Pelagic Birds in the Gulf of Maine

Total Page:16

File Type:pdf, Size:1020Kb

Pelagic Birds in the Gulf of Maine Pelagic Birds in the Gulf of Maine Davis W. Finch, William C. Russelland EdwardV. Thompson In view of the recent increase of interest in with CN Marine (Bar Harbor, Me. 04609) seab•rds,clearly indicatedby the numberof Toll-free numbers are 800 432 - 7344 (Maine) b•rd•ngtrips now beingconducted to offshore and 800 341 -7981 (northeastern U.S.). Reser- waters in the Northeast and elsewhere, it vations are importantduring the summer•f seems an appropriate time to review the automobilesare to be transported.The adult occurrenceand abundanceof pelagicspecies one-way fare in effectduring 1977 was $15, along what to date hasbeen ornithologically $9 off-season. the most studied oceanic route in the East. This During normal summer operation, the •s,of course,the "Bluenose"ferry transit in the "Bluenose" leaves Bar Harbor at 8 a.m. EDT Gulf of Maine between Bar Harbor, Maine and and steamsdown FrenchmanBay to EggRock Yarmouth, Nova Scotia.Since 1965 the authors bell buoy. At this point, she turns to course have made over 80 crossingson the "Blue- 115 ø which is maintained for about 77.5 nauti- nose". Although more than 75% of these cal miles. About five nautical miles SSEof the occurredduring the monthsfrom May through LurcherShoal buoy, the "Bluenose"turns to September,no seasonhas been neglected. course 095 ø for about 11 nautical miles at Th•s paper summarizesour data from these which point a slight adjustmentis made to transits and our notes on the field identification 088 ø. This course is maintained for about five of some23 speciesof pelagicbirds encountered. nautical miles when she rounds the Cape The "Bluenose",owned and operatedby Forchu bell and heads into Yarmouth Harbor Canadian National, has an overall lengthof arrivingat the dock at approximately2 p.m 346 feet and a grossweight of 6419 tons.Her EDT. After a layoverof 1¾2hours she leaves speedaverages 18.5 to 19 knotsin summer Yarmouth at 3:30 p.m. EDT (4:30 p.m. ADT) and 16.5 to 17 knots in winter. An observer and retracesher route, reachingBar Harborat positionedat the bow is approximately30 feet approximately9:30 p.m. ETD. Thusfor a brief above the sea surface and can survey a period around midsummer, the pelagic horizon of about 300 ø. The elevation extends portionsof the entire round trip are traversed ws•bilityto somedistance while often prevent- in daylight. •ng ventral views of nearby birdsflying low Infrequently,heavy seas require a course over the water. change.This normally takes the form of a more Accordingto the most recently adopted northerlycourse to a point just southof Murr schedulethe ferry makesthe 200-mile round Ledgesbelow Grand Manan then south to trip dailyfrom early June to theend of Septem- Cape Forchubell. The exactcourse varies w•th ber Thrice-weekly service is maintained the severity of the weather. On a very few throughoutOctober and Novemberand from occasions,weather has caused cancellation of lateApril through May, and during these periods the day's crossing. the terry leaves Bar Harbor at 8 a.m. ESI or The Gulf of Maine is a relatively closed EDT on Tuesdays,Thursdays and Saturdays body of water blocked at the mouth by and leaves Yarmouth at 9 a.m. AST or ADT on Georges and Browns Banks. Two narrow Mondays, Wednesdaysand Fridays.Winter channels provide the only accessfor deep serwcehas recentlybeen suspended.Since all water and as a consequencethe Gulf •s the ferry servicesin the Gulf of Maine are shielded both from the cold waters of the being reevaluated, persons planning the Labrador Current and the warm waters of the trip should verify the schedulebeforehand Gulf Stream.Heating and coolingare thusthe 140 American B•rds, March 1978 SRD NortheasternNorth America,showing "Bluenose" Ferry route. Map/S.R. Drennan. resultof local proces•s. Duringthe summera tember,this paper draws almost exclusively on rathersharp thermocline develops and surface our own records.Although we were, of course, waters warm to a maximum of 13 ø to 16øC. aware of manycrossings made by others,we During the warmestyears, numerouswarm- have not used these data as we feel our own water fish and invertebrates are found in the sufficeto givea clearpicture of relativeabund- Gulf and