Mercury 2.4 User Guide and Tutorials 2011 CSDS Release

Total Page:16

File Type:pdf, Size:1020Kb

Mercury 2.4 User Guide and Tutorials 2011 CSDS Release Mercury 2.4 User Guide and Tutorials 2011 CSDS Release Copyright © 2010 The Cambridge Crystallographic Data Centre Registered Charity No 800579 Conditions of Use The Cambridge Structural Database System (CSD System) comprising all or some of the following: ConQuest, Quest, PreQuest, Mercury, (Mercury CSD and Materials module of Mercury), VISTA, Mogul, IsoStar, SuperStar, web accessible CSD tools and services, WebCSD, CSD Java sketcher, CSD data file, CSD-UNITY, CSD-MDL, CSD-SDfile, CSD data updates, sub files derived from the foregoing data files, documentation and command procedures (each individually a Component) is a database and copyright work belonging to the Cambridge Crystallographic Data Centre (CCDC) and its licensors and all rights are protected. Use of the CSD System is permitted solely in accordance with a valid Licence of Access Agreement and all Components included are proprietary. When a Component is supplied independently of the CSD System its use is subject to the conditions of the separate licence. All persons accessing the CSD System or its Components should make themselves aware of the conditions contained in the Licence of Access Agreement or the relevant licence. In particular: • The CSD System and its Components are licensed subject to a time limit for use by a specified organisation at a specified location. • The CSD System and its Components are to be treated as confidential and may NOT be disclosed or re- distributed in any form, in whole or in part, to any third party. • Software or data derived from or developed using the CSD System may not be distributed without prior written approval of the CCDC. Such prior approval is also needed for joint projects between academic and for-profit organisations involving use of the CSD System. • The CSD System and its Components may be used for scientific research, including the design of novel compounds. Results may be published in the scientific literature, but each such publication must include an appropriate citation as indicated in the Schedule to the Licence of Access Agreement and on the CCDC website. • No representations, warranties, or liabilities are expressed or implied in the supply of the CSD System or its Components by CCDC, its servants or agents, except where such exclusion or limitation is prohibited, void or unenforceable under governing law. Licences may be obtained from: Cambridge Crystallographic Data Centre 12 Union Road Cambridge CB2 1EZ United Kingdom Web: http://www.ccdc.cam.ac.uk Telephone: +44-1223-336408 Email: [email protected] (UNITY is a product of Tripos, L.P. and MDL is a registered trademark of Elsevier MDL) Overview of Functionality (see page 6) Introduction to using Mercury (see page 9) Loading Structures (see page 20) Selecting and Displaying Structures (see page 25) Moving the Display and Setting the View Direction (see page 32) Customising the Display (see page 37) Centroids and Planes (see page 66) Measurement (see page 70) Crystal Structure Display Options (see page 71) Finding Hydrogen Bonds and other Nonbonded Contacts (see page 85) Building Networks of Nonbonded Contacts (see page 96) Editing a Structure (see page 106) Visualising CSD- and PDB-based Intermolecular Contact Distributions (see page 114) Geometry Validation (see page 119) Displaying Additional Information about the Structure (see page 125) Powder Diffraction Patterns (see page 141) Theoretical Calculations using MOPAC (see page 149) Saving Files and Copying to the Clipboard (see page 155) The Materials Module (see page 158) References (see page 188) Acknowledgements (see page 189) Appendix A: Glossary and Technical Details (see page 173) Appendix B: Keyboard Modifiers (see page 209) Appendix C: Tutorials (see page 211) Appendix D: What’s New (see page 289) Mercury User Guide 5 1 Overview of Functionality Mercury is a program for visualising crystal structures in three dimensions. Its features include: • The ability to read in crystal structures in various formats (see Loading Structures, page 20). • The ability to load hit lists from ConQuest searches, or to browse the entire Cambridge Structural Database (see Loading Structures, page 20). • The ability to show all the files that have