Population Genomics of Cercospora Beticola Dissertation

Total Page:16

File Type:pdf, Size:1020Kb

Population Genomics of Cercospora Beticola Dissertation Population Genomics of Cercospora beticola Dissertation In fulfillment of the requirements for the degree of “Dr. rer. nat” of the Faculty of Mathematics and Natural Sciences at the Christian Albrechts University of Kiel. Submitted by Lizel Potgieter March 2021 1 First examiner: Prof. Dr. rer. nat Eva Holtgrewe Stukenbrock Second examiner: Prof. Dr. rer. Nat. Tal Dagan Third Examiner: Prof. Dr. Irene Barnes Date of oral examination: 13th of April 2021 2 Table of Contents Summary...............................................................................................................................................5 Zusammenfassung................................................................................................................................8 General Introduction...........................................................................................................................12 Introduction....................................................................................................................................12 Domestication Processes Affecting Fungal Pathogen Evolution...................................................13 Evolutionary Theory on the Effect of Domestication on Fungal Pathogens.................................17 Plant-Pathogen Interactions During Infection...............................................................................19 Genome Evolution in Fungal Plant Pathogens..............................................................................21 Description of Model System........................................................................................................28 Beta species...............................................................................................................................28 The Ascomycete Genus Cercospora.........................................................................................32 The Molecular Interaction of Cercospora beticola and its Beta Hosts.....................................33 Beta vulgaris and Cercospora beticola as a Model System......................................................37 Scope of the Thesis.............................................................................................................................38 Chapter 1: On variant discovery in genomes of fungal plant pathogens............................................41 Abstract..........................................................................................................................................42 Introduction....................................................................................................................................43 Method Overview..........................................................................................................................46 Results and Discussion..................................................................................................................48 Perspective.....................................................................................................................................52 Acknowledgements........................................................................................................................53 References......................................................................................................................................54 Supplementary Materials for Chapter 1.........................................................................................56 Supplementary Tables...............................................................................................................56 List of Supplementary Tables Available Online........................................................................56 Population Simulation...............................................................................................................57 Short Variant Calling.................................................................................................................58 Recovery of Accessory Regions................................................................................................59 References.................................................................................................................................60 Chapter 2: Population genomics of Cercospora beticola suggests that recent host domestication has not influenced genome evolution.......................................................................................................64 Abstract..........................................................................................................................................64 Introduction....................................................................................................................................65 Methods and Materials...................................................................................................................70 Sample Collection and Clone Correction..................................................................................70 Genome Sequencing.................................................................................................................72 Quality Analysis and Read Processing......................................................................................73 Analyses of Population Structure..............................................................................................73 Analyses of Population Differentiation.....................................................................................74 Results............................................................................................................................................76 Sample Collection and Clone Correction..................................................................................76 Genome Sequencing, Quality Analysis and Read Processing..................................................80 Detection of Population Structure.............................................................................................80 Regions Differentiation the C. beticola Isolates from the UK from the Isolates from Mainland Europe and North America.......................................................................................................96 Characterising the Region on Conting CM008504.1 Located at 1.2 Mb..................................98 Characterising the FST Outlier Region on Contigs CM008499.1 and CM008502.1.................99 Discussion....................................................................................................................................103 