certainbirds, including perhaps the ance duringthe summerperiod. Further, it is very infrequent Cory's Shearwater,may be practically impossiblefor us to assessthe presentonly under these conditions.During records of others and to ascertain whether the fall, the thermocline is considerably specieswere identifiedcorrectly, a problem reduced owing to decreasedsurface warming especiallyacute with the large shearwaters, and, especially,the wind-inducedmixing of storm-petrels,phalaropes and jaegers, and it is the surface and colder water below. The rate at equally difficultto judge the care with which which this coolingtakes place may determine counts were taken. Nonetheless in a few cases the length of time certain pelagic species,for whereunquestionable records by othersadded example Greater Shearwater,Leach's Storm- significantlyto our understandingwe have Petreland RedPhalarope, remain in the Gulf. includedthem, citing observersby initials Current flow in the Gulf of Maine is gener- resolved at the end of the text. Status accounts ally counterclockwise.On the Nova Scotia for thisperiod are primarilya summaryof our side the collision of this current with the sub- data givingfrequency, maximum counts and marineextensions of DigbyNeck and adjacent average ones. underwater ridges produces pronounced Having taken many fewer trips duringthe upwelling which makesthis the richestarea periodOctober through May, we haveused all ornithologically in the Gulf of Maine. The information available for these months, course of the "Bluenose" takes her just south attemptingto verify identificationsand counts of the southernmost underwater ledge, and again citing observersfor recordsother Lurcher Shoal, about 11/2hours out of Yar- than our own. We have less confidence in our mouth, and large numbers of birds are status delineations for these months and have frequently found there. The other concentra- made extensive use of such relative terms as tion area, alsothe resultof upwelling,is the "common" and "rare", and noted maximum southwesternedge of Grand Manan Bank, counts. encountered about two hours out of Bar Our data are derived from 88 round trips Harbor. Seabirds tend to be less abundant over taken from 1965 through1977, their monthly the remainderof the crossing,their distribution distributionas follows:Jan. (4), Feb. (2), Mar dependenton the apparentlyunpredictable (3), Apr. (0), May (4), June(16), July(10), Aug presenceof planktonand fish. (26), Sept. (10), Oct. (2), Nov. (6), Dec. (5) Forthe four-monthperiod June through Sep- Sevenof the winter tripswere by others.Our Volume 32, Number 2 141 The "Bluenose"Ferry. Photo courtesy of CanadianNational; copyright reserved; made in Canada. counting technique was simple: standingin or when birds followed or paralleledthe ship the bow for essentiallythe entire crossing,we Jor long periods. We reel that the numeri- attempted to count every individual encoun- cal data are accurate to +10% for counts tered. In earlier yearsrunning totals were kept between 10 and 50, and to +30% for counts but since 1975 observations have been involvinghigher numbers of individuals.The recorded for each 30-minute period. The statusdata do, however,accurately reflect the status accounts which follow should not be relative abundanceof the pelagicspecies that construedas havinga specificscientific basis. occur in the Gulf of Maine as seen from the Althoughwe countedindividual birds as care- "Bluenose",and shouldgive the readera clear fully as possible,obvious problems neverthe- idea of what to expect, or not to expect, at a lessarose when largeflocks were encountered given time of year. ALBATROSSES: Diomedeidae Albatrossesare hugeseabirds with long,slender wings and largehooked bills. The two speciesrecorded in the westernNorth Atlantic are largelydark on the upperwing and tail and white elsewhere.In the unlikelyevent that an albatrossshould be seen,the observershould note the underwingpattern (extent and width of black border),bill color (black,yellow or other,and colorationof the dorsalridge if different),and head color (white or gray, and markings,if any, above and behindthe eye). Yellow-nosedAlbatross (Diomedea chlororhynchos) Status:Two recordsof singlebirds, July 12, 1968 (EVT)and Aug. 20, 1976 (DS). Field Identification:The identificationof a bird asan