been loaded in the current session, and navigate between them. • The ability to display multiple structures simultaneously (see Displaying Multiple Structures Simultaneously, page 27) and to perform least-squares overlay of pairs of structures (see Overlaying Crystal Structures, page 28) and pairs of chemically identical molecules (see Overlaying Molecules, page 29). • The ability to rotate and translate the 3D crystal-structure display, and to view down cell axes, reciprocal cell axes, and the normals to least-squares and Miller planes (see Moving the Display and Setting the View Direction, page 32). • A range of 3D visualisation options, including choice of display styles (wireframe, capped stick, ball and stick, spacefill and ellipsoid), colours, labelling schemes, and the ability to hide and then re-display atoms or molecules (see Customising the Display, page 37). • A display style manager that contains pre-defined styles (for presentations, publication etc.), and provides a mechanism for creating and modifying sets of Mercury display styles, which are automatically saved between sessions. • The ability to measure and display distances, angles and torsion angles involving atoms, centroids and planes (see Measurement, page 70). • The ability to create and display centroids, least-squares mean planes and Miller planes (see Centroids and Planes, page 66). • The ability to display unit cell axes, the contents of any number of unit cells in any direction, or a slice through a crystal in any direction (see Crystal Structure Display Options, page 71). • The ability to display of Bravais, Friedel, Donnay and Harker (BFDH) theoretical crystal morphologies (see Displaying Bravais, Friedel, Donnay and Harker (BFDH) Crystal Morphology, page 76). • Free space in crystal structures, or voids, can be calculated and displayed as coloured surfaces. Control over the calculation parameters and display options is also available (see Displaying Voids, page 81). • The ability to display space-group symmetry elements (see Displaying Space-Group Symmetry Elements, page 83). • Location and display of intermolecular and/or intramolecular hydrogen bonds, short nonbonded contacts, and user-specified types of contacts (e.g. between a specific pair of elements in a given distance range, which may be expressed in terms of absolute or van der Waals corrected distances) (see Finding Hydrogen Bonds and other Nonbonded Contacts, page 85). 6 Mercury User Guide • The ability to build and visualise a network of intermolecular contacts (see Building Networks of Nonbonded Contacts, page 96). • The ability to perform graph set analysis of hydrogen-bonding patterns (see Displaying Graph Sets, page 78). • The ability to show extra information about the structure on display, such as the chemical diagram (if available), atomic coordinates and the symmetry operations used to generate contacts (see Displaying Additional Information about the Structure, page 125). • The ability to manually edit structures including the addition of hydrogen atoms, the addition of bonds, the editing of bond types, the removal of atoms, bonds and molecules, the addition of atoms and the editing of atom types or labels (see Manually Editing a Structure, page 106). • The ability to automatically assign bond-types, standardise bond-types to Cambridge Structural Database conventions and to add missing hydrogen atoms (see Auto-Editing Options, page 108). • The ability to access CSD- and PDB based intermolecular contact distributions. Select atoms or contacts within the Mercury display to find IsoStar plots for the relevant contact groups. This can be used e.g. to validate the geometry of an H-bond or short range interaction within a crystal structure (see Visualising CSD- and PDB-based Intermolecular Contact Distributions, page 114). • The ability to run Mogul geometry checks from within Mercury, e.g. to validate the intramolecular geometries of newly determined crystal structures and identify unusual geometric features (see Geometry Validation, page 119). • The ability to calculate, display and save the powder diffraction pattern for the structure on view (see Powder Diffraction Patterns, page 141). • The ability to perform a limited number of molecule-based gas phase theoretical calculations using an interface to MOPAC (see MOPAC Calculations, page 149). • The ability to