3 Genetic Diversity of C. beticola from Sea Beet in the UK.....................................................103 Does Location of Host Domestication Have a Clear Influence on Population Structure?.....105 What Differentiates the Isolates Found on Different Hosts and at Different Locations?.......108 Conclusions and Perspectives......................................................................................................111 References....................................................................................................................................113 Supplementary Materials.............................................................................................................120 Supplementary Tables.............................................................................................................120 Supplementary Figures...........................................................................................................149 Supplementary Materials for Protocols in the Laboratory......................................................157 Scripts......................................................................................................................................159 Chapter 3: Genome content of the Cercospora genus predicts host range.......................................168 Abstract........................................................................................................................................168 Introduction..................................................................................................................................169 Methods and Materials.................................................................................................................172 Description of Cercospora Genomes......................................................................................172 Analysis of CAZymes and Effectors.......................................................................................173 Gene Family Expansions and Contractions in Cercospora....................................................174 Whole Genome Synteny Between C. beticola and C. cf. flagellaris......................................174 Results..........................................................................................................................................175 PacBio Sequencing of C. zeina...............................................................................................175 Analysis of CAZymes and Effectors.......................................................................................175 Whole Genome Synteny Between C. beticola and C. cf. flagellaris......................................180 Discussion....................................................................................................................................183
Recommended publications
  • Leaf Spot on Clerodendrum X Speciosus in Brazil Caused by Pseudocercospora Clerodendricola Sp
    Tropical Plant Pathology, vol. 35, 3, 170-173 (2010) Copyright by the Brazilian Phytopathological Society. Printed in Brazil www.sbfito.com.br SHORT COMMUNICATION / COMUNICAÇÃO Leaf spot on Clerodendrum x speciosus in Brazil caused by Pseudocercospora clerodendricola sp. nov. Diogo Brito de Almeida, Davi Mesquita de Macedo & Robert W. Barreto Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil Author for correspondence: Robert W. Barreto, e-mail: [email protected] ABSTRACT Pseudocercospora clerodendricola sp. nov. is described herein. ������������������������������������������The fungus was found causing leaf spots in Clerodendrum x speciosum (bleeding heart) and its pathogenicity was demonstrated. Inoculation with culture discs placed on healthy leaves resulted in typical leaf spots appearing 30 days after inoculation. Keywords: Cercosporoids, Mycosphaerellaceae, ornamental plant, plant pathology, taxonomy, Verbenaceae. RESUMO Mancha foliar em Clerodendrum x speciosus no Brasil causada por Pseudocercospora clerodendricola sp. nov. Uma nova espécie de fungo, Pseudocercospora clerodendricola é descrita em associação com Clerodendrum x speciosum (coração sangrento). Ela teve sua patogenicidade demonstrada pela inoculação de folhas sadias com discos de micélio. Manchas foliares equivalentes às observadas no campo foram produzidas 30 dias após a inoculação das plantas com discos de cultura. Keywords: Cercosporoids, Mycosphaerellaceae, ornamental plant, plant pathology, taxonomy, Verbenaceae. Studies on fungal pathogens of ornamental plants of that disease on Clerodendrum in Brazil or elsewhere. A in Brazil have yielded numerous new disease records for study was then undertaken to clarify the etiology of this Brazil (e.g.: Silva et al, 2006; Pereira et al. 2006; Ribeiro disease. et al. 2006; Macedo & Barreto, 2008; Soares et al., 2009) Specimens were collected, immediately brought to and also novel fungal species such as Cordana versicolor the lab and examined while still fresh.
    [Show full text]
  • <I>Mycosphaerella</I> Species of Quarantine
    Persoonia 29, 2012: 101–115 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158512X661282 DNA barcoding of Mycosphaerella species of quarantine importance to Europe W. Quaedvlieg1,2, J.Z. Groenewald1, M. de Jesús Yáñez-Morales3, P.W. Crous1,2,4 Key words Abstract The EU 7th Framework Program provided funds for Quarantine Barcoding of Life (QBOL) to develop a quick, reliable and accurate DNA barcode-based diagnostic tool for selected species on the European and Mediter- EPPO ranean Plant Protection Organization (EPPO) A1/A2 quarantine lists. Seven nuclear genomic loci were evaluated Lecanosticta to determine those best suited for identifying species of Mycosphaerella and/or its associated anamorphs. These Q-bank genes included -tubulin (Btub), internal transcribed spacer regions of the nrDNA operon (ITS), 28S nrDNA (LSU), QBOL β Actin (Act), Calmodulin (Cal), Translation elongation factor 1-alpha (EF-1α) and RNA polymerase II second larg- est subunit (RPB2). Loci were tested on their Kimura-2-parameter-based inter- and intraspecific variation, PCR amplification success rate and ability to distinguish between quarantine species and closely related taxa. Results showed that none of these loci was solely suited as a reliable barcoding locus for the tested fungi. A combination of a primary and secondary barcoding locus was found to compensate for individual weaknesses and provide reliable identification. A combination of ITS with either EF-1α or Btub was reliable as barcoding loci for EPPO A1/A2-listed Mycosphaerella species. Furthermore, Lecanosticta acicola was shown to represent a species complex, revealing two novel species described here, namely L.
