Common Variant Near the Endothelin Receptor Type a (EDNRA)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Characterization of BRCA1-Deficient Premalignant Tissues and Cancers Identifies Plekha5 As a Tumor Metastasis Suppressor
ARTICLE https://doi.org/10.1038/s41467-020-18637-9 OPEN Characterization of BRCA1-deficient premalignant tissues and cancers identifies Plekha5 as a tumor metastasis suppressor Jianlin Liu1,2, Ragini Adhav1,2, Kai Miao1,2, Sek Man Su1,2, Lihua Mo1,2, Un In Chan1,2, Xin Zhang1,2, Jun Xu1,2, Jianjie Li1,2, Xiaodong Shu1,2, Jianming Zeng 1,2, Xu Zhang1,2, Xueying Lyu1,2, Lakhansing Pardeshi1,3, ✉ ✉ Kaeling Tan1,3, Heng Sun1,2, Koon Ho Wong 1,3, Chuxia Deng 1,2 & Xiaoling Xu 1,2 1234567890():,; Single-cell whole-exome sequencing (scWES) is a powerful approach for deciphering intra- tumor heterogeneity and identifying cancer drivers. So far, however, simultaneous analysis of single nucleotide variants (SNVs) and copy number variations (CNVs) of a single cell has been challenging. By analyzing SNVs and CNVs simultaneously in bulk and single cells of premalignant tissues and tumors from mouse and human BRCA1-associated breast cancers, we discover an evolution process through which the tumors initiate from cells with SNVs affecting driver genes in the premalignant stage and malignantly progress later via CNVs acquired in chromosome regions with cancer driver genes. These events occur randomly and hit many putative cancer drivers besides p53 to generate unique genetic and pathological features for each tumor. Upon this, we finally identify a tumor metastasis suppressor Plekha5, whose deficiency promotes cancer metastasis to the liver and/or lung. 1 Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, SAR, China. 2 Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau, SAR, China. -
Supporting Online Material
1 2 3 4 5 6 7 Supplementary Information for 8 9 Fractalkine-induced microglial vasoregulation occurs within the retina and is altered early in diabetic 10 retinopathy 11 12 *Samuel A. Mills, *Andrew I. Jobling, *Michael A. Dixon, Bang V. Bui, Kirstan A. Vessey, Joanna A. Phipps, 13 Ursula Greferath, Gene Venables, Vickie H.Y. Wong, Connie H.Y. Wong, Zheng He, Flora Hui, James C. 14 Young, Josh Tonc, Elena Ivanova, Botir T. Sagdullaev, Erica L. Fletcher 15 * Joint first authors 16 17 Corresponding author: 18 Prof. Erica L. Fletcher. Department of Anatomy & Neuroscience. The University of Melbourne, Grattan St, 19 Parkville 3010, Victoria, Australia. 20 Email: [email protected] ; Tel: +61-3-8344-3218; Fax: +61-3-9347-5219 21 22 This PDF file includes: 23 24 Supplementary text 25 Figures S1 to S10 26 Tables S1 to S7 27 Legends for Movies S1 to S2 28 SI References 29 30 Other supplementary materials for this manuscript include the following: 31 32 Movies S1 to S2 33 34 35 36 1 1 Supplementary Information Text 2 Materials and Methods 3 Microglial process movement on retinal vessels 4 Dark agouti rats were anaesthetized, injected intraperitoneally with rhodamine B (Sigma-Aldrich) to label blood 5 vessels and retinal explants established as described in the main text. Retinal microglia were labelled with Iba-1 6 and imaging performed on an inverted confocal microscope (Leica SP5). Baseline images were taken for 10 7 minutes, followed by the addition of PBS (10 minutes) and then either fractalkine or fractalkine + candesartan 8 (10 minutes) using concentrations outlined in the main text. -
S41467-020-18249-3.Pdf
