Fossil Spatangoid Echinoids of Cuba
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GROUNDWATER-QUALITY SURVEY of the SOUTH COAST AQUIFER of PUERTO RICO, APRIL 2 THROUGH MAY 30, 2007 by José M
SCIENTIFIC INVESTIGATIONS MAP 3092 Prepared in cooperation with the U.S. DEPARTMENT OF THE INTERIOR Groundwater-Quality Survey of the South Coast Aquifer PUERTO RICO DEPARTMENT OF NATURAL AND U.S. GEOLOGICAL SURVEY of Puerto Rico, April 2 through May 30, 2007 ENVIRONMENTAL RESOURCES by José M. Rodríguez and Fernando Gómez-Gómez Introduction Hydrogeologic Setting The Río Jueyes to the Río Seco Conclusions The increased potential for variability of groundwater quality in the South Coast aquifer of Puerto Rico due to The survey area in Puerto Rico is between Ponce and Arroyo and is bound to the north by the foothills of the infiltration to the aquifer. To the west of the Río Jueyes, limestone rocks border the aquifer along the north and extend beneath Dissolved solids concentrations in this area ranged from 492 to 19,900 mg/L (fig. 3). Wells 37 (936 mg/L), 38 A synoptic groundwater-quality survey was conducted by the U.S. Geological Survey in the South Coast aquifer Flury, M., and Papritz, A., 1993, Bromide in the natural environment: Occurrence and toxicity: Journal of saline water encroachment from the Caribbean Sea and from deep parts of the aquifer has become a major concern of water Cordillera Central and the Sierra de Cayey Mountains, to the south by the Caribbean Sea, to the west by the Río Portugués, the surficial deposits. The limestone is moderately permeable and, unlike the volcanic rocks, is subject to dissolution by (4,260 mg/L), and 39 (19,900 mg/L) were drilled to 50, 115, and 225 feet, respectively (table 1). -
SI Appendix for Hopkins, Melanie J, and Smith, Andrew B
Hopkins and Smith, SI Appendix SI Appendix for Hopkins, Melanie J, and Smith, Andrew B. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution. Corrections to character matrix Before running any analyses, we corrected a few errors in the published character matrix of Kroh and Smith (1). Specifically, we removed the three duplicate records of Oligopygus, Haimea, and Conoclypus, and removed characters C51 and C59, which had been excluded from the phylogenetic analysis but mistakenly remain in the matrix that was published in Appendix 2 of (1). We also excluded Anisocidaris, Paurocidaris, Pseudocidaris, Glyphopneustes, Enichaster, and Tiarechinus from the character matrix because these taxa were excluded from the strict consensus tree (1). This left 164 taxa and 303 characters for calculations of rates of evolution and for the principal coordinates analysis. Other tree scaling methods The most basic method for scaling a tree using first appearances of taxa is to make each internal node the age of its oldest descendent ("stand") (2), but this often results in many zero-length branches which are both theoretically questionable and in some cases methodologically problematic (3). Several methods exist for modifying zero-length branches. In the case of the results shown in Figure 1, we assigned a positive length to each zero-length branch by having it share time equally with a preceding, non-zero-length branch (“equal”) (4). However, we compared the results from this method of scaling to several other methods. First, we compared this with rates estimated from trees scaled such that zero-length branches share time proportionally to the amount of character change along the branches (“prop”) (5), a variation which gave almost identical results as the method used for the “equal” method (Fig. -
Crustacea: Thalassinidea, Brachyura) from Puerto Rico, United States Territory
Bulletin of the Mizunami Fossil Museum, no. 34 (2008), p. 1–15, 6 figs., 1 table. © 2008, Mizunami Fossil Museum New Cretaceous and Cenozoic Decapoda (Crustacea: Thalassinidea, Brachyura) from Puerto Rico, United States Territory Carrie E. Schweitzer1, Jorge Velez-Juarbe2, Michael Martinez3, Angela Collmar Hull1, 4, Rodney M. Feldmann4, and Hernan Santos2 1)Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. NW, North Canton, Ohio, 44720, USA <[email protected]> 2)Department of Geology, University of Puerto Rico, Mayagüez Campus, P. O. Box 9017, Mayagüez, Puerto Rico, 00681 United States Territory <[email protected]> 3)College of Marine Science, University of South Florida, 140 7th Ave. South, St. Petersburg, Florida 33701, USA <[email protected]> 4)Department of Geology, Kent State University, Kent, Ohio 44242, USA <[email protected]> Abstract A large number of recently collected specimens from Puerto Rico has yielded two new species including Palaeoxanthopsis tylotus and Eurytium granulosum, the oldest known occurrence of the latter genus. Cretaceous decapods are reported from Puerto Rico for the first time, and the Cretaceous fauna is similar to that of southern Mexico. Herein is included the first report of Pleistocene decapods from Puerto Rico, which were previously known from other Caribbean localities. The Pleistocene Cardisoma guanhumi is a freshwater crab of the family Gecarcinidae. The freshwater crab families have a poor fossil record; thus, the occurrence is noteworthy and may document dispersal of the crab by humans. Key words: Decapoda, Thalassinidea, Brachyura, Puerto Rico, Cretaceous, Paleogene, Neogene. Introduction than Eocene are not separated by these fault zones and even overlie parts of the fault zones in some areas (Jolly et al., 1998). -