transform, invert or translate molecules or structures (see Transforming, Translating or Inverting Molecules, page 111) and the ability to change the space group setting (see Changing the Setting of a Space Group, page 113). • Materials module allowing: • Structural searches to be carried out to identify interaction motifs that occur between particular functional groups and determine their relative abundance (see Searching on Motifs, page 160). • Searches can also be performed by selecting atoms in a currently loaded crystal structure and searching for structures that contain a similar packing arrangement (see Searching on Crystal Packing Features, page 170). • Crystal packing similarity calculations can now be performed between structures containing the same compound (see Determining Crystal Packing Similarity, page 177). • The ability to save displays (see Saving Files and Copying to the Clipboard, page 155). • The ability to undo (reverse) previous action(s),
Recommended publications
  • Open Babel Documentation Release 2.3.1
    Open Babel Documentation Release 2.3.1 Geoffrey R Hutchison Chris Morley Craig James Chris Swain Hans De Winter Tim Vandermeersch Noel M O’Boyle (Ed.) December 05, 2011 Contents 1 Introduction 3 1.1 Goals of the Open Babel project ..................................... 3 1.2 Frequently Asked Questions ....................................... 4 1.3 Thanks .................................................. 7 2 Install Open Babel 9 2.1 Install a binary package ......................................... 9 2.2 Compiling Open Babel .......................................... 9 3 obabel and babel - Convert, Filter and Manipulate Chemical Data 17 3.1 Synopsis ................................................. 17 3.2 Options .................................................. 17 3.3 Examples ................................................. 19 3.4 Differences between babel and obabel .................................. 21 3.5 Format Options .............................................. 22 3.6 Append property values to the title .................................... 22 3.7 Filtering molecules from a multimolecule file .............................. 22 3.8 Substructure and similarity searching .................................. 25 3.9 Sorting molecules ............................................ 25 3.10 Remove duplicate molecules ....................................... 25 3.11 Aliases for chemical groups ....................................... 26 4 The Open Babel GUI 29 4.1 Basic operation .............................................. 29 4.2 Options .................................................
    [Show full text]
  • GROMACS: Fast, Flexible, and Free
    GROMACS: Fast, Flexible, and Free DAVID VAN DER SPOEL,1 ERIK LINDAHL,2 BERK HESS,3 GERRIT GROENHOF,4 ALAN E. MARK,4 HERMAN J. C. BERENDSEN4 1Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, S-75124 Uppsala, Sweden 2Stockholm Bioinformatics Center, SCFAB, Stockholm University, SE-10691 Stockholm, Sweden 3Max-Planck Institut fu¨r Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany 4Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands Received 12 February 2005; Accepted 18 March 2005 DOI 10.1002/jcc.20291 Published online in Wiley InterScience (www.interscience.wiley.com). Abstract: This article describes the software suite GROMACS (Groningen MAchine for Chemical Simulation) that was developed at the University of Groningen, The Netherlands, in the early 1990s. The software, written in ANSI C, originates from a parallel hardware project, and is well suited for parallelization on processor clusters. By careful optimization of neighbor searching and of inner loop performance, GROMACS is a very fast program for molecular dynamics simulation. It does not have a force field of its own, but is compatible with GROMOS, OPLS, AMBER, and ENCAD force fields. In addition, it can handle polarizable shell models and flexible constraints. The program is versatile, as force routines can be added by the user, tabulated functions can be specified, and analyses can be easily customized. Nonequilibrium dynamics and free energy determinations are incorporated. Interfaces with popular quantum-chemical packages (MOPAC, GAMES-UK, GAUSSIAN) are provided to perform mixed MM/QM simula- tions. The package includes about 100 utility and analysis programs.
