List of Birds Protected in Canada Under the Migratory Birds Convention Act, 1994
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PDF/36 2/36 2 175-181.Pdf Stenhouse
VOLUME 15, ISSUE 1, ARTICLE 11 D'Entremont, K. J. N., L. Minich Zitske, A. J. Gladwell, N. K. Elliott, R. A. Mauck, and R. A. Ronconi. 2020. Breeding population decline and associations with nest site use of Leach’s Storm-Petrels on Kent Island, New Brunswick from 2001 to 2018. Avian Conservation and Ecology 15(1):11. https://doi.org/10.5751/ACE-01526-150111 Copyright © 2020 by the author(s). Published here under license by the Resilience Alliance. Research Paper Breeding population decline and associations with nest site use of Leach’s Storm-Petrels on Kent Island, New Brunswick from 2001 to 2018 Kyle J. N. d'Entremont 1,2, Laura Minich Zitske 3,4, Alison J. Gladwell 1, Nathan K. Elliott 3,5, Robert A. Mauck 6 and Robert A. Ronconi 7,8 1Dalhousie University, Canada, 2Memorial University of Newfoundland, Canada, 3Bowdoin College, USA, 4Maine Audubon, USA, 5Point Blue Conservation Science, USA, 6Kenyon College, USA, 7Canadian Wildlife Service, Environment and Climate Change Canada, Dartmouth, NS, Canada, 8Department of Biology, Dalhousie University, Halifax, NS, Canada ABSTRACT. Leach’s Storm-Petrels (Hydrobates leucorhous) are burrow-nesting seabirds that breed on coastal islands throughout much of the North Atlantic, with most of the world’s population breeding in Atlantic Canada. Population declines in the past 20–30 years have resulted in the species being uplisted to “Vulnerable” on the International Union for the Conservation of Nature Red List of Threatened Species. One of the species’ most well-studied colonies is on Kent Island, New Brunswick in the Bay of Fundy. -
Puffinus Gravis (Great Shearwater)
Maine 2015 Wildlife Action Plan Revision Report Date: January 13, 2016 Puffinus gravis (Great Shearwater) Priority 3 Species of Greatest Conservation Need (SGCN) Class: Aves (Birds) Order: Procellariiformes (Tubenoses) Family: Procellariidae (Fulmers, Petrels, And Shearwaters) General comments: Status seems secure though limited data Species Conservation Range Maps for Great Shearwater: Town Map: Puffinus gravis_Towns.pdf Subwatershed Map: Puffinus gravis_HUC12.pdf SGCN Priority Ranking - Designation Criteria: Risk of Extirpation: NA State Special Concern or NMFS Species of Concern: NA Recent Significant Declines: NA Regional Endemic: NA High Regional Conservation Priority: North American Waterbird Conservation Plan: High Concern United States Birds of Conservation Concern: Bird of Conservation Concern in Bird Conservation Regions 14 and/or 30: Yes High Climate Change Vulnerability: NA Understudied rare taxa: NA Historical: NA Culturally Significant: NA Habitats Assigned to Great Shearwater: Formation Name Cliff & Rock Macrogroup Name Rocky Coast Formation Name Subtidal Macrogroup Name Subtidal Pelagic (Water Column) Habitat System Name: Offshore **Primary Habitat** Stressors Assigned to Great Shearwater: No Stressors Currently Assigned to Great Shearwater or other Priority 3 SGCN. Species Level Conservation Actions Assigned to Great Shearwater: No Species Specific Conservation Actions Currently Assigned to Great Shearwater or other Priority 3 SGCN. Guild Level Conservation Actions: This Species is currently not attributed to a guild. -
Breeding of the Leach's Storm-Petrel Oceanodroma Leucorhoa at Santa Catalina Island, California
Carter et al.: Leach’s Storm-Petrel at Santa Catalina Island 83 BREEDING OF THE LEACH’S STORM-PETREL OCEANODROMA LEUCORHOA AT SANTA CATALINA ISLAND, CALIFORNIA HARRY R. CARTER1,3,4, TYLER M. DVORAK2 & DARRELL L. WHITWORTH1,3 1California Institute of Environmental Studies, 3408 Whaler Avenue, Davis, CA 95616, USA 2Catalina Island Conservancy, 125 Clarissa Avenue, Avalon, CA 90704, USA 3Humboldt State University, Department of Wildlife, 1 Harpst Street, Arcata, CA 95521, USA 4Current address: Carter Biological Consulting, 1015 Hampshire Road, Victoria, BC V8S 4S8, Canada ([email protected]) Received 4 November 2015, accepted 5 January 2016 Among the California Channel Islands (CCI) off southern California, Guadalupe Island, off central-west Baja California (Ainley 1980, the Ashy Storm-Petrel Oceanodroma homochroa (ASSP) is the Power & Ainley 1986, Ainley 2005, Pyle 2008, Howell et al. most numerous and widespread breeding