Fossil Spatangoid Echinoids of Cuba
SMITHSONIAN CONTRIBUTIONS TO PALEOBIOLOGY • NUMBER 55 Fossil Spatangoid Echinoids of Cuba Porter M. Kier SMITHSONIAN INSTITUTION PRESS City of Washington 1984 ABSTRACT Kier, Porter M. Fossil Spatangoid Echinoids of Cuba. Smithsonian Contributions to Paleobiology, number 55, 336 pages, frontispiece, 45 figures, 90 plates, 6 tables, 1984.—The fossil spatangoid echinoids of Cuba are described based for the most part on specimens in the Sanchez Roig Collection. Seventy-nine species are recognized including 10 from the Late Cretaceous, 36 from the Eocene, 20 from the Oligocene-Miocene, 11 from the Miocene, and 2 of uncertain age. Three of the Eocene species are new: Schizas ter forme III, Linthia monteroae, and Antillaster albeari. A new genus of schizasterid is described, Caribbaster, with the Eocene Prenaster loveni Cotteau as the type-species. A new Asterostoma, A. pawsoni, is described from the Eocene of Jamaica. The Eocene age of the Cuban echinoid-bearing localities is confirmed by the presence outside Cuba of many ofthe same species in beds dated on other fossils. Some evidence supports the Miocene determinations, but the echinoids are of little assistance in resolving the question whether the Cuban beds attributed to the Oligocene are Oligocene or Miocene. Cuban, and in general, the Caribbean Tertiary echinoid faunas are distinct from those in Europe and the Mediterranean. Many genera are confined to the Caribbean. The Cuban fauna is also different from that found nearby in Florida. This difference may be due to a suggested greater depth of water in Cuba. Se describen los equinoideos espatangoideos de Cuba, incluyendo los es- pecimenes de la Coleccion Sanchez Roig. -
Contributions in BIOLOGY and GEOLOGY
MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY Number 51 November 29, 1982 A Compendium of Fossil Marine Families J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions in BIOLOGY and GEOLOGY Number 51 November 29, 1982 A COMPENDIUM OF FOSSIL MARINE FAMILIES J. JOHN SEPKOSKI, JR. Department of the Geophysical Sciences University of Chicago REVIEWERS FOR THIS PUBLICATION: Robert Gernant, University of Wisconsin-Milwaukee David M. Raup, Field Museum of Natural History Frederick R. Schram, San Diego Natural History Museum Peter M. Sheehan, Milwaukee Public Museum ISBN 0-893260-081-9 Milwaukee Public Museum Press Published by the Order of the Board of Trustees CONTENTS Abstract ---- ---------- -- - ----------------------- 2 Introduction -- --- -- ------ - - - ------- - ----------- - - - 2 Compendium ----------------------------- -- ------ 6 Protozoa ----- - ------- - - - -- -- - -------- - ------ - 6 Porifera------------- --- ---------------------- 9 Archaeocyatha -- - ------ - ------ - - -- ---------- - - - - 14 Coelenterata -- - -- --- -- - - -- - - - - -- - -- - -- - - -- -- - -- 17 Platyhelminthes - - -- - - - -- - - -- - -- - -- - -- -- --- - - - - - - 24 Rhynchocoela - ---- - - - - ---- --- ---- - - ----------- - 24 Priapulida ------ ---- - - - - -- - - -- - ------ - -- ------ 24 Nematoda - -- - --- --- -- - -- --- - -- --- ---- -- - - -- -- 24 Mollusca ------------- --- --------------- ------ 24 Sipunculida ---------- --- ------------ ---- -- --- - 46 Echiurida ------ - --- - - - - - --- --- - -- --- - -- - - --- -
Relative Biodiversity Trends of the Cenozoic Caribbean Region
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2003 Relative biodiversity trends of the Cenozoic Caribbean Region : investigations of possible causes and issues of scale using a biostratigraphic database of corals, echinoids, bivalves, and gastropods William Gray Dean Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Dean, William Gray, "Relative biodiversity trends of the Cenozoic Caribbean Region : investigations of possible causes and issues of scale using a biostratigraphic database of corals, echinoids, bivalves, and gastropods. " PhD diss., University of Tennessee, 2003. https://trace.tennessee.edu/utk_graddiss/5124 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by William Gray Dean entitled "Relative biodiversity trends of the Cenozoic Caribbean Region : investigations of possible causes and issues of scale using a biostratigraphic database of corals, echinoids, bivalves, and gastropods." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for -