    [Show full text]
  • Monocyclic Components for Evaluating Disease Resistance to Cercospora Arachidicola and Cercosporidium Personatum in Peanut
    Monocyclic Components for Evaluating Disease Resistance to Cercospora arachidicola and Cercosporidium personatum in Peanut by Limin Gong A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama August 6, 2016 Keywords: monocyclic components, disease resistance Copyright 2016 by Limin Gong Approved by Kira L. Bowen, Chair, Professor of Entomology and Plant Pathology Charles Y. Chen, Associate Professor of Crop, Soil and Environmental Sciences John F. Murphy, Professor of Entomology and Plant Pathology Jeffrey J. Coleman, Assisstant Professor of Entomology and Plant Pathology ABSTRACT Cultivated peanut (Arachis hypogaea L.) is an economically important crop that is produced in the United States and throughout the world. However, there are two major fungal pathogens of cultivated peanuts, and they each contribute to substantial yield losses of 50% or greater. The pathogens of these diseases are Cercospora arachidicola which causes early leaf spot (ELS), and Cercosporidium personatum which causes late leaf spot (LLS). While fungicide treatments are fairly effective for leaf spot management, disease resistance is still the best strategy. Therefore, it is important to evaluate and compare different genotypes for their disease resistance levels. The overall goal of this study was to determine resistance levels of different peanut genotypes to ELS and LLS. The peanut genotypes (Chit P7, C1001, Exp27-1516, Flavor Runner 458, PI 268868, and GA-12Y) used in this study include two genetically modified lines (Chit P7 and C1001) that over-expresses a chitinase gene. This overall goal was addressed with three specific objectives: 1) determine suitable conditions for pathogen culture and spore production in vitro; 2) determine suitable conditions for establishing infection in the greenhouse; 3) compare ELS and LLS disease reactions of young plants to those of older plants.
    [Show full text]
  • Gene Cluster Conservation Provides Insight Into Cercosporin Biosynthesis and Extends Production to the Genus Colletotrichum,” by Ronnie De Jonge, Malaika K
    Correction AGRICULTURAL SCIENCES Correction for “Gene cluster conservation provides insight into cercosporin biosynthesis and extends production to the genus Colletotrichum,” by Ronnie de Jonge, Malaika K. Ebert, Callie R. Huitt-Roehl, Paramita Pal, Jeffrey C. Suttle, Rebecca E. Spanner, Jonathan D. Neubauer, Wayne M. Jurick II, Karina A. Stott, Gary A. Secor, Bart P. H. J. Thomma, Yves Van de Peer, Craig A. Townsend, and Melvin D. Bolton, which was first published May 29, 2018; 10.1073/pnas.1712798115 (Proc Natl Acad Sci USA 115: E5459–E5466). The authors note that author Yves Van de Peer was in- correctly listed at affiliation aPlant-Microbe Interactions, De- partment of Biology, Science4Life, Utrecht University; and that this author’s affiliation at dBioinformatics Institute Ghent, Ghent University was incorrectly omitted. The corrected author and affiliation lines appear below. The online version has been corrected. Ronnie de Jongea,b,c,d,1,2, Malaika K. Eberte,f,g,1, Callie R. Huitt-Roehlh,1, Paramita Palh, Jeffrey C. Suttlee, Rebecca E. Spannere,f, Jonathan D. Neubauere, WayneM.JurickIIi,KarinaA.Stotte,f, Gary A. Secorf, Bart P. H. J. Thommag, Yves Van de Peerb,c,d,j,CraigA. Townsendh,2, and Melvin D. Boltone,f,2 aPlant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 3584 CH, Utrecht, The Netherlands; bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium; cVIB Center for Plant Systems Biology, B-9052 Ghent, Belgium; dBioinformatics Institute Ghent, Ghent University,
    [Show full text]
  • Epitypification of Cercospora Rautensis, the Causal Agent of Leaf Spot Disease on Securigera Varia, and Its First Report from Iran M
    VOLUME 3 JUNE 2019 Fungal Systematics and Evolution PAGES 157–163 doi.org/10.3114/fuse.2019.03.08 Epitypification of Cercospora rautensis, the causal agent of leaf spot disease on Securigera varia, and its first report from Iran M. Bakhshi* Department of Botany, Iranian Research Institute of Plant Protection, P.O. Box 19395-1454, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran *Corresponding author: [email protected] Key words: Abstract: Cercospora is a well-studied and important genus of plant pathogenic species responsible for leaf spots Cercospora armoraciae on a broad range of plant hosts. The lack of useful morphological traits and the high degree of variation therein complex complicate species identifications in Cercospora. Recent studies have revealed multi-gene DNA sequence data cercosporoid to be highly informative for species identification inCercospora. During the present study, Cercospora isolates leaf spot obtained from Crownvetch (Securigera varia) in Iran and Romania were subjected to an eight-gene (ITS, tef1, Mycosphaerellaceae actA, cmdA, his3, tub2, rpb2 and gapdh) analysis. By applying a polyphasic approach including morphological new epitype characteristics, host data, and molecular analyses, these isolates were identified C.as rautensis. To our knowledge, this is the first record of C. rautensis from Iran (Asia). In addition, an epitype is designated here for C. rautensis. Effectively published online: 13 March 2019. INTRODUCTION limitations of morphological characteristics. In this regard, ex- type cultures are essential for the study of Cercospora, because Editor-in-Chief CrownvetchProf. dr P.W. Crous, (Westerdijk Securigera Fungal Biodiversity varia ≡ Institute, Coronilla P.O. Box varia 85167, ), 3508 is AD a herbaceous, Utrecht, The Netherlands.