storm-petrel; it is known 2009). Alternatively, these egg specimens may have been from to breed at San Miguel, Santa Cruz, Anacapa, Santa Barbara, and dark-rumped LESP, which are known to breed at the Coronado San Clemente islands (Hunt et al. 1979, 1980; Sowls et al. 1980; and San Benito islands, Baja California (Ainley 1980, Power & Carter et al. 1992, 2008; Harvey et al. 2016; Fig. 1B; Appendix 1, Ainley 1986). available on the website). Low numbers of Black Storm-Petrels O. melania (BLSP) also breed at Santa Barbara Island (Pitman Within this context, we asked the following questions: (1) Were the & Speich 1976; Hunt et al. 1979, 1980; Carter et al. 1992; 1903 egg records the first breeding records of LESP at Catalina and Appendix 1). -
The Taxonomy of the Procellariiformes Has Been Proposed from Various Approaches
山 階 鳥 研 報(J. Yamashina Inst. Ornithol.),22:114-23,1990 Genetic Divergence and Relationships in Fifteen Species of Procellariiformes Nagahisa Kuroda*, Ryozo Kakizawa* and Masayoshi Watada** Abstract The genetic analysis of 23 protein loci in 15 species of Procellariiformes was made The genetic distancesbetween the specieswas calculatedand a dendrogram was formulated of the group. The separation of Hydrobatidae from all other taxa including Diomedeidae agrees with other precedent works. The resultsof the present study support the basic Procellariidclassification system. However, two points stillneed further study. The firstpoint is that Fulmarus diverged earlier from the Procellariidsthan did the Diomedeidae. The second point is the position of Puffinuspacificus which appears more closely related to the Pterodroma petrels than to other Puffinus species. These points are discussed. Introduction The taxonomy of the Procellariiformes has been proposed from various approaches. The earliest study by Forbes (1882) was made by appendicular myology. Godman (1906) and Loomis (1918) studied this group from a morphological point of view. The taxonomy of the Procellariiformes by functional osteology and appendicular myology was studied by Kuroda (1954, 1983) and Klemm (1969), The results of the various studies agreed in proposing four families of Procellariiformes: Diomedeidae, Procellariidae, Hydrobatidae, and Pelecanoididae. They also pointed out that the Procellariidae was a heterogenous group among them. Timmermann (1958) found the parallel evolution of mallophaga and their hosts in Procellariiformes. Recently, electrophoretical studies have been made on the Procellariiformes. Harper (1978) found different patterns of the electromorph among the families. Bar- rowclough et al. (1981) studied genetic differentiation among 12 species of Procellari- iformes at 16 loci, and discussed the genetic distances among the taxa but with no consideration of their phylogenetic relationships. -
Migratory Birds Index
CAFF Assessment Series Report September 2015 Arctic Species Trend Index: Migratory Birds Index ARCTIC COUNCIL Acknowledgements CAFF Designated Agencies: • Norwegian Environment Agency, Trondheim, Norway • Environment Canada, Ottawa, Canada • Faroese Museum of Natural History, Tórshavn, Faroe Islands (Kingdom of Denmark) • Finnish Ministry of the Environment, Helsinki, Finland • Icelandic Institute of Natural History, Reykjavik, Iceland • Ministry of Foreign Affairs, Greenland • Russian Federation Ministry of Natural Resources, Moscow, Russia • Swedish Environmental Protection Agency, Stockholm, Sweden • United States Department of the Interior, Fish and Wildlife Service, Anchorage, Alaska CAFF Permanent Participant Organizations: • Aleut International Association (AIA) • Arctic Athabaskan Council (AAC) • Gwich’in Council International (GCI) • Inuit Circumpolar Council (ICC) • Russian Indigenous Peoples of the North (RAIPON) • Saami Council This publication should be cited as: Deinet, S., Zöckler, C., Jacoby, D., Tresize, E., Marconi, V., McRae, L., Svobods, M., & Barry, T. (2015). The Arctic Species Trend Index: Migratory Birds Index. Conservation of Arctic Flora and Fauna, Akureyri, Iceland. ISBN: 978-9935-431-44-8 Cover photo: Arctic tern. Photo: Mark Medcalf/Shutterstock.com Back cover: Red knot. Photo: USFWS/Flickr Design and layout: Courtney Price For more information please contact: CAFF International Secretariat Borgir, Nordurslod 600 Akureyri, Iceland Phone: +354 462-3350 Fax: +354 462-3390 Email: [email protected] Internet: www.caff.is This report was commissioned and funded by the Conservation of Arctic Flora and Fauna (CAFF), the Biodiversity Working Group of the Arctic Council. Additional funding was provided by WWF International, the Zoological Society of London (ZSL) and the Convention on Migratory Species (CMS). The views expressed in this report are the responsibility of the authors and do not necessarily reflect the views of the Arctic Council or its members. -