ARTICLE https://doi.org/10.1038/s41467-020-18249-3 OPEN Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain Lei Zhao1,2,17, Zhongqi Li 1,2,17, Joaquim S. L. Vong2,3,17, Xinyi Chen1,2, Hei-Ming Lai1,2,4,5,6, Leo Y. C. Yan1,2, Junzhe Huang1,2, Samuel K. H. Sy1,2,7, Xiaoyu Tian 8, Yu Huang 8, Ho Yin Edwin Chan5,9, Hon-Cheong So6,8, ✉ ✉ Wai-Lung Ng 10, Yamei Tang11, Wei-Jye Lin12,13, Vincent C. T. Mok1,5,6,14,15 &HoKo 1,2,4,5,6,8,14,16 1234567890():,; The molecular signatures of cells in the brain have been revealed in unprecedented detail, yet the ageing-associated genome-wide expression changes that may contribute to neurovas- cular dysfunction in neurodegenerative diseases remain elusive. Here, we report zonation- dependent transcriptomic changes in aged mouse brain endothelial cells (ECs), which pro- minently implicate altered immune/cytokine signaling in ECs of all vascular segments, and functional changes impacting the blood–brain barrier (BBB) and glucose/energy metabolism especially in capillary ECs (capECs). An overrepresentation of Alzheimer disease (AD) GWAS genes is evident among the human orthologs of the differentially expressed genes of aged capECs, while comparative analysis revealed a subset of concordantly downregulated, functionally important genes in human AD brains. Treatment with exenatide, a glucagon-like peptide-1 receptor agonist, strongly reverses aged mouse brain EC transcriptomic changes and BBB leakage, with associated attenuation of microglial priming. We thus revealed tran- scriptomic alterations underlying brain EC ageing that are complex yet pharmacologically reversible. -
RRBP1 (NM 001042576) Human Tagged ORF Clone Product Data
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC218816L3 RRBP1 (NM_001042576) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: RRBP1 (NM_001042576) Human Tagged ORF Clone Tag: Myc-DDK Symbol: RRBP1 Synonyms: ES/130; ES130; hES; p180; RRp Vector: pLenti-C-Myc-DDK-P2A-Puro (PS100092) E. coli Selection: Chloramphenicol (34 ug/mL) Cell Selection: Puromycin ORF Nucleotide The ORF insert of this clone is exactly the same as(RC218816). Sequence: Restriction Sites: SgfI-MluI Cloning Scheme: ACCN: NM_001042576 ORF Size: 2931 bp This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 RRBP1 (NM_001042576) Human Tagged ORF Clone – RC218816L3 OTI Disclaimer: Due to the inherent nature of this plasmid, standard methods to replicate additional amounts of DNA in E. coli are highly likely to result in mutations and/or rearrangements. Therefore, OriGene does not guarantee the capability to replicate this plasmid DNA. Additional amounts of DNA can be purchased from OriGene with batch-specific, full-sequence verification at a reduced cost. Please contact our customer care team at [email protected] or by calling 301.340.3188 option 3 for pricing and delivery. The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. -
DLC2/Stard13 Plays a Role of a Tumor Suppressor in Astrocytoma
ONCOLOGY REPORTS 28: 511-518, 2012 DLC2/StarD13 plays a role of a tumor suppressor in astrocytoma SALLY EL-SITT1, BASSEM D. KHALIL1, SAMER HANNA1, MARWAN EL-SABBAN2, NAJLA FAKHREDDINE3 and MIRVAT EL-SIBAI1 1Department of Natural Sciences, The Lebanese American University, Beirut 1102 2801; 2Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, The American University of Beirut, Beirut; 3Department of Pathology, Hammoud Hospital, Saida, Lebanon Received January 17, 2012; Accepted March 8, 2012 DOI: 10.3892/or.2012.1819 Abstract. Astrocytomas are tumors occurring in young adult- system classifies the astrocytic tumors into four grades: grade I hood. Astrocytic tumors can be classified into four grades (pilocytic astrocytoma), grade II (diffuse astrocytoma) with according to histologic features: grades I, II, III and grade IV. cytological atypia alone, grade III (anaplastic astrocytoma) Malignant tumors, those of grades III and IV, are characterized showing anaplasia and mitotic activity in addition and grade IV by uncontrolled proliferation, which is known to be regulated by (glioblastoma) presenting microvascular proliferation and/ the family of Rho GTPases. StarD13, a GAP for Rho GTPases, or necrosis (4). Malignant gliomas are those of grades III and has been described as a tumor suppressor in hepatocellular IV (5). Glioblastomas account for at least 80% of malignant carcinoma. In the present study, IHC analysis on grades I-IV gliomas (6). brain tissues from patients showed StarD13 to be overexpressed Rho GTPases are known to be involved in the stimulation in grades III and IV astrocytoma tumors when compared to of cell cycle progression. The family of Rho GTPases contains grades I and II. -
