Cercospora Solani-Betacei Fungal Planet Description Sheets 331

Total Page:16

File Type:pdf, Size:1020Kb

Cercospora Solani-Betacei Fungal Planet Description Sheets 331 330 Persoonia – Volume 41, 2018 Cercospora solani-betacei Fungal Planet description sheets 331 Fungal Planet 826 – 13 December 2018 Cercospora solani-betacei B.W. Ferreira & R.W. Barreto, sp. nov. Etymology. Referring to the host, Solanum betaceum, from which it was Notes — A Cercospora sp. has been reported on Cyphoman­ described. dra betacea (= S. betaceum) in Malawi (Peregrine & Siddiqi Classification — Mycosphaerellaceae, Capnodiales, Dothi­ 1972) and Zimbabwe (Whiteside 1966). Other records of Cerco­ deomycetes. spora spp. on members of Solanum spp. are: Cerco spora apii, C. canescens, C. cyperacearum, C. lanugiflori, C. physalidis, Lesion on living leaves, starting as small necrotic dots, becom- C. puyana, C. solanacea, C. solani, C. solanicola, C. solanigena ing sub-circular, to irregular, 5–15 mm diam, brown, with dark (Farr & Rossman 2018). The morphology of the Cercospora brown margins, coalescing and leading to extensive blight. on tree tomato was similar to that of species belonging to the Internal mycelium indistinct. Stromata reduced to few angular C. apii complex (Groenewald et al. 2013). A BLASTn search on cells, 12–25 × 35–55 μm. Conidiophores predominantly hypo- GenBank indicated a considerable similarity of C. solani­betacei phyllous, rarely epiphyllous, in fascicles of 5–22 conidiophores, to other species belonging to Cercospora. A concatenated sub-cylindrical, geniculate, 100–172 × 4–5 μm, 3–7-septate, phylogenetic tree was constructed with ITS, cmdA and actA unbranched, pale olivaceous brown, smooth. Conidiogenous and, the combined result clearly supported S. betaceum as a cells terminal, subcylindrical, sympodial, sub-hyaline, 15–65 distinct species. × 3–5 μm. Conidiogenous loci conspicuous, 2–3 μm diam, Koch’s postulates were performed and the pathogenicity of the strongly thickened, darkened. Conidia obclavate to subcylindri- fungus to S. betaceum was demonstrated. cal, straight to slightly curved, 47–130 × 3–5 μm, apex rounded to subacute, base truncate, 3–12-septate, guttulate, hyaline, smooth. Culture characteristics — Slow-growing (45 mm in PDA and 35 mm in PCA, after 15 d) at 25 °C. Colony sub-umbonate, edge entire, aerial mycelium dense and felty, white; in PDA radially sulcate. Reverse rosy buff with concentric haloes olivaceous. Sporulation absent. Typus. BRAZIL, Minas Gerais, Antônio Carlos, Dr. Sá Fortes, on living leaves of Solanum betaceum (tree tomato), 10 June 2017, B.W. Ferreira (holotype VIC 44319, ex-type culture COAD 2293, ITS, LSU, cmdA and actA 1 Cercospora solani CCTU 1043 sequences GenBank MH223464, MH700245, MH428037 and MH445457, Cercospora solani CCTU 1050 MycoBank MB826812). 1 Cercospora aff. canescens CBS 111133 1 Cercospora aff. canescens CBS 111134 Cercospora cf. nicotianae CBS 131.32 1 0.63 Cercospora cf. nicotianae CBS 570.69 1 Cercospora cf. physalidis CBS 765.79 Cercospora apii CBS 110813 0.88 Cercospora apii CPC 5260 1 1 Cercospora asparagi AS16 01 0.78 Cercospora asparagi AS16 02 Cercospora beticola CBS 116454 1 Cercospora beticola CBS 116456 0.72 Cercospora capsici CBS 118712 1 Cercospora capsici CPC 12307 0.96 Cercospora armoraciae CBS 250.67 Cercospora armoraciae CBS 555.71 1 Phylogenetic tree inferred from Bayesian analysis based on Cercospora solani-betacei COAD 2293 0.87 Cercospora zebrina CBS 112723 concatenated sequences (ITS, cmdA and actA). The analysis 0.99 was performed with 10 million generations in MrBayes v. 3.1.1. Cercospora zebrina CBS 112736 1 The Bayesian posterior probability values are indicated at the Cercospora violae CPC 5368 1 0.005 nodes. The tree was rooted to Cercospora zeae­maydis. The Cercospora violae CBS 251.67 new species is highlighted in bold face. Cercospora zeae-maydis CBS 117755 Colour illustrations. Solanum betaceum in subsistence orchard; leaf spots on S. betaceum, Cercospora solani­betacei conidiophore fascicle and conidia. Scale bars = 40 µm (conidiophores) and 10 µm (conidia). Bruno W. Ferreira & Robert W. Barreto, Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil; e-mail: [email protected] & [email protected] © 2018 Naturalis Biodiversity Center & Westerdijk Fungal Biodiversity Institute.