    [Show full text]
  • Species Concepts in Cercospora: Spotting the Weeds Among the Roses
    available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 75: 115–170. Species concepts in Cercospora: spotting the weeds among the roses J.Z. Groenewald1*, C. Nakashima2, J. Nishikawa3, H.-D. Shin4, J.-H. Park4, A.N. Jama5, M. Groenewald1, U. Braun6, and P.W. Crous1, 7, 8 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2Graduate School of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, Mie 514–8507, Japan; 3Kakegawa Research Center, Sakata Seed Co., 1743-2 Yoshioka, Kakegawa, Shizuoka 436-0115, Japan; 4Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea; 5Department of Agriculture, P.O. Box 326, University of Reading, Reading RG6 6AT, UK; 6Martin-Luther-Universität, Institut für Biologie, Bereich Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, 06099 Halle (Saale), Germany; 7Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; 8Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands *Correspondence: Johannes Z. Groenewald, [email protected] Abstract: The genus Cercospora contains numerous important plant pathogenic fungi from a diverse range of hosts. Most species of Cercospora are known only from their morphological characters in vivo. Although the genus contains more than 5 000 names, very few cultures and associated DNA sequence data are available. In this study, 360 Cercospora isolates, obtained from 161 host species, 49 host families and 39 countries, were used to compile a molecular phylogeny. Partial sequences were derived from the internal transcribed spacer regions and intervening 5.8S nrRNA, actin, calmodulin, histone H3 and translation elongation factor 1-alpha genes.
    [Show full text]
  • New Host Record of Cercospora Apii S Lat. on Medicinal Plant: Diplocyclos Palmatus( Linn.) Jeffery from India
    Journal on New Biological Reports 1(1): 09-11(2012) New Host record of Cercospora apii s lat. on medicinal plant: Diplocyclos palmatus( Linn.) Jeffery from India Archana Singh* and N.K. Dubey Center of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005 (Received on: 31May, 2012; accepted on:28 June, 2012) ABSTRACT Description and illustrations are provided for new host record of Cercospora apii s lat on living leaves of Diplocyclos palmatus (Linn.) Jeffery (Cucurbitaceae). Key words : Medicinal pant, foliar fungi, hyphomycetes, morphotaxonomy, Cercospora. INTRODUCTION species: C. penicillata (Ces.) Fresen) is one of the largest genera of hyphomycetes (Crous& Braun, Diplocyclospalmate (L.) Jeffery is a slender, much 2003). The name Cercospora, which is derived from branched tendril climber distributed throughout India a combination of greek word “kerkok”(tail) and on hedges and bushes. This is of variously economic “sporos”(seed), designates the filiform conidia of the and medicinal value as it is used in various ayurvedic fungus (Crous & Braun 2003). The teleomorph state and ethnomedicinal preparations. This plant is a weak is MycosphaerellaJohanson (Dothidiomycetes, stemmed branched, tendril climber having simple, Capnodiales, Mycosphaerellaceae), a genus that has alternate membranous, 5 lobed leaves which are been liked with at least 30 different coelomycetes or scrabid above and smooth beneath. Leaves are deeply hyphomycetesanamorph genera (Crous et al . 2007). cordate at the base with sinuate to sub serrate margin. The genus cercospora is one of the largest Flowers are yellow, unisexual, male flowers in small genera of hyphomycetes. In his monograph of genus fascicles and female solitary. Fruits are globose, Cercospora Fresen., Chupp accepted 1419 species.