Loss of Conserved Ubiquitylation Sites in Conserved Proteins During Human Evolution
INTERNATIONAL JOURNAL OF MOleCular meDICine 42: 2203-2212, 2018 Loss of conserved ubiquitylation sites in conserved proteins during human evolution DONGBIN PARK, CHUL JUN GOH, HYEIN KIM, JI SEOK LEE and YOONSOO HAHN Department of Life Science, Chung‑Ang University, Seoul 06974, Republic of Korea Received January 30, 2018; Accepted July 6, 2018 DOI: 10.3892/ijmm.2018.3772 Abstract. Ubiquitylation of lysine residues in proteins serves Introduction a pivotal role in the efficient removal of misfolded or unused proteins and in the control of various regulatory pathways Ubiquitylation, in which the highly conserved 76‑residue poly- by monitoring protein activity that may lead to protein peptide ubiquitin is covalently attached to a lysine residue of degradation. The loss of ubiquitylated lysines may affect substrate proteins, mediates the targeted destruction of ubiq- the ubiquitin‑mediated regulatory network and result in the uitylated proteins by the ubiquitin‑proteasome system (1‑4). emergence of novel phenotypes. The present study analyzed The ubiquitin‑mediated protein degradation pathway serves a mouse ubiquitylation data and orthologous proteins from crucial role in the efficient and specific removal of misfolded 62 mammals to identify 193 conserved ubiquitylation sites from proteins and certain key regulatory proteins (5,6). Ubiquitin 169 proteins that were lost in the Euarchonta lineage leading and other ubiquitin‑like proteins, including autophagy‑related to humans. A total of 8 proteins, including betaine homo- protein 8, Ubiquitin‑like -
STARD13 Antibody(Center) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # Ap19692c
10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 STARD13 Antibody(Center) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP19692c Specification STARD13 Antibody(Center) - Product Information Application WB,E Primary Accession Q9Y3M8 Other Accession NP_443083.1, NP_821074.1, NP_821075.1 Reactivity Human Host Rabbit Clonality Polyclonal Isotype Rabbit Ig Calculated MW 124967 Antigen Region 544-573 STARD13 Antibody(Center) - Additional Information STARD13 Antibody (Center) (Cat. #AP19692c) western blot analysis in K562 cell line lysates (35ug/lane).This Gene ID 90627 demonstrates the STARD13 antibody Other Names detected the STARD13 protein (arrow). StAR-related lipid transfer protein 13, 46H232, Deleted in liver cancer 2 protein, DLC-2, Rho GTPase-activating protein, STARD13 Antibody(Center) - Background START domain-containing protein 13, StARD13, STARD13, DLC2, GT650 This gene encodes a protein that contains a sterile alpha Target/Specificity motif domain in the N-terminus, an This STARD13 antibody is generated from ATP/GTP-binding motif, a rabbits immunized with a KLH conjugated GTPase-activating protein domain, and a synthetic peptide between 544-573 amino STAR-related lipid transfer acids from the Central region of human domain in the C-terminus. The gene is located STARD13. in a region of chromosome 13 that has loss of heterozygosity Dilution in hepatic cancer. At WB~~1:1000 least three alternatively spliced transcript variants have been Format described for this gene. Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This STARD13 Antibody(Center) - References antibody is purified through a protein A column, followed by peptide affinity Bailey, S.D., et al. -
Pan-Cancer Landscape of Homologous Recombination Deficiency