Recommended publications
  • Leaf Spot on Clerodendrum X Speciosus in Brazil Caused by Pseudocercospora Clerodendricola Sp
    Tropical Plant Pathology, vol. 35, 3, 170-173 (2010) Copyright by the Brazilian Phytopathological Society. Printed in Brazil www.sbfito.com.br SHORT COMMUNICATION / COMUNICAÇÃO Leaf spot on Clerodendrum x speciosus in Brazil caused by Pseudocercospora clerodendricola sp. nov. Diogo Brito de Almeida, Davi Mesquita de Macedo & Robert W. Barreto Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil Author for correspondence: Robert W. Barreto, e-mail: [email protected] ABSTRACT Pseudocercospora clerodendricola sp. nov. is described herein. ������������������������������������������The fungus was found causing leaf spots in Clerodendrum x speciosum (bleeding heart) and its pathogenicity was demonstrated. Inoculation with culture discs placed on healthy leaves resulted in typical leaf spots appearing 30 days after inoculation. Keywords: Cercosporoids, Mycosphaerellaceae, ornamental plant, plant pathology, taxonomy, Verbenaceae. RESUMO Mancha foliar em Clerodendrum x speciosus no Brasil causada por Pseudocercospora clerodendricola sp. nov. Uma nova espécie de fungo, Pseudocercospora clerodendricola é descrita em associação com Clerodendrum x speciosum (coração sangrento). Ela teve sua patogenicidade demonstrada pela inoculação de folhas sadias com discos de micélio. Manchas foliares equivalentes às observadas no campo foram produzidas 30 dias após a inoculação das plantas com discos de cultura. Keywords: Cercosporoids, Mycosphaerellaceae, ornamental plant, plant pathology, taxonomy, Verbenaceae. Studies on fungal pathogens of ornamental plants of that disease on Clerodendrum in Brazil or elsewhere. A in Brazil have yielded numerous new disease records for study was then undertaken to clarify the etiology of this Brazil (e.g.: Silva et al, 2006; Pereira et al. 2006; Ribeiro disease. et al. 2006; Macedo & Barreto, 2008; Soares et al., 2009) Specimens were collected, immediately brought to and also novel fungal species such as Cordana versicolor the lab and examined while still fresh.
    [Show full text]
  • <I>Mycosphaerella</I> Species of Quarantine
    Persoonia 29, 2012: 101–115 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158512X661282 DNA barcoding of Mycosphaerella species of quarantine importance to Europe W. Quaedvlieg1,2, J.Z. Groenewald1, M. de Jesús Yáñez-Morales3, P.W. Crous1,2,4 Key words Abstract The EU 7th Framework Program provided funds for Quarantine Barcoding of Life (QBOL) to develop a quick, reliable and accurate DNA barcode-based diagnostic tool for selected species on the European and Mediter- EPPO ranean Plant Protection Organization (EPPO) A1/A2 quarantine lists. Seven nuclear genomic loci were evaluated Lecanosticta to determine those best suited for identifying species of Mycosphaerella and/or its associated anamorphs. These Q-bank genes included -tubulin (Btub), internal transcribed spacer regions of the nrDNA operon (ITS), 28S nrDNA (LSU), QBOL β Actin (Act), Calmodulin (Cal), Translation elongation factor 1-alpha (EF-1α) and RNA polymerase II second larg- est subunit (RPB2). Loci were tested on their Kimura-2-parameter-based inter- and intraspecific variation, PCR amplification success rate and ability to distinguish between quarantine species and closely related taxa. Results showed that none of these loci was solely suited as a reliable barcoding locus for the tested fungi. A combination of a primary and secondary barcoding locus was found to compensate for individual weaknesses and provide reliable identification. A combination of ITS with either EF-1α or Btub was reliable as barcoding loci for EPPO A1/A2-listed Mycosphaerella species. Furthermore, Lecanosticta acicola was shown to represent a species complex, revealing two novel species described here, namely L.