albatrosswould seemto be easybut a number of albatrossesreported from the "Bluenose"were almostcertainly Gannets (for a discussionof this problem,see that species)and we haveseen distant adult Great Black- backed Gulls misidentifiedas albatrosses.Even at a distance,albatrosses have brownishtones in the dark back, have longer,stouter bills, largelydark in youngBlack-broweds and in Yellow-nosedAlbatrosses of all ages,and appearvery high-sternedwhen afloat. We are, however,rather unfamiliar with albatrossidentification and referinterested readers to other sources(see for example,Warham, Bourneand Elliott).Regarding albatross distribution, it is indeedcurious that for yearsYellow-nosed has been the albatross of the westernNorth Atlan- 142 American Birds, March 1978 Yellow-nosedAlbatross (adult) 60 mileseast of OceanCity, Md., Feb. 1, 1975.Note black bill andnarrowness of dark bordersof underwing,particularly on the trailingedge. Photo/Richard A. Rowlett. Black-browedAlbatross (adult) in Antarcticwaters south of New Zealand,Dec.,
Recommended publications
  • PDF/36 2/36 2 175-181.Pdf Stenhouse
    VOLUME 15, ISSUE 1, ARTICLE 11 D'Entremont, K. J. N., L. Minich Zitske, A. J. Gladwell, N. K. Elliott, R. A. Mauck, and R. A. Ronconi. 2020. Breeding population decline and associations with nest site use of Leach’s Storm-Petrels on Kent Island, New Brunswick from 2001 to 2018. Avian Conservation and Ecology 15(1):11. https://doi.org/10.5751/ACE-01526-150111 Copyright © 2020 by the author(s). Published here under license by the Resilience Alliance. Research Paper Breeding population decline and associations with nest site use of Leach’s Storm-Petrels on Kent Island, New Brunswick from 2001 to 2018 Kyle J. N. d'Entremont 1,2, Laura Minich Zitske 3,4, Alison J. Gladwell 1, Nathan K. Elliott 3,5, Robert A. Mauck 6 and Robert A. Ronconi 7,8 1Dalhousie University, Canada, 2Memorial University of Newfoundland, Canada, 3Bowdoin College, USA, 4Maine Audubon, USA, 5Point Blue Conservation Science, USA, 6Kenyon College, USA, 7Canadian Wildlife Service, Environment and Climate Change Canada, Dartmouth, NS, Canada, 8Department of Biology, Dalhousie University, Halifax, NS, Canada ABSTRACT. Leach’s Storm-Petrels (Hydrobates leucorhous) are burrow-nesting seabirds that breed on coastal islands throughout much of the North Atlantic, with most of the world’s population breeding in Atlantic Canada. Population declines in the past 20–30 years have resulted in the species being uplisted to “Vulnerable” on the International Union for the Conservation of Nature Red List of Threatened Species. One of the species’ most well-studied colonies is on Kent Island, New Brunswick in the Bay of Fundy.
    [Show full text]
  • Puffinus Gravis (Great Shearwater)
    Maine 2015 Wildlife Action Plan Revision Report Date: January 13, 2016 Puffinus gravis (Great Shearwater) Priority 3 Species of Greatest Conservation Need (SGCN) Class: Aves (Birds) Order: Procellariiformes (Tubenoses) Family: Procellariidae (Fulmers, Petrels, And Shearwaters) General comments: Status seems secure though limited data Species Conservation Range Maps for Great Shearwater: Town Map: Puffinus gravis_Towns.pdf Subwatershed Map: Puffinus gravis_HUC12.pdf SGCN Priority Ranking - Designation Criteria: Risk of Extirpation: NA State Special Concern or NMFS Species of Concern: NA Recent Significant Declines: NA Regional Endemic: NA High Regional Conservation Priority: North American Waterbird Conservation Plan: High Concern United States Birds of Conservation Concern: Bird of Conservation Concern in Bird Conservation Regions 14 and/or 30: Yes High Climate Change Vulnerability: NA Understudied rare taxa: NA Historical: NA Culturally Significant: NA Habitats Assigned to Great Shearwater: Formation Name Cliff & Rock Macrogroup Name Rocky Coast Formation Name Subtidal Macrogroup Name Subtidal Pelagic (Water Column) Habitat System Name: Offshore **Primary Habitat** Stressors Assigned to Great Shearwater: No Stressors Currently Assigned to Great Shearwater or other Priority 3 SGCN. Species Level Conservation Actions Assigned to Great Shearwater: No Species Specific Conservation Actions Currently Assigned to Great Shearwater or other Priority 3 SGCN. Guild Level Conservation Actions: This Species is currently not attributed to a guild.
