Metamorphosis in Insects

Total Page:16

File Type:pdf, Size:1020Kb

Metamorphosis in Insects Metamorphosis in Insects Metamorphosis can be defined as “a rapid and complete transformation from an immature larval life to a sexually adult form involving morphology, function and habitat changes”. Types of Metamorphosis: On the basis of degree of changes there are 5 basic types of metamorphosis seen in insects. (1) Ametabolous development or Ametamorphic (2) Gradual metamorphosis or Paurometabolous development (3) Incomplete metamorphosis or Hemimetabolous development (4) Complete metamorphosis or Holometabolous development and (5) Hypermetamorphosis or Hypermetabolous development. (1) Ametabolous Development or Direct Development: The insects undergo little or no metamorphosis. The young ones emerged from the eggs resemble the adults in all respects except in size and sexual structures. It grows only in size by replacing its old skin through a process, called moulting. The young which emerges from the egg resembles a miniature adult, called juveniles. In these the reproductive organs are undeveloped, and after several moults they become adult. This type of development is seen in apterygote (wingless) insects e.g. Silver fish (Lepisma), Spring tails (Order- Collembola, etc.). Fig. 1. Ametabolous development in Silverfish 2. Gradual Metamorphosis or Paurometabolous Development: This type of metamorphosis is seen in less primitive forms like cockroaches, grasshoppers, Bugs, Preying mantis, white ants, etc. The newly hatched young ones which comes out of the egg closely resembles the adult in general body form, habits and habitat but many adult features, i.e., wings and reproductive organs are undeveloped and their relative proportions of the body also differ. The young ones are called nymphs. The wings develop as wing pads in the second and third thoracic segments at early age and gradually increase in size by mitosis in each moult. The external genitalia develop gradually at each moult. These nymphs lead an independent life and attain adult form through several moults. This type of metamorphosis is called gradual metamorphosis or paurometabolous development because the young undergoes slow but steady change in each moult, the genitalia development is gradual. Life stages include, egg, nymphs and adults. Fig. 2. Paurometabolous development in Grasshopper In the life cycle of these insects there are three stages, e.g., egg → nymph → imago (adult). There is no pupal stage. 3. Incomplete Metamorphosis or Hemimetabolous Development: These insects also have three stages in their life namely, egg, young one and adult. e.g., dragonflies, mayflies and damselflies, the young ones are called naiads which are aquatic and respire by ex- ternal gills but the adults are terrestrial. They are different from adult in both habit and habitat. When these naiads are ready to become adult they come out of water and adult winged forms are released. The wings and genitalia develop externally but are not fully formed until adulthood. In the naiads of hemimetabolous insects there are 3 pairs of thoracic legs, a head with compound eyes, antennae and small abdomen with posterior tracheal gills. From the egg → nymph/naiad→ adult Fig. 3. Hemimetabolous development in Dragonfly 4. Complete Metamorphosis or Holometabolous Development: Complete metamorphosis or holometabolous development is a kind of rapid morphological change during post embryonic transformation in some forms of insects where larva has no similarity with the adult and there is always a pupal stage. Complete metamorphosis takes place in majority of insects, viz., beetles, caddis- flies, butterflies, moths, mosquitoes, flies, bees and wasps. Larvae of butterfly are called caterpillar. Larva differs greatly in form from adult. Compound eyes are absent in larva instead stemmata are the visual organs, mouth parts and food habits differ from adults. When the larval growth is completed, it transforms into pupa. During the non-feeding pupal stage, larval tissues disintegrate and adult organs are built up. Fig. 4. Holometabolous development in Butterfly Fig. 5. Holometabolous development in Fly 5. Hypermetamorphosis or Hypermetabolous Development: It is a kind of metamorphosis in which there are two or three distinct types of larval instars with different habits and structures found in certain insects life cycle. There are more than five larval instars. This type of metamorphosis is seen in blister beetles. Note: A larva is a motile, immature feeding stage in arthropods which is morphologically different from the adult stage. The larvae of hemimetabolous insects are called nymphs. The adult stage of holometabolous insects is called imago. Ecdysis or moulting is the periodic shedding off the old exoskeleton. The duration of the period between two successive moults of a developing insect is called stadium. The form of the developing insect between two moults is called instar. Hormonal control of Metamorphosis The postembryonic process occurs in all insects, which involves moulting in the young ones, controlled by hormones of endocrine glands. The prothoracic glands are a pair of small glands in the first thoracic segment, they produce a hormone called ecdysone which brings about moulting and development of imaginal discs and reproductive organs. The neurosecretory cells in brain secrete brain hormone which reaches corpora cardiac, a neurohormonal organ. Through this. The brain hormone is passed into circulating haemolymph and exerts its influence on prothoracic glands (PTG) and corpora allata (CA). PTG when stimulated produces ecdysone which is a moulting hormone. CA is under the control of brain hormone and produces juvenile hormone (JH), which controls PTG and also decides what type of cuticle has to be laid, (whether next larval instar or pupal stage). If the quantity of JH is large at the time of moulting, larval cuticle is formed, if the quantity is less then pupal cuticle is formed, while its absence results in the formation of adult cuticle. Thus, the juvenile hormone of