    [Show full text]
  • Monocyclic Components for Evaluating Disease Resistance to Cercospora Arachidicola and Cercosporidium Personatum in Peanut
    Monocyclic Components for Evaluating Disease Resistance to Cercospora arachidicola and Cercosporidium personatum in Peanut by Limin Gong A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama August 6, 2016 Keywords: monocyclic components, disease resistance Copyright 2016 by Limin Gong Approved by Kira L. Bowen, Chair, Professor of Entomology and Plant Pathology Charles Y. Chen, Associate Professor of Crop, Soil and Environmental Sciences John F. Murphy, Professor of Entomology and Plant Pathology Jeffrey J. Coleman, Assisstant Professor of Entomology and Plant Pathology ABSTRACT Cultivated peanut (Arachis hypogaea L.) is an economically important crop that is produced in the United States and throughout the world. However, there are two major fungal pathogens of cultivated peanuts, and they each contribute to substantial yield losses of 50% or greater. The pathogens of these diseases are Cercospora arachidicola which causes early leaf spot (ELS), and Cercosporidium personatum which causes late leaf spot (LLS). While fungicide treatments are fairly effective for leaf spot management, disease resistance is still the best strategy. Therefore, it is important to evaluate and compare different genotypes for their disease resistance levels. The overall goal of this study was to determine resistance levels of different peanut genotypes to ELS and LLS. The peanut genotypes (Chit P7, C1001, Exp27-1516, Flavor Runner 458, PI 268868, and GA-12Y) used in this study include two genetically modified lines (Chit P7 and C1001) that over-expresses a chitinase gene. This overall goal was addressed with three specific objectives: 1) determine suitable conditions for pathogen culture and spore production in vitro; 2) determine suitable conditions for establishing infection in the greenhouse; 3) compare ELS and LLS disease reactions of young plants to those of older plants.
    [Show full text]
  • Epitypification of Cercospora Rautensis, the Causal Agent of Leaf Spot Disease on Securigera Varia, and Its First Report from Iran M
    VOLUME 3 JUNE 2019 Fungal Systematics and Evolution PAGES 157–163 doi.org/10.3114/fuse.2019.03.08 Epitypification of Cercospora rautensis, the causal agent of leaf spot disease on Securigera varia, and its first report from Iran M. Bakhshi* Department of Botany, Iranian Research Institute of Plant Protection, P.O. Box 19395-1454, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran *Corresponding author: [email protected] Key words: Abstract: Cercospora is a well-studied and important genus of plant pathogenic species responsible for leaf spots Cercospora armoraciae on a broad range of plant hosts. The lack of useful morphological traits and the high degree of variation therein complex complicate species identifications in Cercospora. Recent studies have revealed multi-gene DNA sequence data cercosporoid to be highly informative for species identification inCercospora. During the present study, Cercospora isolates leaf spot obtained from Crownvetch (Securigera varia) in Iran and Romania were subjected to an eight-gene (ITS, tef1, Mycosphaerellaceae actA, cmdA, his3, tub2, rpb2 and gapdh) analysis. By applying a polyphasic approach including morphological new epitype characteristics, host data, and molecular analyses, these isolates were identified C.as rautensis. To our knowledge, this is the first record of C. rautensis from Iran (Asia). In addition, an epitype is designated here for C. rautensis. Effectively published online: 13 March 2019. INTRODUCTION limitations of morphological characteristics. In this regard, ex- type cultures are essential for the study of Cercospora, because Editor-in-Chief CrownvetchProf. dr P.W. Crous, (Westerdijk Securigera Fungal Biodiversity varia ≡ Institute, Coronilla P.O. Box varia 85167, ), 3508 is AD a herbaceous, Utrecht, The Netherlands.