    [Show full text]
  • Copulation and Mate Guarding in the Northern Fulmar
    COPULATION AND MATE GUARDING IN THE NORTHERN FULMAR SCOTT A. HATCH Museumof VertebrateZoology, University of California,Berkeley, California 94720 USA and AlaskaFish and WildlifeResearch Center, U.S. Fish and WildlifeService, 1011 East Tudor Road, Anchorage,Alaska 99503 USA• ABSTRACT.--Istudied the timing and frequency of copulation in mated pairs and the occurrenceof extra-paircopulation (EPC) among Northern Fulmars (Fulmarus glacialis) for 2 yr. Copulationpeaked 24 days before laying, a few daysbefore females departed on a prelaying exodus of about 3 weeks. I estimated that females were inseminated at least 34 times each season.A total of 44 EPC attemptswas seen,9 (20%)of which apparentlyresulted in insem- ination.Five successful EPCs were solicitated by femalesvisiting neighboring males. Multiple copulationsduring a singlemounting were rare within pairsbut occurredin nearly half of the successfulEPCs. Both sexesvisited neighborsduring the prelayingperiod, and males employed a specialbehavioral display to gain acceptanceby unattended females.Males investedtime in nest-siteattendance during the prelaying period to guard their matesand pursueEPC. However, the occurrenceof EPC in fulmars waslargely a matter of female choice. Received29 September1986, accepted 16 February1987. THEoccurrence and significanceof extra-pair Bjorkland and Westman 1983; Buitron 1983; copulation (EPC) in monogamousbirds has Birkhead et al. 1985). generated much interest and discussion(Glad- I attemptedto documentthe occurrenceand stone 1979; Oring 1982; Ford 1983; McKinney behavioral contextof extra-pair copulationand et al. 1983, 1984). Becausethe males of monog- mate guarding in a colonial seabird,the North- amous species typically make a large invest- ern Fulmar (Fulmarus glacialis). Fulmars are ment in the careof eggsand young, the costof among the longest-lived birds known, and fi- being cuckolded is high, as are the benefits to delity to the same mate and nest site between the successfulcuckolder.
    [Show full text]
  • The Taxonomy of the Procellariiformes Has Been Proposed from Various Approaches
    山 階 鳥 研 報(J. Yamashina Inst. Ornithol.),22:114-23,1990 Genetic Divergence and Relationships in Fifteen Species of Procellariiformes Nagahisa Kuroda*, Ryozo Kakizawa* and Masayoshi Watada** Abstract The genetic analysis of 23 protein loci in 15 species of Procellariiformes was made The genetic distancesbetween the specieswas calculatedand a dendrogram was formulated of the group. The separation of Hydrobatidae from all other taxa including Diomedeidae agrees with other precedent works. The resultsof the present study support the basic Procellariidclassification system. However, two points stillneed further study. The firstpoint is that Fulmarus diverged earlier from the Procellariidsthan did the Diomedeidae. The second point is the position of Puffinuspacificus which appears more closely related to the Pterodroma petrels than to other Puffinus species. These points are discussed. Introduction The taxonomy of the Procellariiformes has been proposed from various approaches. The earliest study by Forbes (1882) was made by appendicular myology. Godman (1906) and Loomis (1918) studied this group from a morphological point of view. The taxonomy of the Procellariiformes by functional osteology and appendicular myology was studied by Kuroda (1954, 1983) and Klemm (1969), The results of the various studies agreed in proposing four families of Procellariiformes: Diomedeidae, Procellariidae, Hydrobatidae, and Pelecanoididae. They also pointed out that the Procellariidae was a heterogenous group among them. Timmermann (1958) found the parallel evolution of mallophaga and their hosts in Procellariiformes. Recently, electrophoretical studies have been made on the Procellariiformes. Harper (1978) found different patterns of the electromorph among the families. Bar- rowclough et al. (1981) studied genetic differentiation among 12 species of Procellari- iformes at 16 loci, and discussed the genetic distances among the taxa but with no consideration of their phylogenetic relationships.