Paleontología Mexicana ISSN (Revista Impresa): 0185-478X ISSN (Revista Electrónica): 2007-5189 Número De Certificado De Licitud De Título: No
DATOS Paleontología Mexicana • Año 3 • Número 65 (versión impresa) • Volumen 4 (versión electrónica) • Febrero 2015 Título: Paleontología Mexicana ISSN (revista impresa): 0185-478X ISSN (revista electrónica): 2007-5189 Número de certificado de licitud de título: No. 04-2012-081311041800-203 Número de reserva de derechos al uso exclusivo del título: No. 04-2012-081311041800-203 Tipo de publicación: Periódica Periodicidad: Semestral Número de publicación: Volumen 65 Número 1 Fecha de publicación: Febrero 2015 Año de inicio de la publicación: 1956 Editada por: Universidad Nacional Autónoma de México, Ciudad Universitaria Domicilio: Instituto de Geología, UNAM, Ciudad Universitaria, Circuito de la Investigación Científica, Copilco El Alto, Coyoacán, 04360 México, D.F. Paleontología Mexicana, Año 3, Número 65 impreso, Volumen 4 electrónica, febrero 2015, es una publicación semestral editada por la Universidad Nacional Autónoma de México, Ciudad Universitaria, Delegación Coyoacán, C.P. 04510, México D. F., a través del Instituto de Geología, Circuito de la Investigación Científica, Copilco, El Alto, Coyoacán, 04510 México D.F., tel. 52 55 56224312 ext 178, http://www.geologia.unam.mx/igl/, [email protected]. Editor responsable Sergio R.S. Cevallos Ferriz. Reserva de derechos al uso exclusivo No. 04- 2012-081311041800-203, ISSN: 2007-5189. Responsable de la última actualización de este número, Instituto de Geología, UNAM, Denise Viridiana Hernández Villalva, Circuito de la Investigación Científica, Copilco El Alto, Coyoacan, 04510 México D.F., fecha de última modificación, 27 de febrero del 2015. Paleontología Mexicana • Año 3 • Número 65 (versión impresa) • Volumen 4 (versión electrónica) • Febrero 2015 Crinoides del Misisípico de la región de El Bísani, 2 noroeste del Estado de Sonora, México Blanca E. -
Adaptive Radiation
.11D, 14-4 ADAPTIVE RADIATION The soldier fish (Holocentrus rubrum), a species from Indo- 8.2 Adaptive Radiation 8.5 Types of Adaptive and Progressive Radiation Pacific Oceans that colonized the Mediterranean Sea after Occupation 8.6 Beyond the Adaptive construction of the Suez Canal was completed in 1869. (Illus- 8.2 Generalizations Model of Radiation tration by Stephen Price) 8.3 Examples of 8.7 Sources of Radiation Radiations from the in Dominant Groups Fossil Record Summary 8.4 Are Radiations Predictable? 159 160 ADAPTIVE RADIATION 8.i ADAPTIVE RADIATION AND explicable by these two not sharply distinct processes plus the factor of geographic isolation which may PROGRESSIVE OCCUPATION permit essential duplication of adaptive types by dif- ferent organisms in different regions. Mayr (1963, 663) defined adaptive radiation as "evo- lutionary divergence of members of a single phyletic Therefore, after speciation, the processes of adaptive line into a series of rather different niches or adaptive radiation and progressive occupation are fundamen- zones." An adaptive zone is simply a set of similar tal to our understanding of the increase in organismal ecological niches (Futuyma 1986). Earlier, Simpson diversity and are central to our knowledge of the 1953, 223) had made an admittedly vague distinction mechanisms resulting in the richness of life on earth. between adaptive radiation and progressive occu- Simpson was right in asserting that adaptive radi- pation: ation and progressive occupation are not clearly dis- tinct processes. In fact, they result largely from scien- So far as adaptive radiation can be distinguished from tists' attempts to pigeonhole parts of nature's progressive occupation of numerous [adaptive] continuum of change. -
Redalyc.Paleobotanical Notes on Mangrove-Like Plants of Puerto Rico
Interciencia ISSN: 0378-1844 [email protected] Asociación Interciencia Venezuela Nieves-Rivera, Ángel M. Paleobotanical notes on mangrove-like plants of Puerto Rico Interciencia, vol. 32, núm. 3, marzo, 2007, pp. 175-179 Asociación Interciencia Caracas, Venezuela Available in: http://www.redalyc.org/articulo.oa?id=33912606 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative PALEOBOTANICAL NOTES ON MANGROVE-LIKE PLANTS OF PUERTO RICO Ángel M. Nieves-Rivera SUMMARY Several new trace fossils (ichnofossils) of mangrove-like plants herein described and illustrated, and a brief paleobotanical dis- are reported for Puerto Rico; all these fossils are new records cussion provided. To date, the data on ichnofossils of mangrove- for Puerto Rico. The earliest root casts in Puerto Rico were like plants are too poor