A Synopsis of the Pre-Human Avifauna of the Mascarene Islands
– 195 – Paleornithological Research 2013 Proceed. 8th Inter nat. Meeting Society of Avian Paleontology and Evolution Ursula B. Göhlich & Andreas Kroh (Eds) A synopsis of the pre-human avifauna of the Mascarene Islands JULIAN P. HUME Bird Group, Department of Life Sciences, The Natural History Museum, Tring, UK Abstract — The isolated Mascarene Islands of Mauritius, Réunion and Rodrigues are situated in the south- western Indian Ocean. All are volcanic in origin and have never been connected to each other or any other land mass. Despite their comparatively close proximity to each other, each island differs topographically and the islands have generally distinct avifaunas. The Mascarenes remained pristine until recently, resulting in some documentation of their ecology being made before they rapidly suffered severe degradation by humans. The first major fossil discoveries were made in 1865 on Mauritius and on Rodrigues and in the late 20th century on Réunion. However, for both Mauritius and Rodrigues, the documented fossil record initially was biased toward larger, non-passerine bird species, especially the dodo Raphus cucullatus and solitaire Pezophaps solitaria. This paper provides a synopsis of the fossil Mascarene avifauna, which demonstrates that it was more diverse than previously realised. Therefore, as the islands have suffered severe anthropogenic changes and the fossil record is far from complete, any conclusions based on present avian biogeography must be viewed with caution. Key words: Mauritius, Réunion, Rodrigues, ecological history, biogeography, extinction Introduction ily described or illustrated in ships’ logs and journals, which became the source material for The Mascarene Islands of Mauritius, Réunion popular articles and books and, along with col- and Rodrigues are situated in the south-western lected specimens, enabled monographs such as Indian Ocean (Fig. -
Common Birds of the Estero Bay Area
Common Birds of the Estero Bay Area Jeremy Beaulieu Lisa Andreano Michael Walgren Introduction The following is a guide to the common birds of the Estero Bay Area. Brief descriptions are provided as well as active months and status listings. Photos are primarily courtesy of Greg Smith. Species are arranged by family according to the Sibley Guide to Birds (2000). Gaviidae Red-throated Loon Gavia stellata Occurrence: Common Active Months: November-April Federal Status: None State/Audubon Status: None Description: A small loon seldom seen far from salt water. In the non-breeding season they have a grey face and red throat. They have a long slender dark bill and white speckling on their dark back. Information: These birds are winter residents to the Central Coast. Wintering Red- throated Loons can gather in large numbers in Morro Bay if food is abundant. They are common on salt water of all depths but frequently forage in shallow bays and estuaries rather than far out at sea. Because their legs are located so far back, loons have difficulty walking on land and are rarely found far from water. Most loons must paddle furiously across the surface of the water before becoming airborne, but these small loons can practically spring directly into the air from land, a useful ability on its artic tundra breeding grounds. Pacific Loon Gavia pacifica Occurrence: Common Active Months: November-April Federal Status: None State/Audubon Status: None Description: The Pacific Loon has a shorter neck than the Red-throated Loon. The bill is very straight and the head is very smoothly rounded. -
Reference Bird List