    [Show full text]
  • Bugoni 2008 Phd Thesis
    ECOLOGY AND CONSERVATION OF ALBATROSSES AND PETRELS AT SEA OFF BRAZIL Leandro Bugoni Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy, at the Institute of Biomedical and Life Sciences, University of Glasgow. July 2008 DECLARATION I declare that the work described in this thesis has been conducted independently by myself under he supervision of Professor Robert W. Furness, except where specifically acknowledged, and has not been submitted for any other degree. This study was carried out according to permits No. 0128931BR, No. 203/2006, No. 02001.005981/2005, No. 023/2006, No. 040/2006 and No. 1282/1, all granted by the Brazilian Environmental Agency (IBAMA), and International Animal Health Certificate No. 0975-06, issued by the Brazilian Government. The Scottish Executive - Rural Affairs Directorate provided the permit POAO 2007/91 to import samples into Scotland. 2 ACKNOWLEDGEMENTS I was very lucky in having Prof. Bob Furness as my supervisor. He has been very supportive since before I had arrived in Glasgow, greatly encouraged me in new initiatives I constantly brought him (and still bring), gave me the freedom I needed and reviewed chapters astonishingly fast. It was a very productive professional relationship for which I express my gratitude. Thanks are also due to Rona McGill who did a great job in analyzing stable isotopes and teaching me about mass spectrometry and isotopes. Kate Griffiths was superb in sexing birds and explaining molecular methods again and again. Many people contributed to the original project with comments, suggestions for the chapters, providing samples or unpublished information, identifyiyng fish and squids, reviewing parts of the thesis or helping in analysing samples or data.
    [Show full text]
  • Migratory Birds Index
    CAFF Assessment Series Report September 2015 Arctic Species Trend Index: Migratory Birds Index ARCTIC COUNCIL Acknowledgements CAFF Designated Agencies: • Norwegian Environment Agency, Trondheim, Norway • Environment Canada, Ottawa, Canada • Faroese Museum of Natural History, Tórshavn, Faroe Islands (Kingdom of Denmark) • Finnish Ministry of the Environment, Helsinki, Finland • Icelandic Institute of Natural History, Reykjavik, Iceland • Ministry of Foreign Affairs, Greenland • Russian Federation Ministry of Natural Resources, Moscow, Russia • Swedish Environmental Protection Agency, Stockholm, Sweden • United States Department of the Interior, Fish and Wildlife Service, Anchorage, Alaska CAFF Permanent Participant Organizations: • Aleut International Association (AIA) • Arctic Athabaskan Council (AAC) • Gwich’in Council International (GCI) • Inuit Circumpolar Council (ICC) • Russian Indigenous Peoples of the North (RAIPON) • Saami Council This publication should be cited as: Deinet, S., Zöckler, C., Jacoby, D., Tresize, E., Marconi, V., McRae, L., Svobods, M., & Barry, T. (2015). The Arctic Species Trend Index: Migratory Birds Index. Conservation of Arctic Flora and Fauna, Akureyri, Iceland. ISBN: 978-9935-431-44-8 Cover photo: Arctic tern. Photo: Mark Medcalf/Shutterstock.com Back cover: Red knot. Photo: USFWS/Flickr Design and layout: Courtney Price For more information please contact: CAFF International Secretariat Borgir, Nordurslod 600 Akureyri, Iceland Phone: +354 462-3350 Fax: +354 462-3390 Email: [email protected] Internet: www.caff.is This report was commissioned and funded by the Conservation of Arctic Flora and Fauna (CAFF), the Biodiversity Working Group of the Arctic Council. Additional funding was provided by WWF International, the Zoological Society of London (ZSL) and the Convention on Migratory Species (CMS). The views expressed in this report are the responsibility of the authors and do not necessarily reflect the views of the Arctic Council or its members.