    [Show full text]
  • Instructions on Making Pdf Files Containing 3D
    Detailed Instructions for Creating an Embedded Virtual 3-D Image of a Molecule Creating the documents with embedded virtual three-dimensional images may be done fairly easily by repeating the following procedures. Once you have embedded your first image, the use of that image is limited only by your imagination. The following instructions are written in extreme detail with annotated screen shots of the four programs you will use throughout for clarification. Once you are familiar with the procedure embedding a structure of interest should take less than 20 min., limited only by the speed with which you can click a mouse. In practice most of our embedded 3-D images have been created by our undergraduate student collaborators. Step 1. Creating a 2-D image in ChemSketch Using ACD ChemSketch 11.0 Freeware (http://www.acdlabs.com/download/chemsk_download.html ) a two dimensional structure may be drawn as per your specific need (see Figure 1). Once the molecule is drawn, optimized it by clicking the 3-D optimization button then save as an MDL molfile (*.mol). Figure 1: A screen shot of acetone drawn with ChemSketch after 3-D optimization. Step 2. Converting the *.mol file to a *.pdb file using Open Babel The file can now be converted from a .mol file to a .pdb file, Protein Data Bank format, to be properly accessed with the Adobe Acrobat 3D Toolkit 8.1.0. The file conversion is done using Open Babel Graphical User Interface v2.2.0 (openbabel.sourceforge.net) under default settings. Step by step instructions: A.
    [Show full text]
  • Getting Started in Jmol
    Getting Started in Jmol Part of the Jmol Training Guide from the MSOE Center for BioMolecular Modeling Interactive version available at http://cbm.msoe.edu/teachingResources/jmol/jmolTraining/started.html Introduction Physical models of proteins are powerful tools that can be used synergistically with computer visualizations to explore protein structure and function. Although it is interesting to explore models and visualizations created by others, it is much more engaging to create your own! At the MSOE Center for BioMolecular Modeling we use the molecular visualization program Jmol to explore protein and molecular structures in fully interactive 3-dimensional displays. Jmol a free, open source molecular visualization program used by students, educators and researchers internationally. The Jmol Training Guide from the MSOE Center for BioMolecular Modeling will provide the tools needed to create molecular renderings, physical models using 3-D printing technologies, as well as Jmol animations for online tutorials or electronic posters. Examples of Proteins in Jmol Jmol allows users to rotate proteins and molecular structures in a fully interactive 3-dimensional display. Some sample proteins designed with Jmol are shown to the right. Hemoglobin Proteins Insulin Proteins Green Fluorescent safely carry oxygen in the help regulate sugar in Proteins create blood. the bloodstream. bioluminescence in animals like jellyfish. Downloading Jmol Jmol Can be Used in Two Ways: 1. As an independent program on a desktop - Jmol can be downloaded to run on your desktop like any other program. It uses a Java platform and therefore functions equally well in a PC or Mac environment. 2. As a web application - Jmol has a web-based version (oftern refered to as "JSmol") that runs on a JavaScript platform and therefore functions equally well on all HTML5 compatible browsers such as Firefox, Internet Explorer, Safari and Chrome.
    [Show full text]
  • Chemdoodle Web Components: HTML5 Toolkit for Chemical Graphics, Interfaces, and Informatics Melanie C Burger1,2*
    Burger. J Cheminform (2015) 7:35 DOI 10.1186/s13321-015-0085-3 REVIEW Open Access ChemDoodle Web Components: HTML5 toolkit for chemical graphics, interfaces, and informatics Melanie C Burger1,2* Abstract ChemDoodle Web Components (abbreviated CWC, iChemLabs, LLC) is a light-weight (~340 KB) JavaScript/HTML5 toolkit for chemical graphics, structure editing, interfaces, and informatics based on the proprietary ChemDoodle desktop software. The library uses <canvas> and WebGL technologies and other HTML5 features to provide solutions for creating chemistry-related applications for the web on desktop and mobile platforms. CWC can serve a broad range of scientific disciplines including crystallography, materials science, organic and inorganic chemistry, biochem- istry and chemical biology. CWC is freely available for in-house use and is open source (GPL v3) for all other uses. Keywords: ChemDoodle Web Components, Chemical graphics, Animations, Cheminformatics, HTML5, Canvas, JavaScript, WebGL, Structure editor, Structure query Introduction Mobile browsers did support HTML5, which opened How we communicate chemical information is increas- the door to web applications built with only HTML, ingly technology driven. Learning management systems, CSS and JavaScript (JS), such as the ChemDoodle Web virtual classrooms and MOOCs are a few examples where Components. chemistry educators need forward compatible tools for digital natives. Companies that implement emerg- Review ing web technologies can find efficiencies and benefit The ChemDoodle Web Components technology stack from competitive advantages. The first chemical graph- and features ics toolkit for the web, MDL Chime, was introduced in The ChemDoodle Web Components library, released in 1996 [1]. Based on the molecular visualization program 2009, is the first chemistry toolkit for structure viewing RasMol, Chime was developed as a plugin for Netscape and editing that is originally built using only web stand- and later for Internet Explorer and Firefox.