    [Show full text]
  • Expression Analysis of the Expanded Cercosporin Gene Cluster In
    EXPRESSION ANALYSIS OF THE EXPANDED CERCOSPORIN GENE CLUSTER IN CERCOSPORA BETICOLA A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Karina Anne Stott In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Department: Plant Pathology May 2018 Fargo, North Dakota North Dakota State University Graduate School Title Expression Analysis of the Expanded Cercosporin Gene Cluster in Cercospora beticola By Karina Anne Stott The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of MASTER OF SCIENCE SUPERVISORY COMMITTEE: Dr. Gary Secor Chair Dr. Melvin Bolton Dr. Zhaohui Liu Dr. Stuart Haring Approved: 5-18-18 Dr. Jack Rasmussen Date Department Chair ABSTRACT Cercospora leaf spot is an economically devastating disease of sugar beet caused by the fungus Cercospora beticola. It has been demonstrated recently that the C. beticola CTB cluster is larger than previously recognized and includes novel genes involved in cercosporin biosynthesis and a partial duplication of the CTB cluster. Several genes in the C. nicotianae CTB cluster are known to be regulated by ‘feedback’ transcriptional inhibition. Expression analysis was conducted in wild type (WT) and CTB mutant backgrounds to determine if feedback inhibition occurs in C. beticola. My research showed that the transcription factor CTB8 which regulates the CTB cluster expression in C. nicotianae also regulates gene expression in the C. beticola CTB cluster. Expression analysis has shown that feedback inhibition occurs within some of the expanded CTB cluster genes.
    [Show full text]
  • “Estudio De La Sensibilidad a Fungicidas De Aislados De Cercospora Sojina Hara, Agente Causal De La Mancha Ojo De Rana En El Cultivo De Soja”
    “Estudio de la sensibilidad a fungicidas de aislados de Cercospora sojina Hara, agente causal de la mancha ojo de rana en el cultivo de soja” Tesis presentada para optar al título de Magister de la Universidad de Buenos Aires. Área Producción Vegetal, orientación en Protección Vegetal María Belén Bravo Ingeniera Agrónoma, Universidad Nacional de San Luis – 2011 Especialista en Protección Vegetal, Universidad Católica de Córdoba - 2015 INTA Estación Experimental Agropecuaria, San Luis Fecha de defensa: 5 de abril de 2019 Escuela para Graduados Ing. Agr. Alberto Soriano Facultad de Agronomía – Universidad de Buenos Aires COMITÉ CONSEJERO Director de tesis Marcelo Aníbal Carmona Ingeniero Agrónomo (Universidad de Buenos Aires) Magister Scientiae en Producción Vegetal (Universidad de Buenos Aires) Doctor en Ciencias Agropecuarias (Universidad Nacional de La Plata) Co-director Alicia Luque Bioquímica (Universidad Nacional de Rosario) Profesora de Enseñanza Superior (Universidad de Concepción del Uruguay) Doctora (Universidad Nacional de Rosario) Consejero de Estudios Diego Martínez Alvarez Ingeniero Agrónomo (Universidad Nacional de San Luis) Magister en Ciencias Agropecuarias. Mención en Producción Vegetal (Universidad Nacional de Río Cuarto) JURADO EVALUADOR Dr. Leonardo Daniel Ploper Dra. Cecilia Inés Mónaco Ing. Agr. MSci. Olga Susana Correa iii DEDICATORIA A mi compañero de caminos Juan Pablo Odetti A Leti, mi amiga guerrera… iv AGRADECIMIENTOS Al sistema de becas de INTA y la EEA INTA San Luis por permitirme capacitarme y realizar mis estudios de posgrado. A los proyectos PRET SUR, PRET NO y sus coordinadores Hugo Bernasconi y Jorge Mercau por la ayuda recibida en todo momento. Al director de tesis Marcelo Carmona, co directora Alicia Luque y consejero de estudios Diego Martínez Alvarez, por las enseñanzas recibidas.