Species R SP SU FA WI Notes:_________________________________________________ John G. and Susan H. Shrikes Laniidae Loggerhead Shrike (P) U U U U Vireo Vireonidae DuPuis, Jr. ________________________________________________________ White-eyed Vireo (P) C C C C Blue-headed Vireo (W) C Wildlife and Jays & Crows Corvidae American Crow (P) C C C C ________________________________________________________ Fish Crow (P) C C C C Environmental Blue Jay (P) C C C C Red-Cockaded Woodpeckers Swallows Hirundinidae ________________________________________________________ Purple Martin (S) U U Species R SP SU FA WI Area Northern Rough-winged Swallow (W) O O O O Parulidae Barn Swallow (P) O O O O Wood-Warblers Prothonotary Warbler (S) R R Tree Swallow (W) C ________________________________________________________ Pine Warbler (P) C C C C Wrens Troglodytidae Palm Warbler (W) C C C C Carolina Wren (P) C C C C Prairie Warbler (P) C C C C House Wren (W) U Yellow-rumped Warbler (W) C C C ________________________________________________________ Kinglets Regulidae Yellow-throated Warbler (W) C C Ruby-crowned Kinglet (W) C Blue-Gray Gnatcatcher (W) C C C C Black-throated Green Warbler (W) O We are interested in your sightings. Please share your American Redstart (W) O observations with us. Thrushes Turdidae Black and White Warbler (W) C C Eastern Bluebird (P) R R R R Enjoy your visit! American Robin (W) C Northern Parula (W) R Common Yellowthroat (P) C C C C Mockingbirds & Thrashers Mimidae Gray Catbird (W) C C Ovenbird (W) O O Additional contact information: -
A Molecular Phylogeny of Anseriformes Based on Mitochondrial DNA Analysis
MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 23 (2002) 339–356 www.academicpress.com A molecular phylogeny of anseriformes based on mitochondrial DNA analysis Carole Donne-Goussee,a Vincent Laudet,b and Catherine Haanni€ a,* a CNRS UMR 5534, Centre de Genetique Moleculaire et Cellulaire, Universite Claude Bernard Lyon 1, 16 rue Raphael Dubois, Ba^t. Mendel, 69622 Villeurbanne Cedex, France b CNRS UMR 5665, Laboratoire de Biologie Moleculaire et Cellulaire, Ecole Normale Superieure de Lyon, 45 Allee d’Italie, 69364 Lyon Cedex 07, France Received 5 June 2001; received in revised form 4 December 2001 Abstract To study the phylogenetic relationships among Anseriformes, sequences for the complete mitochondrial control region (CR) were determined from 45 waterfowl representing 24 genera, i.e., half of the existing genera. To confirm the results based on CR analysis we also analyzed representative species based on two mitochondrial protein-coding genes, cytochrome b (cytb) and NADH dehydrogenase subunit 2 (ND2). These data allowed us to construct a robust phylogeny of the Anseriformes and to compare it with existing phylogenies based on morphological or molecular data. Chauna and Dendrocygna were identified as early offshoots of the Anseriformes. All the remaining taxa fell into two clades that correspond to the two subfamilies Anatinae and Anserinae. Within Anserinae Branta and Anser cluster together, whereas Coscoroba, Cygnus, and Cereopsis form a relatively weak clade with Cygnus diverging first. Five clades are clearly recognizable among Anatinae: (i) the Anatini with Anas and Lophonetta; (ii) the Aythyini with Aythya and Netta; (iii) the Cairinini with Cairina and Aix; (iv) the Mergini with Mergus, Bucephala, Melanitta, Callonetta, So- materia, and Clangula, and (v) the Tadornini with Tadorna, Chloephaga, and Alopochen. -
A Revision of the Feather Mite Genus Brephosceles (Proctophyllodidae: Alloptinae)
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Bulletin of the University of Nebraska State Museum Museum, University of Nebraska State 5-1971 A Revision of the Feather Mite Genus Brephosceles (Proctophyllodidae: Alloptinae) Paul C. Peterson Follow this and additional works at: https://digitalcommons.unl.edu/museumbulletin Part of the Entomology Commons, Geology Commons, Geomorphology Commons, Other Ecology and Evolutionary Biology Commons, Paleobiology Commons, Paleontology Commons, and the Sedimentology Commons This Article is brought to you for free and open access by the Museum, University of Nebraska State at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Bulletin of the University of Nebraska State Museum by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. BULLETIN OF VOLUME 9, NUMBER 4 The University of Nebraska State Museum MAY, 1971 Paul C. Peterson A Revision of the Feather Mite Genus Brephosceles (Proctophyllodidae: Alloptinae) Paul C. Peterson A Revi,sion of the Feather Mite Genus Brephosceles (Proctophyllodidae: Alloptinae) BULLETIN OF The University of Nebraska State Museum VOLUME 9 NUMBER 4 MAY, 1971 BULLETIN OF VOLUME 9, NUMBER 4 THE UNIVERSITY OF NEBRASKA STATE MUSEUM MAY, 1971 Pp. 89-172, Figs. 1-162 ABSTRACT A Revision of the Feather Mite Genus Brepbosceles (Proctophyllodidae: Alloptinae) Paul C. Peterson A systematic revision is presented for the genus 8rephosceles. Data on external morph ology, zoogeography, and host-parasite relationships are included. Thirteen named and thirty new species are recognized and described. The new species and the type hosts are: 8rephosceles afribycis, from Afribyx lateralis (Charadriidae); 8. anhimae, from Anhima cor nuta (Anhimidae); 8. -