    [Show full text]
  • Southern Fulmar
    SOUTHERN FULMAR Fulmarus glacialoides Document made by the French Southern and Antarctic Lands © TAAF Lands © Southern and Antarctic the French made by Document l l assessm iona asse a g ss b e e m lo n r • Size : 45-50 cm t F G e A n t A SOUTHERN FULMAR T • Wingspan : 114-120 cm Fulmarus glacialoides • Weight : 0.7-1kg Order : Procellariiformes — Family : Procellariidae as the ... It is also known GEOGRAPHIC RANGE : The species can be seen in the Southern Ocean but breeds on the coasts of Antarctica and outlying glaciated islands. HABITAT : Southern Fulmars nest on steep rocky slopes and cliff sides, mainly on the coast and on the Antarctic continent. They are highly nomadic outside the breeding season, generally moving north to open waters south of 30°S. © S. BLANC DIET : They eat krill, fish and squid depending on available prey. They also consume carrion and discards from Fulmar Antarctic fishing vessels. BEHAVIOR : REPRODUCTION : Most food is taken by surface-seizing whilst in The breeding season begins in November and egg- flocks. They also skim the surface in low flight laying takes place during the first two weeks of with their beak open. They also sometimes dive December. They breed in colonies on steep rocky at shallow depths to catch their prey. They are slopes and precipitous cliffs on sheltered ledges rather solitary birds that can form small groups or in hollows, sometimes with other species of outside the breeding season. Paired birds tend to petrels. Nests are a gravel-lined scrape in which © S.
    [Show full text]
  • Onetouch 4.0 Scanned Documents
    / Chapter 2 THE FOSSIL RECORD OF BIRDS Storrs L. Olson Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution Washington, DC. I. Introduction 80 II. Archaeopteryx 85 III. Early Cretaceous Birds 87 IV. Hesperornithiformes 89 V. Ichthyornithiformes 91 VI. Other Mesozojc Birds 92 VII. Paleognathous Birds 96 A. The Problem of the Origins of Paleognathous Birds 96 B. The Fossil Record of Paleognathous Birds 104 VIII. The "Basal" Land Bird Assemblage 107 A. Opisthocomidae 109 B. Musophagidae 109 C. Cuculidae HO D. Falconidae HI E. Sagittariidae 112 F. Accipitridae 112 G. Pandionidae 114 H. Galliformes 114 1. Family Incertae Sedis Turnicidae 119 J. Columbiformes 119 K. Psittaciforines 120 L. Family Incertae Sedis Zygodactylidae 121 IX. The "Higher" Land Bird Assemblage 122 A. Coliiformes 124 B. Coraciiformes (Including Trogonidae and Galbulae) 124 C. Strigiformes 129 D. Caprimulgiformes 132 E. Apodiformes 134 F. Family Incertae Sedis Trochilidae 135 G. Order Incertae Sedis Bucerotiformes (Including Upupae) 136 H. Piciformes 138 I. Passeriformes 139 X. The Water Bird Assemblage 141 A. Gruiformes 142 B. Family Incertae Sedis Ardeidae 165 79 Avian Biology, Vol. Vlll ISBN 0-12-249408-3 80 STORES L. OLSON C. Family Incertae Sedis Podicipedidae 168 D. Charadriiformes 169 E. Anseriformes 186 F. Ciconiiformes 188 G. Pelecaniformes 192 H. Procellariiformes 208 I. Gaviiformes 212 J. Sphenisciformes 217 XI. Conclusion 217 References 218 I. Introduction Avian paleontology has long been a poor stepsister to its mammalian counterpart, a fact that may be attributed in some measure to an insufRcien- cy of qualified workers and to the absence in birds of heterodont teeth, on which the greater proportion of the fossil record of mammals is founded.