    [Show full text]
  • Species Concepts in Cercospora: Spotting the Weeds Among the Roses
    available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 75: 115–170. Species concepts in Cercospora: spotting the weeds among the roses J.Z. Groenewald1*, C. Nakashima2, J. Nishikawa3, H.-D. Shin4, J.-H. Park4, A.N. Jama5, M. Groenewald1, U. Braun6, and P.W. Crous1, 7, 8 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2Graduate School of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, Mie 514–8507, Japan; 3Kakegawa Research Center, Sakata Seed Co., 1743-2 Yoshioka, Kakegawa, Shizuoka 436-0115, Japan; 4Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea; 5Department of Agriculture, P.O. Box 326, University of Reading, Reading RG6 6AT, UK; 6Martin-Luther-Universität, Institut für Biologie, Bereich Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, 06099 Halle (Saale), Germany; 7Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; 8Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands *Correspondence: Johannes Z. Groenewald, [email protected] Abstract: The genus Cercospora contains numerous important plant pathogenic fungi from a diverse range of hosts. Most species of Cercospora are known only from their morphological characters in vivo. Although the genus contains more than 5 000 names, very few cultures and associated DNA sequence data are available. In this study, 360 Cercospora isolates, obtained from 161 host species, 49 host families and 39 countries, were used to compile a molecular phylogeny. Partial sequences were derived from the internal transcribed spacer regions and intervening 5.8S nrRNA, actin, calmodulin, histone H3 and translation elongation factor 1-alpha genes.
    [Show full text]
  • Mycosphaerella Musae and Cercospora "Non-Virulentum" from Sigatoka Leaf Spots Are Identical
    banan e Mycosphaerella musae and Cercospora "Non-Virulentum" from Sigatoka Leaf Spots Are Identical R .H . STOVE R ee e s•e•• seeese•eeeeesee e Tela Railroad C ° Mycosphaerella musae Comparaison des Mycosphaerella musa e La Lima, Cortè s and Cercospora souches de Mycosphae- y Cercospora "no Hondura s "Non-Virulentum " relia musae et de Cerco- virulenta" de Sigatoka from Sigatoka Leaf Spots spora "non virulent" son identical' Are Identical. isolées sur des nécroses de Sigatoka. ABSTRACT RÉSUM É RESUME N Cercospora "non virulentum" , Des souches de Cercospora Cercospora "no virulenta" , commonly isolated from th e "non virulentes", isolée s comunmente aislada de early streak stage of Sigatok a habituellement lorsque les estadios tempranos de Sigatoka leaf spots caused b y premières nécroses de Sigatoka , causada por Mycosphaerella Mycosphaerella musicola and dues à Mycosphaerella musicola musicola y M. fijiensis, e s M. fijiensis, is identical to et M . fijiensis, apparaissent su r identica a M. musae. Ambas M. musae . Both produce th e les feuilles, sont identiques à producen el mismo conidi o same verruculose Cercospora- celles de M. musae. Les deux entre 4 a 5 dias en agar. like conidia within 4 to 5 day s souches produisent les mêmes No se produjeron conidios on plain agar. No conidia ar e conidies verruqueuses aprè s en las hojas . Descarga s produced on banana leaves . 4 à 5 jours de culture sur de de ascosporas de M. musae Discharge of M. musa e lagar pur . Aucune conidic son mas abundantes en hoja s ascospores from massed lea f nest produite sur les feuilles infectadas con M .