to speculate on such subjects as disper- dated Late Cretaceous (probably Santonian, 85.8-83.5Ma). Ear- sal and island biogeography, especially in Puerto Rico. Most of lier paleobotanical studies in Tertiary-dated sites in Puerto the taxonomic information presented herein was collected from Rico are also discussed. Oligocene and Miocene lignitic rocks, fragmentary surveys. However, the data herein suggest that the traces of amber, and trace fossils (possibly mangrove rhizoliths) composition of fossilized mangrove-like plants is more complex also have been found in several geological formations of north- than previously suspected. Therefore, it would seem important to ern and southern Puerto Rico (e.g., Juana Díaz Formation and continue studying such paleoenvironments, in order to contribute Ponce Limestone). -
Preliminary Geologic Map of the Greater Antilles and the Virgin Islands
Preliminary Geologic Map of the Greater Antilles and the Virgin Islands By Frederic H. Wilson, Greta Orris, and Floyd Gray Pamphlet to accompany Open-File Report 2019–1036 2019 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DAVID BERNHARDT, Secretary U.S. Geological Survey James F. Reilly II, Director U.S. Geological Survey, Reston, Virginia: 2019 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Wilson, F.H., Orris, G., and Gray, F., 2019, Preliminary geologic map of the Greater Antilles and the Virgin Islands: U.S. Geological Survey Open-File Report 2019–1036, pamphlet 50 p., 2 sheets, scales 1:2,500,000 and 1:300,000, https://doi.org/10.3133/ofr20191036. ISSN 2331-1258 (online) Contents Introduction.....................................................................................................................................................1 Geologic Summary.........................................................................................................................................1 -
IIUSGS Science for a Changing World
IIUSGS science for a changing world Near-Surface Shear Wave Velocity Versus Depth Profiles, Vs30, and NEHRP Classifications For 27 Sites in Puerto Rico By Jack K. Odum, Robert A. Williams, William J. Stephenson, David M. Worley, Christa von Hillebrandt-Andrade , Eugenio Asencio, Harold Irizarry and Antonio Cameron Open-File Report 2007–1174 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia 2007 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. This report has not been reviewed for stratigraphic nomenclature. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. ii Contents Abstract.......................................................................................................................1 Introduction.................................................................................................................1 Generalized Tectonic and Geologic Setting ...............................................................2 -
Adec Preview Generated PDF File
Records of the Western Australian Museum 21: 157-165 (2002). The asterostomatid echinoid Antillaster from the Paradash Group (Middle Eocene) of the Nakhichevan Region of Azerbaijan Kenneth J. McNamaral and Oktay H. Melikov2 I Department of Earth and Planetary Sciences, Western Australian Museum, Francis Street, Perth, Western Australia 6000, Australia 2 Azerbaijan State Oil Academy, 370102 Azadlik pr. 20, Baku, Azerbaijan Abstract - The asterostomatid echinoid Antillaster has previously been recorded only from the Caribbean region and northeastern South America. Here we report the first occurrence of this genus from outside the Americas, in the Lesser Caucasus, where it has been found in Middle Eocene sediments of the Paradash Group in the Nakhichevan region of Azerbaijan. The material is described as Antillaster bagmanovi sp. novo It is the earliest known occurrence of the genus. Its presence in the Paratethys, in a region far removed from previous known occurrences, has significant palaeobiogeographic implications. Its disappearance from the Lesser Caucasus, but persistence in the Caribbean, may be linked to the contraction of the Tethys during the Cenozoic. INTRODUCTION from Eocene to Miocene sediments in Venezuela, Eocene sediments in the Nakhichevan region of Cuba, Jamaica, Bonaire, Antigua, Puerto Rico and Azerbaijan have long attracted the attention of Mexico (ICier 1984). Here we report the first record many investigators, due to their good exposure and of this genus from outside the Caribbean region, in extensive foraminiferal and molluscan fauna. The Middle Eocene sediments of the Lesser Caucasus dating of the predominantly clay-sand facies as region in Azerbaijan. This provides the earliest being Eocene is based on this rich foraminiferal and record of asterostomatid echinoids in the Paratethys molluscan fauna (Azizbekov 1961; Bagmanov 1966, region.