claim for D-psicose NutraSource, Inc.Inc. August 18,18, 20112011 Dr. Susan CarlsonCarlson Division ofof BiotechnologyBiotechnology andand GRASGRAS NoticeNotice ReviewReview Office of Food AdditiveAdditive Safety-CFSANSafety-CFSAN U.S. Food andand DrugDrug AdministrationAdministration 5100 Paint Branch ParkwayParkway (HFS-255)(HFS-255) College Park, MDMD 20740-383520740-3835 DiVisionDivision of BiotechnologyBiotechnology and GRAS Notice ReviewReview Re: GRAS exemption claimclaim forfor D-psicoseD-psicose asas anan ingredientingredient inin foodsfoods Dear Dr. Carlson,Carlson, This is to notify you that CJCJ CheiljedangCheiljedang (based(based inin S.S. Korea)Korea) claimsclaims thatthat thethe useuse ofof thethe substance described below (D-psicose) is exempt fromfrom the the premarketpremarket approvalapproval requirementsrequirements ofof the Federal Food, Drug, and CosmeticCosmetic ActAct becausebecause CJCJ AmericaAmerica hashas determineddetermined suchsuch useuse toto bebe Generally Recognized AsAs SafeSafe (GRAS).(GRAS). On behalf ofCJof CJ Cheiljedang, NutraSource (an independent consultingconsulting firm)firm) assembledassembled aa panel of experts highly qualified byby scientificscientific trainingtraining andand experienceexperience toto evaluateevaluate thethe safetysafety ofof the intended uses ofofD-psicose. D-psicose. The panel includedincluded Dr.Dr. SusanSusan ChoCho atat NutraSourceNutraSource (Clarksville,(Clarksville, MD), Dr. Joanne Slavin (The University ofof Minnesota,Minnesota,
    [Show full text]
  • Potent Inhibitory Effects of D-Tagatose on the Acid Production and Water-Insoluble Glucan Synthesis of Streptococcus Mutans GS5 in the Presence of Sucrose
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Okayama University Scientific Achievement Repository Acta Med. Okayama, 2015 Vol. 69, No. 2, pp. 105ン111 CopyrightⒸ 2015 by Okayama University Medical School. Original Article http ://escholarship.lib.okayama-u.ac.jp/amo/ Potent Inhibitory Effects of D-tagatose on the Acid Production and Water-insoluble Glucan Synthesis of Streptococcus mutans GS5 in the Presence of Sucrose Daijo Sawadaa,b*, Takaaki Ogawaa, Minoru Miyakea, Yoshinori Hasuib, Fuminori Yamaguchic, Ken Izumorid, and Masaaki Tokudac,d Departments of aOral and Maxillofacial Surgery and cCell Physiology, Faculty of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan, bHasui Dental Family Clinic, Kagawa 761-0704, Japan, dRare Sugar Research Center, Miki, Kagawa 761-0793, Japan We examined and compared the inhibitory effects of D-tagatose on the growth, acid production, and water-insoluble glucan synthesis of GS5, a bacterial strain of Streptococcus mutans, with those of xylitol, D-psicose, L-psicose and L-tagatose. GS5 was cultured for 12h in a medium containing 10オ (w/v) of xylitol, D-psicose, L-psicose, D-tagatose or L-tagatose, and the inhibitory effect of GS5 growth was assessed. Each sugar showed different inhibitory effects on GS5. Both D-tagatose and xylitol significantly inhibited the acid production and water-insoluble glucan synthesis of GS5 in the presence of 1オ (w/v) sucrose. However, the inhibitory effect of acid production by D-tagatose was significantly stronger than that of xylitol in presence of sucrose. Key words: Streptococcus mutans, D-tagatose, xylitol, acid production, water-insoluble glucan he definition of ʻrare sugarsʼ is monosaccha- the most extensively examined rare sugar, including T raides and their derivatives that are not com- anti-diabetes and anti-obesity effects [4-7].
    [Show full text]
  • GRAS Notice 828, D-Psicose
    GRAS Notice (GRN) No. 828 https://www.fda.gov/food/generally-recognized-safe-gras/gras-notice-inventory NutraSource, Inc. 6309 Morning Dew Ct, Clarksville, MD 21029 (410)-531 -3336 or (301) 875--6454 November 20, 2018 Dr. Paulette Gaynor Office of Food Additive Safety (HFS-200) Center for Food Safety and Applied Nutrition offlCEOf ~ ~V'c SAfc,' Food and Drug Administration fOOO A0011• 5001 Campus Drive College Park, MD 20740 Subject: GRAS Notification - D-allulose (D-psicose) Dear Dr. Gaynor, On behalf of Samyang Corp., we are submitting a GRAS notification for D-allulose as a food ingredient. The enclosed document ~rovides notice of a claim that the food ingredient, D-allulose described in the enplosed notification is exempt from the premarket approval requirement of the Federal Food, Drug, and Cosmetic Act because it has been determined to be generally recognized as safe (GRAS), based on scientific procedures, for addition to foods. We bel eve that this determination and notification are in compliance with Pursuant to 21 C.F.R. Part 170, subpart E. We enclose an original copy of this notification and a CD Rom containing electronic files for your review. Please feel free to contact me if additional information or clarification is needed as you proceed with the review. We would appreciate your kind attention to this matter. Sincerely, Susan Cho, Ph.D. [email protected] Agent for Samyang Corp. 1 D-Allulose (D-Psicose) GENERALLY RECOGNIZED AS SAFE (GRAS) NOTICE FOR D-ALLULOSE (D-PSICOSE) AS A FOOD INGREDIENT On behalf of Samyang Corp. Prepared by: NutraSource, Inc.