    [Show full text]
  • How to Modify LAMMPS: from the Prospective of a Particle Method Researcher
    chemengineering Article How to Modify LAMMPS: From the Prospective of a Particle Method Researcher Andrea Albano 1,* , Eve le Guillou 2, Antoine Danzé 2, Irene Moulitsas 2 , Iwan H. Sahputra 1,3, Amin Rahmat 1, Carlos Alberto Duque-Daza 1,4, Xiaocheng Shang 5 , Khai Ching Ng 6, Mostapha Ariane 7 and Alessio Alexiadis 1,* 1 School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK; [email protected] (I.H.S.); [email protected] (A.R.); [email protected] (C.A.D.-D.) 2 Centre for Computational Engineering Sciences, Cranfield University, Bedford MK43 0AL, UK; Eve.M.Le-Guillou@cranfield.ac.uk (E.l.G.); A.Danze@cranfield.ac.uk (A.D.); i.moulitsas@cranfield.ac.uk (I.M.) 3 Industrial Engineering Department, Petra Christian University, Surabaya 60236, Indonesia 4 Department of Mechanical and Mechatronic Engineering, Universidad Nacional de Colombia, Bogotá 111321, Colombia 5 School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; [email protected] 6 Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Malaysia; [email protected] 7 Department of Materials and Engineering, Sayens-University of Burgundy, 21000 Dijon, France; [email protected] * Correspondence: [email protected] or [email protected] (A.A.); [email protected] (A.A.) Citation: Albano, A.; le Guillou, E.; Danzé, A.; Moulitsas, I.; Sahputra, Abstract: LAMMPS is a powerful simulator originally developed for molecular dynamics that, today, I.H.; Rahmat, A.; Duque-Daza, C.A.; also accounts for other particle-based algorithms such as DEM, SPH, or Peridynamics.
    [Show full text]
  • Preparing and Analyzing Large Molecular Simulations With
    Preparing and Analyzing Large Molecular Simulations with VMD John Stone, Senior Research Programmer NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign VMD Tutorials Home Page • http://www.ks.uiuc.edu/Training/Tutorials/ – Main VMD tutorial – VMD images and movies tutorial – QwikMD simulation preparation and analysis plugin – Structure check – VMD quantum chemistry visualization tutorial – Visualization and analysis of CPMD data with VMD – Parameterizing small molecules using ffTK Overview • Introduction • Data model • Visualization • Scripting and analytical features • Trajectory analysis and visualization • High fidelity ray tracing • Plugins and user-extensibility • Large system analysis and visualization VMD – “Visual Molecular Dynamics” • 100,000 active users worldwide • Visualization and analysis of: – Molecular dynamics simulations – Lattice cell simulations – Quantum chemistry calculations – Cryo-EM densities, volumetric data • User extensible scripting and plugins • http://www.ks.uiuc.edu/Research/vmd/ Cell-Scale Modeling MD Simulation VMD – “Visual Molecular Dynamics” • Unique capabilities: • Visualization and analysis of: – Trajectories are fundamental to VMD – Molecular dynamics simulations – Support for very large systems, – “Particle” systems and whole cells now reaching billions of particles – Cryo-EM densities, volumetric data – Extensive GPU acceleration – Quantum chemistry calculations – Parallel analysis/visualization with MPI – Sequence information MD Simulations Cell-Scale
    [Show full text]
  • 2 – 3 Wall Ball Only a Jelly Ball May Be Used for This Game. 1. No Games
    One Fly Up Switch 5. After one bounce, receiving player hits the ball 1 – 2 – 3 Wall Ball Use a soccer ball only. Played in Four Square court. underhand to any another square. No “claws” (one hand Only a jelly ball may be used for this game. 1. The kicker drop kicks the ball. on top and one hand on the bottom of the ball). 2. Whoever catches the ball is the next kicker. 1. Five players play at a time, one in each corner and one 6. Players may use 1 or 2 hands, as long as it is underhand. 1. No games allowed that aim the ball at a student standing 3. Kicker gets 4 kicks and if the ball is not caught, s/he in the middle of the court. 