corpora allata controls growth and moulting up to the end of the larval period. So long as the juvenile hormone of corpora allata is produced the final moulting into a pupa or into an adult cannot take place. Fig. 6. Principle endocrine organs and their site of action Metamorphosis of Amphibians Metamorphosis may be defined as “a rapid differentiation of adult characters after a relatively prolonged period of slow or arrested differentiation in a larva”. According to Duellman and Trueb (1986) Metamorphosis can be defined as “a radical transformation from larval life to the adult stage involving structural, physiological, bio- chemical and behavioural changes”. "Amphibian" means dual (amphi-) life form (-bian) and refers to the typical life history of these animals, in which an aquatic larva metamorphoses into a terrestrial adult. The reptiles, such as turtles, lizards, and snakes, is another class of vertebrates whose species superficially resemble adult amphibians, but they do not undergo metamorphosis. Metamorphosis differs in many different amphibian species. In frog development, the eggs hatch and give rise to tadpoles, small aquatic larvae that have external gills and are mainly vegetarian. As the tadpole grows, internal gills and limbs form. Several significant changes occur during metamorphosis into the adult, including growth of a large mouth and tongue, loss of gills, formation of lungs, growth of the front legs, and resorption of the tail. Numerous biochemical changes accompany these morphological changes, such as synthesis of a new visual pigment in the eyes and a new oxygen-binding hemoglobin protein in the blood. The adult is mainly insectivorous and partly terrestrial. The sexually mature adults of some amphibians, such as the axolotl, have a larval morphology. The retention of larval or juvenile characteristics in adulthood is defined as neoteny. Neoteny is apparently caused by a genetic mechanism which uncouples development of body cells and the development of the sexual organs. Neoteny is most apparent in amphibians, because they are normally metamorphic. Metamorphic changes of amphibians: Etkin (1968) have divided three stages: a. Premetamorphic stage: The stage is characterized by the considerable growth and development of larval structures but metamorphosis does not occur. b. Prometamorphosis: The stage is characterised by the continuous growth specially the development of limbs and initiation of metamorphic changes. c. Metamorphic climax: The stage is characterised by the radical changes in the features of the larva, and climax is considered by the loss of most larval features. Structure of a freshly hatched tadpole larva: 1. A freshly hatched tadpole larva has a limbless body. 2. The body is divided into an ovoid head, a short trunk and a slender tail. 3. A small opening situated ventrally at the root of the tail is known as anus. 4. An adhesive sucker is present on the ventral side of the head by which the tadpole larva attaches itself to the aquatic 5. The mouth is lacking and as a result it cannot take anything from outside. 6. The yolk material provides the nutrition. 7. The respiratory organs comprise of three pairs of highly vascular and branched feathery external gills. 8. After a few days the mouth is formed near the sucker. 9. A pair of horny jaws surrounds the mouth. 10. The tail becomes more elongated and develops a dorsal and a ventral fin. 11. V-shaped myotomes develop on both the sides of the tail. 12. At this time this free-swimming tadpole larva ingests aquatic weeds, as a result of which the alimentary canal becomes extremely elongated. 13. To accommodate such a long alimentary canal inside the cavity of the short trunk, it becomes spirally coiled like the spring of a watch. Structure of an advanced tadpole larva: 1. In the advanced stage, the pharynx of the tadpole larva becomes perforated by gill- slits. 2. External gills disappear and the internal gills are formed between the gill slits. 3. The gills and the gill-slits are covered by the operculum (or gill-cover). 4. Thus the tadpole larva has three pairs of external gills at the start which are subsequently replaced by three pairs of internal gills.
Recommended publications
  • From Embryogenesis to Metamorphosis: Review the Regulation and Function of Drosophila Nuclear Receptor Superfamily Members
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Cell, Vol. 83, 871-877, December 15, 1995, Copyright 0 1995 by Cell Press From Embryogenesis to Metamorphosis: Review The Regulation and Function of Drosophila Nuclear Receptor Superfamily Members Carl S. Thummel (Pignoni et al. 1990). TLL, and its murine homolog TLX, Howard Hughes Medical Institute share a unique P box and can thus bind to a sequence Eccles Institute of Human Genetics that is not recognized by other superfamily members University of Utah (AAGTCA) (Vu et al., 1994). Interestingly, overexpression Salt Lake City, Utah 84112 of TLX in Drosophila embryos yields developmental de- fects resembling those caused by ectopic TLL expression (Vu et al., 1994). In addition, TLX is expressed in the em- The discovery of the nuclear receptor superfamily and de- bryonic brain of the mouse, paralleling the expression pat- tailed studies of receptor function have revolutionized our tern of its fly homolog. Taken together, these observations understanding of hormone action. Studies of nuclear re- suggest that both the regulation and function of the TLLl ceptor superfamily members in the fruit fly, Drosophila TLX class of orphan receptors have been conserved in melanogaster, have contributed to these breakthroughs these divergent organisms. by providing an ideal model system for defining receptor The HNF4 gene presents a similar example of evolution- function in the context of a developing animal. To date, ary conservation. The fly and vertebrate HNF4 homologs 16 genes of the nuclear receptor superfamily have been have similar sequences and selectively recognize an isolated in Drosophila, all encoding members of the heter- HNF4-binding site (Zhong et al., 1993).