    [Show full text]
  • Sizing up Septoria
    STUDIEs IN MYCOLOGY 75: 307–390. Sizing up Septoria W. Quaedvlieg1,2, G.J.M. Verkley1, H.-D. Shin3, R.W. Barreto4, A.C. Alfenas4, W.J. Swart5, J.Z. Groenewald1, and P.W. Crous1,2,6* 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; 3Utrecht University, Department of Biology, Microbiology, Padualaan 8, 3584 CH Utrecht, The Netherlands; 2Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; 3Division of Environmental Science and Ecological Engineering, Korea University, Seoul 136-701, Korea; 4Departamento de Fitopatologia, Universidade Federal de Viçosa, 36750 Viçosa, Minas Gerais, Brazil; 5Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa; 6Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands *Correspondence: Pedro W. Crous, [email protected] Abstract: Septoria represents a genus of plant pathogenic fungi with a wide geographic distribution, commonly associated with leaf spots and stem cankers of a broad range of plant hosts. A major aim of this study was to resolve the phylogenetic generic limits of Septoria, Stagonospora, and other related genera such as Sphaerulina, Phaeosphaeria and Phaeoseptoria using sequences of the the partial 28S nuclear ribosomal RNA and RPB2 genes of a large set of isolates. Based on these results Septoria is shown to be a distinct genus in the Mycosphaerellaceae, which has mycosphaerella-like sexual morphs. Several septoria-like species are now accommodated in Sphaerulina, a genus previously linked to this complex.
    [Show full text]
  • Cercosporoid Fungi of Poland Monographiae Botanicae 105 Official Publication of the Polish Botanical Society
    Monographiae Botanicae 105 Urszula Świderska-Burek Cercosporoid fungi of Poland Monographiae Botanicae 105 Official publication of the Polish Botanical Society Urszula Świderska-Burek Cercosporoid fungi of Poland Wrocław 2015 Editor-in-Chief of the series Zygmunt Kącki, University of Wrocław, Poland Honorary Editor-in-Chief Krystyna Czyżewska, University of Łódź, Poland Chairman of the Editorial Council Jacek Herbich, University of Gdańsk, Poland Editorial Council Gian Pietro Giusso del Galdo, University of Catania, Italy Jan Holeksa, Adam Mickiewicz University in Poznań, Poland Czesław Hołdyński, University of Warmia and Mazury in Olsztyn, Poland Bogdan Jackowiak, Adam Mickiewicz University, Poland Stefania Loster, Jagiellonian University, Poland Zbigniew Mirek, Polish Academy of Sciences, Cracow, Poland Valentina Neshataeva, Russian Botanical Society St. Petersburg, Russian Federation Vilém Pavlů, Grassland Research Station in Liberec, Czech Republic Agnieszka Anna Popiela, University of Szczecin, Poland Waldemar Żukowski, Adam Mickiewicz University in Poznań, Poland Editorial Secretary Marta Czarniecka, University of Wrocław, Poland Managing/Production Editor Piotr Otręba, Polish Botanical Society, Poland Deputy Managing Editor Mateusz Labudda, Warsaw University of Life Sciences – SGGW, Poland Reviewers of the volume Uwe Braun, Martin Luther University of Halle-Wittenberg, Germany Tomasz Majewski, Warsaw University of Life Sciences – SGGW, Poland Editorial office University of Wrocław Institute of Environmental Biology, Department of Botany Kanonia 6/8, 50-328 Wrocław, Poland tel.: +48 71 375 4084 email: [email protected] e-ISSN: 2392-2923 e-ISBN: 978-83-86292-52-3 p-ISSN: 0077-0655 p-ISBN: 978-83-86292-53-0 DOI: 10.5586/mb.2015.001 © The Author(s) 2015. This is an Open Access publication distributed under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the original work is properly cited.