7. Players may step out of bounds to play a ball that has against the wall. picks the next kicker. bounced in their square, but s/he may not go into 2. No more than three players in a court at one time. 2. When the middle person shouts “Switch!” in his/her another player’s square. 3. First person to court is server and number 1. No “first loudest voice, each person moves to a new corner. Knock Out 8. When one player is out, the next child in line enters at serves”. 3. The person without a corner is out and goes to the end Use 2 basketballs only for this game. the D square, and the others rotate. 4. Ball may be hit with fist, open palm, or interlocked of the line.
    [Show full text]
  • Chem3d 17.0 User Guide Chem3d 17.0
    Chem3D 17.0 User Guide Chem3D 17.0 Table of Contents Recent Additions viii Chapter 1: About Chem3D 1 Additional computational engines 1 Serial numbers and technical support 3 About Chem3D Tutorials 3 Chapter 2: Chem3D Basics 5 Getting around 5 User interface preferences 9 Background settings 10 Sample files 10 Saving to Dropbox 10 Chapter 3: Basic Model Building 12 Default settings 12 Selecting a display mode 12 Using bond tools 13 Using the ChemDraw panel 15 Using other 2D drawing packages 15 Building from text 16 Adding fragments 18 Selecting atoms and bonds 18 Atom charges 21 Object position 23 Substructures 24 Refining models 27 Copying and printing 29 Finding structures online 32 Chapter 4: Displaying Models 35 © Copyright 1998-2017 PerkinElmer Informatics Inc., All rights reserved. ii Chem3D 17.0 Display modes 35 Atom and bond size 37 Displaying dot surfaces 38 Serial numbers 38 Displaying atoms 39 Atom symbols 40 Rotating models 41 Atom and bond properties 44 Showing hydrogen bonds 45 Hydrogens and lone pairs 46 Translating models 47 Scaling models 47 Aligning models 47 Applying color 49 Model Explorer 52 Measuring molecules 59 Comparing models by overlay 62 Molecular surfaces 63 Using stereo pairs 72 Stereo enhancement 72 Setting view focus 73 Chapter 5: Building Advanced Models 74 Dummy bonds and dummy atoms 74 Substructures 75 Bonding by proximity 78 Setting measurements 78 Atom and building types 81 Stereochemistry 85 © Copyright 1998-2017 PerkinElmer Informatics Inc., All rights reserved. iii Chem3D 17.0 Building with Cartesian
    [Show full text]
  • CHEM 743 “Quantum Chemistry” S'15
    CHEM 743 \Quantum Chemistry" S'15 Instructor: Sophya Garashchuk∗ Dept of Chemistry and Biochemistry, University of South Carolina, Columbia y (Dated: January 7, 2015) Syllabus • Learning outcomes: (i) the students will gain theoretical knowledge in quantum mechanics and computer skills enabling them to use modern electronic structure codes and simulations with confidence and intelligence to better understand chemical processes; (ii) the students will be able to set up their own input files and interpret/visualize output files for standard quantum chemistry programs/packages that might be relevant to their research; (iii) the students will improve general critical thinking and problem-solving skills as well as improve their skills of independent computer-aided research through extensive use of electronically available resources. • Prerequisites: CHEM 542 or equivalent, i. e. Physical Chemistry - Quantum Mechanics and Spectroscopy • Classes will take place MW 9:40-10:55 AM at PSC 101. We will work with Maple, Q-Chem, Spartan, ADF Class materials and assignments or links to them will be posted on Blackboard Computer and software support: Jun Zhou [email protected] Ph: (803) 777-5492 College of Arts & Sciences Sumwalt College 228 • Office hours: Tue 10-11 am, GSRC 407. I am generally available Mon-Fri 9:00 AM { 5PM. You can just drop by, call or e-mail to check if I am available, or if you have difficulty reaching me, make an appointment. • The suggested general quantum chemistry textbook is \Introduction to Quantum Mechanics in Chemistry", by M. A. Ratner and G. C. Schatz, Prentice-Hall, New Jersey, 2001. Used copies are available through BN.com.