bioRxiv preprint doi: https://doi.org/10.1101/2020.01.13.905026; this version posted January 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Pan-cancer landscape of homologous recombination deficiency Luan Nguyen1, John Martens2,3, Arne Van Hoeck1,$, Edwin Cuppen1,4,$, * 1 Center for Molecular Medicine and Oncode Institute, UMC Utrecht, The Netherlands 2 Erasmus Medical Center, Rotterdam, The Netherlands 3 Center for Personalized Cancer Treatment, Rotterdam, The Netherlands 4 Hartwig Medical Foundation, Amsterdam, The Netherlands $ contributed equally, joint last author * correspondence to [email protected] Abstract Homologous recombination deficiency (HRD) results in impaired double strand break repair and is a frequent driver of tumorigenesis. Here, we used a machine learning approach to develop a sensitive pan-cancer Classifier of HOmologous Recombination Deficiency (CHORD). CHORD employs genome- wide genomic footprints of somatic mutations characteristic for HRD and that discriminates BRCA1- and BRCA2-subtypes. Analysis of a metastatic pan-cancer cohort of 3,504 patients revealed HRD to occur at a frequency of 6% with highest rates for ovarian cancer (30%), comparable frequencies for breast, pancreatic and prostate cancer (12-13%) and incidental cases in other cancer types. Ovarian and breast cancer were equally driven by BRCA1- and BRCA2-type HRD, whereas for prostate, pancreatic and urinary tract cancers BRCA2-type HRD was predominant. Biallelic inactivation of BRCA1, BRCA2, RAD51C and PALB2 were found as the most common genetic causes of HRD (60% of all CHORD-HRD cases), with RAD51C and PALB2 inactivation resulting in BRCA2-type HRD. -
Discovery and Systematic Characterization of Risk Variants and Genes For
medRxiv preprint doi: https://doi.org/10.1101/2021.05.24.21257377; this version posted June 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . 1 Discovery and systematic characterization of risk variants and genes for 2 coronary artery disease in over a million participants 3 4 Krishna G Aragam1,2,3,4*, Tao Jiang5*, Anuj Goel6,7*, Stavroula Kanoni8*, Brooke N Wolford9*, 5 Elle M Weeks4, Minxian Wang3,4, George Hindy10, Wei Zhou4,11,12,9, Christopher Grace6,7, 6 Carolina Roselli3, Nicholas A Marston13, Frederick K Kamanu13, Ida Surakka14, Loreto Muñoz 7 Venegas15,16, Paul Sherliker17, Satoshi Koyama18, Kazuyoshi Ishigaki19, Bjørn O Åsvold20,21,22, 8 Michael R Brown23, Ben Brumpton20,21, Paul S de Vries23, Olga Giannakopoulou8, Panagiota 9 Giardoglou24, Daniel F Gudbjartsson25,26, Ulrich Güldener27, Syed M. Ijlal Haider15, Anna 10 Helgadottir25, Maysson Ibrahim28, Adnan Kastrati27,29, Thorsten Kessler27,29, Ling Li27, Lijiang 11 Ma30,31, Thomas Meitinger32,33,29, Sören Mucha15, Matthias Munz15, Federico Murgia28, Jonas B 12 Nielsen34,20, Markus M Nöthen35, Shichao Pang27, Tobias Reinberger15, Gudmar Thorleifsson25, 13 Moritz von Scheidt27,29, Jacob K Ulirsch4,11,36, EPIC-CVD Consortium, Biobank Japan, David O 14 Arnar25,37,38, Deepak S Atri39,3, Noël P Burtt4, Maria C Costanzo4, Jason Flannick40, Rajat M 15 Gupta39,3,4, Kaoru Ito18, Dong-Keun Jang4, -
The DNA Sequence and Comparative Analysis of Human Chromosome 20
articles The DNA sequence and comparative analysis of human chromosome 20 P. Deloukas, L. H. Matthews, J. Ashurst, J. Burton, J. G. R. Gilbert, M. Jones, G. Stavrides, J. P. Almeida, A. K. Babbage, C. L. Bagguley, J. Bailey, K. F. Barlow, K. N. Bates, L. M. Beard, D. M. Beare, O. P. Beasley, C. P. Bird, S. E. Blakey, A. M. Bridgeman, A. J. Brown, D. Buck, W. Burrill, A. P. Butler, C. Carder, N. P. Carter, J. C. Chapman, M. Clamp, G. Clark, L. N. Clark, S. Y. Clark, C. M. Clee, S. Clegg, V. E. Cobley, R. E. Collier, R. Connor, N. R. Corby, A. Coulson, G. J. Coville, R. Deadman, P. Dhami, M. Dunn, A. G. Ellington, J. A. Frankland, A. Fraser, L. French, P. Garner, D. V. Grafham, C. Grif®ths, M. N. D. Grif®ths, R. Gwilliam, R. E. Hall, S. Hammond, J. L. Harley, P. D. Heath, S. Ho, J. L. Holden, P. J. Howden, E. Huckle, A. R. Hunt, S. E. Hunt, K. Jekosch, C. M. Johnson, D. Johnson, M. P. Kay, A. M. Kimberley, A. King, A. Knights, G. K. Laird, S. Lawlor, M. H. Lehvaslaiho, M. Leversha, C. Lloyd, D. M. Lloyd, J. D. Lovell, V. L. Marsh, S. L. Martin, L. J. McConnachie, K. McLay, A. A. McMurray, S. Milne, D. Mistry, M. J. F. Moore, J. C. Mullikin, T. Nickerson, K. Oliver, A. Parker, R. Patel, T. A. V. Pearce, A. I. Peck, B. J. C. T. Phillimore, S. R. Prathalingam, R. W. Plumb, H. Ramsay, C. M. -