    [Show full text]
  • มาตรการสุขอนามัยพืชในการส่งออกสินค้าเกษตร Phytosanitary Measures for the Exportation of Plant Commodities
    รายงานโครงการวิจัย มาตรการสุขอนามัยพืชในการส่งออกสินค้าเกษตร Phytosanitary measures for the exportation of plant commodities ณัฏฐพร อุทัยมงคล Natthaporn Uthaimongkol ปี พ.ศ. 2559 2 รายงานโครงการวิจัย มาตรการสุขอนามัยพืชในการส่งออกสินค้าเกษตร Phytosanitary measures for the exportation of plant commodities ณัฏฐพร อุทัยมงคล Natthaporn Uthaimongkol ปี พ.ศ. 2559 3 สารบัญ หน้า กิตติกรรมประกาศ……………………………………………………………………………………………..…….…….………4 ผู้วิจัย………………………………………………………………………………………………………………………..……….….5 บทนํา………………………………………………………………………………………………………………………..…….……6 บทคัดย่อ………………………………………………………………………………………………………………………….……7 กิจกรรมที่ 1 การศึกษามาตรการสุขอนามัยพืชในการส่งออกสินค้าเกษตรที่มีศักยภาพ กิจกรรมย่อยที่ 1.1 ศึกษามาตรการสุขอนามัยพืชในการส่งออกผักและเมล็ดพันธุ์ การทดลองที่ 1.1.1 ศึกษามาตรการสุขอนามัยพืชในการส่งออกหน่อไม้ฝรั่ง..........10 กิจกรรมย่อยที่ 1.2 ศึกษามาตรการสุขอนามัยพืชในการส่งออกผลไม้ การทดลองที่ 1.2.1 ศึกษามาตรการสุขอนามัยพืชในการส่งออกผลส้มโอ..............66 การทดลองที่ 1.2.2 ศึกษามาตรการสุขอนามัยพืชในการส่งออกผลมะพร้าวอ่อน..78 บทสรุปและข้อเสนอแนะ....................................................................................................................98 เอกสารอ้างอิง.....................................................................................................................................99 4 กิตติกรรมประกาศ ทางคณะผู้วิจัยขอขอบคุณ นายอุดร อุณหวุฒิ ที่ปรึกษากรมวิชาการเกษตร ผู้อํานวยการ สํานักวิจัยพัฒนาการอารักขาพืช ตลอดจนคณะทํางานติดตามและประเมินผลงานวิจัย ซึ่งให้ความ คิดเห็น ข้อเสนอแนะ และแนวทางในการปรับปรุงแก้ไขรายงานการวิจัย
    [Show full text]
  • Fungal Planet Description Sheets: 69–91
    Persoonia 26, 2011: 108–156 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE doi:10.3767/003158511X581723 Fungal Planet description sheets: 69–91 P.W. Crous1, J.Z. Groenewald1, R.G. Shivas2, J. Edwards3, K.A. Seifert 4, A.C. Alfenas5, R.F. Alfenas 5, T.I. Burgess 6, A.J. Carnegie 7, G.E.St.J. Hardy 6, N. Hiscock 8, D. Hüberli 6, T. Jung 6, G. Louis-Seize 4, G. Okada 9, O.L. Pereira 5, M.J.C. Stukely10, W. Wang11, G.P. White12, A.J. Young2, A.R. McTaggart 2, I.G. Pascoe3, I.J. Porter3, W. Quaedvlieg1 Key words Abstract Novel species of microfungi described in the present study include the following from Australia: Baga­ diella victoriae and Bagadiella koalae on Eucalyptus spp., Catenulostroma eucalyptorum on Eucalyptus laevopinea, ITS DNA barcodes Cercospora eremochloae on Eremochloa bimaculata, Devriesia queenslandica on Scaevola taccada, Diaporthe LSU musigena on Musa sp., Diaporthe acaciigena on Acacia retinodes, Leptoxyphium kurandae on Eucalyptus sp., novel fungal species Neofusicoccum grevilleae on Grevillea aurea, Phytophthora fluvialis from water in native bushland, Pseudocerco­ systematics spora cyathicola on Cyathea australis, and Teratosphaeria mareebensis on Eucalyptus sp. Other species include Passalora leptophlebiae on Eucalyptus leptophlebia (Brazil), Exophiala tremulae on Populus tremuloides and Dictyosporium stellatum from submerged wood (Canada), Mycosphaerella valgourgensis on Yucca sp. (France), Sclerostagonospora cycadis on Cycas revoluta (Japan), Rachicladosporium pini on Pinus monophylla (Netherlands), Mycosphaerella wachendorfiae on Wachendorfia thyrsifolia and Diaporthe rhusicola on Rhus pendulina (South Africa). Novel genera of hyphomycetes include Noosia banksiae on Banksia aemula (Australia), Utrechtiana cibiessia on Phragmites australis (Netherlands), and Funbolia dimorpha on blackened stem bark of an unidentified tree (USA).