    [Show full text]
  • SEABIRDS RECORDED at the CHATHAM ISLANDS, 1960 to MAY 1993 by M.J
    SEABIRDS RECORDED AT THE CHATHAM ISLANDS, 1960 TO MAY 1993 By M.J. IMBER Science and Research Directorate, Department of Conservation, P. 0. Box 10420, Wellington ABSTRACT Between 1960 and hlay 1993,62 species of seabirds were recorded at Chatham Islands, including 43 procellariiforms, 5 penguins, 5 pelecaniforms, and 9 hi.Apart &om the 24 breeding species, there were 14 regular visitors, 13 stragglers, 2 rarely seen on migration, and 9 found only beach-cast or as other remains. There is considerable endemism: 8 species or subspecies are confined, or largely confined, to breeding at the Chathams. INTRODUCTION The Chatham Islands (44OS, 176.5OW) are about 900 km east of New Zealand, and 560 km and 720 km respectively north-east of Bounty and Antipodes Islands. The Chatham Islands lie on the Subtropical Convergence (Fleming 1939) - the boundary between subtropical and subantarctic water masses; near the eastern end of the Chatham Rise - a shallow (4'500 m) submarine ridge extending almost to the New Zealand mainland. Chatham Island seabirds can feed over large areas of four marine habitats: the continental shelf of the Chatham Rise; the continental slope around it; and subtropical and subantarctic waters to the north, east, and south. The Chatham Islands' fauna and flora have, however, been very adversely affected by human colonisation for about 500 years (B. McFadgen, pers. cornrn.). Knowledge of the seabird fauna of the Chatham Islands gained up to 1960 is siunmarised in Oliver (1930), Fleming (1939), Dawson (1955, 1973), and papers quoted therein. The present paper summarises published and unpublished data on the seabirds of the archipelago from 1960 to May 1993, from when visits to these islands depended on infrequent passages by ship from Lyttelton, South Island, to the present, when a visit involves a 2-h scheduled flight from Napier, Wellington, or Christchurch, six dayslweek.
    [Show full text]
  • An Assessment for Fisheries Operating in South Georgia and South Sandwich Islands
    FAO International Plan of Action-Seabirds: An assessment for fisheries operating in South Georgia and South Sandwich Islands by Nigel Varty, Ben Sullivan and Andy Black BirdLife International Global Seabird Programme Cover photo – Fishery Patrol Vessel (FPV) Pharos SG in Cumberland Bay, South Georgia This document should be cited as: Varty, N., Sullivan, B. J. and Black, A. D. (2008). FAO International Plan of Action-Seabirds: An assessment for fisheries operating in South Georgia and South Sandwich Islands. BirdLife International Global Seabird Programme. Royal Society for the Protection of Birds, The Lodge, Sandy, Bedfordshire, UK. 2 Executive Summary As a result of international concern over the cause and level of seabird mortality in longline fisheries, the United Nations Food and Agricultural Organisation (FAO) Committee of Fisheries (COFI) developed an International Plan of Action-Seabirds. The IPOA-Seabirds stipulates that countries with longline fisheries (conducted by their own or foreign vessels) or a fleet that fishes elsewhere should carry out an assessment of these fisheries to determine if a bycatch problem exists and, if so, to determine its extent and nature. If a problem is identified, countries should adopt a National Plan of Action – Seabirds for reducing the incidental catch of seabirds in their fisheries. South Georgia and the South Sandwich Islands (SGSSI) are a United Kingdom Overseas Territory and the combined area covered by the Territorial Sea and Maritime Zone of South Georgia is referred to as the South Georgia Maritime Zone (SGMZ) and fisheries within the SGMZ are managed by the Government of South Georgia and South Sandwich Islands (GSGSSI) within the framework of the Convention on the Conservation of Antarctic Marine Living (CCAMLR).