Effect of Stard13 on Colorectal Cancer Proliferation, Motility and Invasion
ONCOLOGY REPORTS 31: 505-515, 2014 Effect of StarD13 on colorectal cancer proliferation, motility and invasion ANITA NASRALLAH, BECHARA SAYKALI, SALEH AL DIMASSI, NATHALIE KHOURY, SAMER HANNA and MIRVAT EL-SIBAI Department of Natural Sciences, Lebanese American University, Beirut 1102 2801, Lebanon Received September 19, 2013; Accepted October 29, 2013 DOI: 10.3892/or.2013.2861 Abstract. Colon cancer is a cancer of the epithelial cells Introduction lining the colon. It is mainly divided into different stages according to the invasiveness and metastatic ability of the Colorectal cancer is the second most commonly diagnosed tumor. Many mutations are acquired which leads to the cancer in females and the third in males (1). There are several development of this malignancy. These occur in entities that causes for the onset of colorectal cancers, which are currently greatly affect the cell cycle, cell signaling pathways and cell more effectively diagnosed and classified according to several motility, which all involve the action of Rho GTPases. The criteria. Consistently, different treatments and prognostic protein of interest in the present study was DLC2, also known measures are currently used to successfully or attempt to cure as StarD13 or START-GAP2, a GTPase-activating protein this type of cancer (2). Colorectal cancer originates from the (GAP) for Rho and Cdc42. Literature data indicate that this epithelial lining, most often as a consequence of mutations in protein is considered a tumor-suppressor in hepatocellular the Wnt signaling pathway, in tumor suppressors, in apoptotic carcinoma. Previous research in our laboratory confirmed genes and oncogenes (3). Signs and symptoms of colorectal StarD13 as a tumor suppressor in astrocytoma and in breast cancer, as well as its treatment, greatly depend on its location cancer. -
Transcriptomic Causal Networks Identified Patterns of Differential Gene Regulation in Human Brain from Schizophrenia Cases Versus Controls
Transcriptomic Causal Networks identified patterns of differential gene regulation in human brain from Schizophrenia cases versus controls Akram Yazdani1, Raul Mendez-Giraldez2, Michael R Kosorok3, Panos Roussos1,4,5 1Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA 2Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, NC, USA 3Department of Biostatistics, University of North Carolina at Chapel Hill, NC, USA 4Department of Psychiatry and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA 5Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, New York, 10468, USA Abstract Common and complex traits are the consequence of the interaction and regulation of multiple genes simultaneously, which work in a coordinated way. However, the vast majority of studies focus on the differential expression of one individual gene at a time. Here, we aim to provide insight into the underlying relationships of the genes expressed in the human brain in cases with schizophrenia (SCZ) and controls. We introduced a novel approach to identify differential gene regulatory patterns and identify a set of essential genes in the brain tissue. Our method integrates genetic, transcriptomic, and Hi-C data and generates a transcriptomic-causal network. Employing this approach for analysis of RNA-seq data from CommonMind Consortium, we identified differential regulatory patterns for SCZ cases and control groups to unveil the mechanisms that control the transcription of the genes in the human brain. Our analysis identified modules with a high number of SCZ-associated genes as well as assessing the relationship of the hubs with their down-stream genes in both, cases and controls.