A New Method for Catching Wilson's Storm Petrels
Trull et al.: Catching Wilson’s Storm Petrels at sea 125 A NEW METHOD FOR CATCHING WILSON’S STORM PETRELS OCEANITES OCEANICUS AT SEA PETER F. TRULL1, SUSAN FINNEGAN2 & AUSTIN J. GALLAGHER3,4 1Cape Cod Lighthouse Charter School, Harwich, MA 02645, USA 2Cape Cod Museum of Natural History, Brewster, MA 02631, USA 3Beneath the Waves, PO Box 126, Herndon, VA 20172, USA ([email protected]) 4Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33146, USA Received 14 May 2018, accepted 03 July 2018 ABSTRACT TRULL, P.F., FINNEGAN, S. & GALLAGHER, A.J. 2018. A new method for catching Wilson’s Storm Petrels Oceanites oceanicus at sea. Marine Ornithology 46: 125–127. Catching oceanic birds is challenging for researchers interested in studying migration and feeding dynamics. To address that challenge, we evaluated a new method for catching Wilson’s Storm Petrels Oceanites oceanicus at sea. Using an extended butterfly net and a sweeping technique, we successfully captured 50 sub-adult and adult storm petrels offshore in the Northwest Atlantic with a 94% success rate. All were processed without sign of physical trauma or injury; 100% flew off in apparently good condition. This method provides a cost-effective and safe approach for the capture and study of small oceanic birds attracted to fish slicks. Key words: capture, net, oceanic bird, petrel, seabird INTRODUCTION of modified hoop-nets with 2–3 m of line attached thrown from a vessel to catch shearwaters and petrels nearby. Other researchers Several species of oceanic birds in the order Procellariiformes have captured shearwaters and alcids at sea after dark using a migrate annually from their polar and subpolar Southern combination of spotlights and dipnets (Whitworth et al. -
Conservation Status of New Zealand Birds, 2008
Notornis, 2008, Vol. 55: 117-135 117 0029-4470 © The Ornithological Society of New Zealand, Inc. Conservation status of New Zealand birds, 2008 Colin M. Miskelly* Wellington Conservancy, Department of Conservation, P.O. Box 5086, Wellington 6145, New Zealand [email protected] JOHN E. DOWDING DM Consultants, P.O. Box 36274, Merivale, Christchurch 8146, New Zealand GRAEME P. ELLIOTT Research & Development Group, Department of Conservation, Private Bag 5, Nelson 7042, New Zealand RODNEY A. HITCHMOUGH RALPH G. POWLESLAND HUGH A. ROBERTSON Research & Development Group, Department of Conservation, P.O. Box 10420, Wellington 6143, New Zealand PAUL M. SAGAR National Institute of Water & Atmospheric Research, P.O. Box 8602, Christchurch 8440, New Zealand R. PAUL SCOFIELD Canterbury Museum, Rolleston Ave, Christchurch 8001, New Zealand GRAEME A. TAYLOR Research & Development Group, Department of Conservation, P.O. Box 10420, Wellington 6143, New Zealand Abstract An appraisal of the conservation status of the post-1800 New Zealand avifauna is presented. The list comprises 428 taxa in the following categories: ‘Extinct’ 20, ‘Threatened’ 77 (comprising 24 ‘Nationally Critical’, 15 ‘Nationally Endangered’, 38 ‘Nationally Vulnerable’), ‘At Risk’ 93 (comprising 18 ‘Declining’, 10 ‘Recovering’, 17 ‘Relict’, 48 ‘Naturally Uncommon’), ‘Not Threatened’ (native and resident) 36, ‘Coloniser’ 8, ‘Migrant’ 27, ‘Vagrant’ 130, and ‘Introduced and Naturalised’ 36. One species was assessed as ‘Data Deficient’. The list uses the New Zealand Threat Classification System, which provides greater resolution of naturally uncommon taxa typical of insular environments than the IUCN threat ranking system. New Zealand taxa are here ranked at subspecies level, and in some cases population level, when populations are judged to be potentially taxonomically distinct on the basis of genetic data or morphological observations.