    [Show full text]
  • RMG-Py and Cantherm Documentation ⇌Release 2.0.0
    RMG RMG-Py and CanTherm Documentation ⇌Release 2.0.0 William H. Green, Richard H. West, and the RMG Team Sep 16, 2016 CONTENTS 1 RMG User’s Guide 3 1.1 Introduction...............................................3 1.2 Release Notes..............................................4 1.3 Overview of Features...........................................6 1.4 Installation................................................7 1.5 Creating Input Files........................................... 20 1.6 Example Input Files........................................... 29 1.7 Running a Job.............................................. 36 1.8 Analyzing the Output Files........................................ 37 1.9 Species Representation.......................................... 38 1.10 Group Representation.......................................... 39 1.11 Databases................................................. 39 1.12 Thermochemistry Estimation...................................... 58 1.13 Kinetics Estimation........................................... 63 1.14 Liquid Phase Systems.......................................... 65 1.15 Guidelines for Building a Model..................................... 72 1.16 Standalone Modules........................................... 73 1.17 Frequently Asked Questions....................................... 81 1.18 Credits.................................................. 82 1.19 How to Cite................................................ 82 2 CanTherm User’s Guide 83 2.1 Introduction..............................................
    [Show full text]
  • Mercury Binding to the Chelation Therapy Agents DMSA and DMPS
    Mercury Binding to the Chelation Therapy Agents DMSA and DMPS, and the Rational Design of Custom Chelators for Mercury. Graham N. George,*,† Roger C. Prince,‡ Jürgen Gailer,§ Gavin A. Buttigieg,¶ M. Bonner Denton,¶ Hugh H. Harris⊥ and Ingrid J. Pickering† Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada, ExxonMobil Research and Engineering Company, Annandale, New Jersey 08801, Boehringer Ingelheim Austria GmbH, Dr. Boehringer Gasse 5-11, 1120 Vienna, Austria, Department of Chemistry, The University of Arizona, Tucson, Arizona 85721, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia. AUTHOR EMAIL ADDRESS: [email protected] RECEIVED DATE (to be automatically inserted after your manuscript is accepted if required according to the journal that you are submitting your paper to) TITLE RUNNING HEAD: Mercury Binding to DMSA and DMPS * To whom correspondence should be addressed at Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK, S7N 5E2, Canada. Phone: 306-966-5722, Fax: 306- 966-8593, E-mail: [email protected] † University of Saskatchewan ‡ ExxonMobil Research and Engineering § Boehringer Ingelheim Austria ¶ University of Arizona ⊥ University of Sydney 1 ABSTRACT Clinical chelation therapy of mercury poisoning generally uses one or both of two drugs – meso- dimercaptosuccinic acid (DMSA), and dimercaptopropanesulfonic acid (DMPS), commercially sold as ® ® Chemet and Dimaval , respectively. We have used a combination of mercury LIII-edge X-ray absorption spectroscopy and density functional theory calculations to investigate the chemistry of interaction of mercuric ions with each of these chelation therapy drugs. We show that neither DMSA nor DMPS forms a true chelate complex with mercuric ions, and that these drugs should be considered sub-optimal for their clinical task of binding mercuric ions.
    [Show full text]