    [Show full text]
  • <I>Cercospora Sojina</I>
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2017 Genetic analysis of field populations of the plant pathogens Cercospora sojina, Corynespora cassiicola and Phytophthora colocasiae Sandesh Kumar Shrestha University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Plant Pathology Commons Recommended Citation Shrestha, Sandesh Kumar, "Genetic analysis of field populations of the plant pathogens Cercospora sojina, Corynespora cassiicola and Phytophthora colocasiae. " PhD diss., University of Tennessee, 2017. https://trace.tennessee.edu/utk_graddiss/4650 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Sandesh Kumar Shrestha entitled "Genetic analysis of field populations of the plant pathogens Cercospora sojina, Corynespora cassiicola and Phytophthora colocasiae." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Entomology and Plant Pathology. Heather M. Young-Kelly,
    [Show full text]
  • Molecular Basis of Pathogenesis and Host Determination in Cercospora
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 12-2018 Molecular Basis of Pathogenesis and Host Determination in Cercospora sojina: from Phenotypic to Genotypic Patterns Wagner Calegari Fagundes University of Arkansas, Fayetteville Follow this and additional works at: https://scholarworks.uark.edu/etd Part of the Agronomy and Crop Sciences Commons, and the Plant Pathology Commons Recommended Citation Calegari Fagundes, Wagner, "Molecular Basis of Pathogenesis and Host Determination in Cercospora sojina: from Phenotypic to Genotypic Patterns" (2018). Theses and Dissertations. 3020. https://scholarworks.uark.edu/etd/3020 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Molecular Basis of Pathogenesis and Host Determination in Cercospora sojina: from Phenotypic to Genotypic Patterns A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Plant Pathology by Wagner Calegari Fagundes Pontifical Catholic University of Rio Grande do Sul Bachelor of Science in Biology, 2016 December 2018 University of Arkansas This thesis is approved for recommendation to the Graduate Council. __________________________________ Burton H. Bluhm, Ph.D. Thesis Director _________________________________ John Rupe, Ph.D. Committee Member __________________________________ Ainong Shi, Ph.D. Committee Member Abstract Frogeye leaf spot (FLS), caused by Cercospora sojina, is an important and recurrent disease of soybean in many production regions. Genetic resistance is potentially one of the most cost-effective and sustainable strategies to control FLS. However, C. sojina has already demonstrated the ability to overcome resistance conveyed by single R-genes (resistance genes) of soybeans, followed by the emergence of new physiological races.
    [Show full text]
  • Cercosporoid Fungi of Poland Monographiae Botanicae 105 Official Publication of the Polish Botanical Society
    Monographiae Botanicae 105 Urszula Świderska-Burek Cercosporoid fungi of Poland Monographiae Botanicae 105 Official publication of the Polish Botanical Society Urszula Świderska-Burek Cercosporoid fungi of Poland Wrocław 2015 Editor-in-Chief of the series Zygmunt Kącki, University of Wrocław, Poland Honorary Editor-in-Chief Krystyna Czyżewska, University of Łódź, Poland Chairman of the Editorial Council Jacek Herbich, University of Gdańsk, Poland Editorial Council Gian Pietro Giusso del Galdo, University of Catania, Italy Jan Holeksa, Adam Mickiewicz University in Poznań, Poland Czesław Hołdyński, University of Warmia and Mazury in Olsztyn, Poland Bogdan Jackowiak, Adam Mickiewicz University, Poland Stefania Loster, Jagiellonian University, Poland Zbigniew Mirek, Polish Academy of Sciences, Cracow, Poland Valentina Neshataeva, Russian Botanical Society St. Petersburg, Russian Federation Vilém Pavlů, Grassland Research Station in Liberec, Czech Republic Agnieszka Anna Popiela, University of Szczecin, Poland Waldemar Żukowski, Adam Mickiewicz University in Poznań, Poland Editorial Secretary Marta Czarniecka, University of Wrocław, Poland Managing/Production Editor Piotr Otręba, Polish Botanical Society, Poland Deputy Managing Editor Mateusz Labudda, Warsaw University of Life Sciences – SGGW, Poland Reviewers of the volume Uwe Braun, Martin Luther University of Halle-Wittenberg, Germany Tomasz Majewski, Warsaw University of Life Sciences – SGGW, Poland Editorial office University of Wrocław Institute of Environmental Biology, Department of Botany Kanonia 6/8, 50-328 Wrocław, Poland tel.: +48 71 375 4084 email: [email protected] e-ISSN: 2392-2923 e-ISBN: 978-83-86292-52-3 p-ISSN: 0077-0655 p-ISBN: 978-83-86292-53-0 DOI: 10.5586/mb.2015.001 © The Author(s) 2015. This is an Open Access publication distributed under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the original work is properly cited.
    [Show full text]