    [Show full text]
  • Sugar Matrix
    Based on perfact’s database holding ingredients for over 250,000 products, we found that almost 300 names for sugar that appear on food labels aren’t covered by the “56 names of sugar” and SugarScience’s 61 names of sugar. The exact number depends on how one counts. This document aims to be a basis to help draw the lines between what should be considered “sugar” within the scope of those lists – and what shouldn’t. Diagram elements ANNOTATED ALTERNATIVE NAME Molecular Source Product sugar or sugar alcohol Diagram element constituting a dietary / functional fiber Molecular Source Product sugar or sugar alcohol Diagram elements explicitly ANNOTATED on 56/61 lists ALTERNATIVE NAME Molecular Source Product sugar or sugar alcohol Diagram elements explicitly or implicitly on 56/61 lists (e.g. because listed by one of its alternative name) Molecular Source Product sugar or sugar alcohol Production pathways Most common Less common This is a working document in progress. Current as of February 2019 Polysaccharides Disaccharides Monosaccharides Sugar alcohols Heat under pressure with hydrogen and Raney-nickel Feed with glucose Ribose Ribitol Ribose syrup Ribitol syrup Bacillus spp. Treat with acid E 967 E 460 Xylose Xylitol E 460I, MCC, CELLULOSE GEL, Treat with acid, pulp, and bleach Xylose syrup Xylitol syrup MICROCELLULOSE Heat under pressure with hydrogen and Raney-nickel Woody plant Cellulose Microcrystalline parts cellulose Wood Treat with acid or enzymes Treat with acid, pulp, and bleach Feed with glucose/sucrose Curdlan Agrobacterium Feed
    [Show full text]
  • Supplementary Tables Vfinal.Xlsx
    Table S3. Carbon Sources Used in the Nanostring Analysis. Concentration used in Nutrient Median Biofilm Value Figure 3 Key Dextrin 0.065 0.2% soluble fraction Low Melibionic Acid 0.072 Medium Mannan 0.081 High L-Homoserine 0.105 Very High Glycogen 0.120 2 mM Adenosine 0.127 2 mM Methyl Pyruvate 0.131 Mucic Acid 0.132 N-Acetyl-D-Glucosamine 0.138 2 mM Glycil-L-Proline 0.147 L-Alanyl-Glycine 0.149 Inosine 0.153 D-Alanine 0.156 2 mM Oxalic Acid 0.163 3-Methyl-Glucose 0.163 D-Aspartic Acid 0.165 D-Trehalose 0.169 2 mM Glycolic Acid 0.171 2 mM 2-Hydroxy Benzoic Acid 0.174 D-Glucosamine 0.177 2-Deoxy-D-Ribose 0.177 2-Deoxy Adenosine 0.178 Bromo Succinic Acid 0.179 Uridine 0.180 2 mM Pectin 0.180 Sorbic Acid 0.180 Negative Control 0.184 1,2-Propanediol 0.185 a-D-Lactose 0.186 Gelatin 0.186 D,L-a-Glycerol-Phosphate 0.186 Maltotriose 0.186 Glycerol 0.188 Inulin 0.189 Glucuronamide 0.189 N-Acetyl-D-Glucosaminatol 0.189 Lactulose 0.189 M-Inositol 0.190 3-0-b-D-Galactopyranosyl-D-Arabinose 0.191 a-Hydroxy Glutaric Acid-g-Lactone 0.193 a-Methyl-D-Galactoside 0.196 D-Psicose 0.196 L-Fucose 0.196 Succinamic Acid 0.197 D-Sorbitol 0.197 2 mM Dulcitol 0.198 D-Fructose-6-Phosphate 0.198 Sedoheptulosa 0.199 Glyoxylic Acid 0.200 Maltose 0.201 2 mM D-Ribono-1,4-Lactone 0.201 Sucrose 0.201 2 mM D-Melibiose 0.202 Mono Methyl Succinate 0.203 N-Acetyl-b-D-Mannosamine 0.204 p-Hydroxy Phenyl Acetic Acid 0.204 L-Rhamnose 0.205 2 mM D-Cellobiose 0.206 D-Glucuronic Acid 0.207 Adonitol 0.207 b-Methyl-D-Glucoside 0.207 Laminarin 0.208 Acetoacetic Acid 0.208 a-Keto-Glutaric
    [Show full text]