    [Show full text]
  • Appendix, French Names, Supplement
    685 APPENDIX Part 1. Speciesreported from the A.O.U. Check-list area with insufficient evidencefor placementon the main list. Specieson this list havebeen reported (published) as occurring in the geographicarea coveredby this Check-list.However, their occurrenceis considered hypotheticalfor one of more of the following reasons: 1. Physicalevidence for their presence(e.g., specimen,photograph, video-tape, audio- recording)is lacking,of disputedorigin, or unknown.See the Prefacefor furtherdiscussion. 2. The naturaloccurrence (unrestrained by humans)of the speciesis disputed. 3. An introducedpopulation has failed to becomeestablished. 4. Inclusionin previouseditions of the Check-listwas basedexclusively on recordsfrom Greenland, which is now outside the A.O.U. Check-list area. Phoebastria irrorata (Salvin). Waved Albatross. Diornedeairrorata Salvin, 1883, Proc. Zool. Soc. London, p. 430. (Callao Bay, Peru.) This speciesbreeds on Hood Island in the Galapagosand on Isla de la Plata off Ecuador, and rangesat seaalong the coastsof Ecuadorand Peru. A specimenwas takenjust outside the North American area at Octavia Rocks, Colombia, near the Panama-Colombiaboundary (8 March 1941, R. C. Murphy). There are sight reportsfrom Panama,west of Pitias Bay, Dari6n, 26 February1941 (Ridgely 1976), and southwestof the Pearl Islands,27 September 1964. Also known as GalapagosAlbatross. ThalassarchechrysosWma (Forster). Gray-headed Albatross. Diornedeachrysostorna J. R. Forster,1785, M6m. Math. Phys. Acad. Sci. Paris 10: 571, pl. 14. (voisinagedu cerclepolaire antarctique & dansl'Ocean Pacifique= Isla de los Estados[= StatenIsland], off Tierra del Fuego.) This speciesbreeds on islandsoff CapeHorn, in the SouthAtlantic, in the southernIndian Ocean,and off New Zealand.Reports from Oregon(mouth of the ColumbiaRiver), California (coastnear Golden Gate), and Panama(Bay of Chiriqu0 are unsatisfactory(see A.O.U.
    [Show full text]
  • Ardery Island and Odbert Island, Budd Coast, Wilkes Land, East Antarctica
    Measure 3 (2015) Management Plan for Antarctic Specially Protected Area No. 103 ARDERY ISLAND AND ODBERT ISLAND, BUDD COAST, WILKES LAND, EAST ANTARCTICA Introduction Ardery Island and Odbert Island (66°22’20”S; 110°29’10”E, Map A) were originally designated as Specially Protected Area No. 3, through Recommendation IV-III (1966), after a proposal by Australia. A management plan for the Area was adopted under Recommendation XVII-2 (1992). In accordance with Decision 1 (2002), the site was redesignated and renumbered as Antarctic Specially Protected Area (ASPA) No. 103. Revised management plans for the ASPA were adopted under Measure 2 (2005) and Measure 3 (2010). The Area is primarily designated to protect the unusual assemblage of breeding colonies of several species of petrel. The Antarctic petrel (Thalassoica antarctica) and the southern fulmar (Fulmarus glacialoides) are of particular scientific interest. 1. Description of values to be protected The Area is designated primarily to protect the assemblage of four fulmarine petrels at Ardery Island and Odbert Island (Map B and C). The four species of fulmarine petrels, all belonging to different genera, are Antarctic petrels, southern fulmars, Cape petrels (Daption capense), and snow petrels (Pagodroma nivea). All breed in the Area in sufficient numbers to allow comparative study. Study of these four genera at one location is of high ecological importance in understanding their responses to changes in the Southern Ocean ecosystem. The Antarctic petrel is the only species in the genus Thalassoica; they occur most commonly in the Ross and Weddell seas and are much less abundant in East Antarctica.
    [Show full text]