    [Show full text]
  • Phylogenetic Analysis of Cercospora and Mycosphaerella Based on the Internal Transcribed Spacer Region of Ribosomal DNA
    Ecology and Population Biology Phylogenetic Analysis of Cercospora and Mycosphaerella Based on the Internal Transcribed Spacer Region of Ribosomal DNA Stephen B. Goodwin, Larry D. Dunkle, and Victoria L. Zismann Crop Production and Pest Control Research, U.S. Department of Agriculture-Agricultural Research Service, Department of Botany and Plant Pathology, 1155 Lilly Hall, Purdue University, West Lafayette, IN 47907. Current address of V. L. Zismann: The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850. Accepted for publication 26 March 2001. ABSTRACT Goodwin, S. B., Dunkle, L. D., and Zismann, V. L. 2001. Phylogenetic main Cercospora cluster. Only species within the Cercospora cluster analysis of Cercospora and Mycosphaerella based on the internal produced the toxin cercosporin, suggesting that the ability to produce this transcribed spacer region of ribosomal DNA. Phytopathology 91:648- compound had a single evolutionary origin. Intraspecific variation for 658. 25 taxa in the Mycosphaerella clade averaged 1.7 nucleotides (nts) in the ITS region. Thus, isolates with ITS sequences that differ by two or more Most of the 3,000 named species in the genus Cercospora have no nucleotides may be distinct species. ITS sequences of groups I and II of known sexual stage, although a Mycosphaerella teleomorph has been the gray leaf spot pathogen Cercospora zeae-maydis differed by 7 nts and identified for a few. Mycosphaerella is an extremely large and important clearly represent different species. There were 6.5 nt differences on genus of plant pathogens, with more than 1,800 named species and at average between the ITS sequences of the sorghum pathogen Cercospora least 43 associated anamorph genera.
    [Show full text]
  • Fungal Planet Description Sheets: 128–153
    Persoonia 29, 2012: 146–201 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158512X661589 Fungal Planet description sheets: 128–153 P.W. Crous1, R.G. Shivas2, M.J. Wingfield3, B.A. Summerell4, A.Y. Rossman5, J.L. Alves6, G.C. Adams7, R.W. Barreto6, A. Bell8, M.L. Coutinho9, S.L. Flory10, G. Gates11, K.R. Grice12, G.E.St.J. Hardy13, N.M. Kleczewski14, L. Lombard1, C.M.O. Longa15, G. Louis-Seize16, F. Macedo9, D.P. Mahoney8, G. Maresi17, P.M. Martin-Sanchez18, L. Marvanová19, A.M. Minnis20, L.N. Morgado21, M.E. Noordeloos21, A.J.L. Phillips22, W. Quaedvlieg1, P.G. Ryan23, C. Saiz-Jimenez18, K.A. Seifert16, W.J. Swart24, Y.P. Tan2, J.B. Tanney16, P.Q. Thu25, S.I.R. Videira1, D.M. Walker26, J.Z. Groenewald1 Key words Abstract Novel species of microfungi described in the present study include the following from Australia: Catenulo­ stroma corymbiae from Corymbia, Devriesia stirlingiae from Stirlingia, Penidiella carpentariae from Carpentaria, ITS DNA barcodes Phaeococcomyces eucalypti from Eucalyptus, Phialophora livistonae from Livistona, Phyllosticta aristolochiicola LSU from Aristolochia, Clitopilus austroprunulus on sclerophyll forest litter of Eucalyptus regnans and Toxicocladosporium novel fungal species posoqueriae from Posoqueria. Several species are also described from South Africa, namely: Ceramothyrium podo­ systematics carpi from Podocarpus, Cercospora chrysanthemoides from Chrysanthemoides, Devriesia shakazului from Aloe, Penidiella drakensbergensis from Protea, Strelitziana cliviae from Clivia
    [Show full text]