    [Show full text]
  • United States National Museum Bulletin 276
    ,*f»W*»"*^W»i;|. SMITHSONIAN INSTITUTION MUSEUM O F NATURAL HISTORY UNITED STATES NATIONAL MUSEUM BULLETIN 276 A Revision of the Genus Malacosoma Hlibner in North America (Lepidoptera: Lasiocampidae): Systematics, Biology, Immatures, and Parasites FREDERICK W. STEHR and EDWIN F. COOK SMITHSONIAN INSTITUTION PRESS CITY OF WASHINGTON 1968 PUBLICATIONS OF THE UNITED STATES NATIONAL MUSEUM The scientific publications of the United States National Museum include two series. Proceedings of the United States National Museum and United States National Museum Bulletin. In these series are published original articles and monographs dealing with the collections and work of the Museum and setting forth newly acquired facts in the field of anthropology, biology, geology, history, and technology. Copies of each publication are distributed to libraries and scientific organizations and to specialists and others interested in the various subjects. The Proceedings, begun in 1878, are intended for the publication, in separate form, of shorter papers. These are gathered in volumes, octavo in size, with the publication date of each paper recorded in the table of contents of the volume. In the Bulletin series, the first of which was issued in 1875, appear longer, separate publications consisting of monographs (occasionally in several parts) and volumes in which are collected works on related subjects. Bulletins are either octavo or quarto in size, depending on the needs of the presentation. Since 1902, papers relating to the botanical collections of the Museum have been published in the Bulletin series under the heading Contributions from the United States National Herbarium. This work forms number 276 of the Bulletin series.
    [Show full text]
  • (Diptera: Bombyliidae), a Parasite of the Alkali Bee
    Utah State University DigitalCommons@USU All PIRU Publications Pollinating Insects Research Unit 1960 The Biology of Heterostylum rubustum (Diptera: Bombyliidae), a Parasite of the Alkali Bee George E. Bohart Utah State University W. P. Stephen R. K. Eppley Follow this and additional works at: https://digitalcommons.usu.edu/piru_pubs Part of the Entomology Commons Recommended Citation Bohart, G. E., W. P. Stephen, and R. K. Eppley. 1960. The Biology of Heterostylum rubustum (Diptera: Bombyliidae), a Parasite of the Alkali Bee. Ann. Ent. Soc. Amer. 53(3): 425-435. This Article is brought to you for free and open access by the Pollinating Insects Research Unit at DigitalCommons@USU. It has been accepted for inclusion in All PIRU Publications by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. ( Reprinted from fu'<NALS OF THE ENTOMOLOGICAL SOCIETY OF rumRJCA Vol. 53, No. 3, May, 1960 THE BIOLOGY OF HETEROSTYLUM ROBUSTUM (DIPTERA: BOMBYLIIDAE), A PARASITE OF THE ALKALI BEE1 G . E. BOHART,' W. P. STEPHEN, Ai\ID R. K. EPPLEY3 ABSTRACT H eterostylum robustu m. (Osten Sacken) is the principal very brief second ins ta r, and a soft, helpless third ins tar , parasite of the a lkali bee (Nomia mela11deri Ckll.) in the to a tough, more active fourth instar. Some lat vae Northwestern States. It also parasitizes other species apparently mature on a single host, but others pa rt ially of Nomia and at least one species of both Nomadopsis and drain the fluids from a second as well. In the late Halictus. It eject-s eggs into and near the nest mounds summer or fall the mature larva makes an overwin tet ing of its host, but does not readily discr iminate between nest cell in the upper few inches of soil.
    [Show full text]
  • Metamorphosis Rock, Paper, Scissors Teacher Lesson Plan Animal Life Cycles Pre-Visit Lesson
    Metamorphosis Rock, Paper, Scissors Teacher Lesson Plan Animal Life Cycles Pre-Visit Lesson Duration: 30-40 minutes Overview Students will learn the stages of complete and incomplete metamorphosis Minnesota State by playing a version of Rock, Paper, Scissors. Science Standard Correlations: 3.4.3.2.1. Objectives Wisconsin State 1) Students will be able to describe the process of incomplete and Science Standard complete metamorphosis. Correlations: C.4.1, C.4.2, F 4.3 2) Students will be able to explain that animals go through the same life cycle as their parents. Supplies: 1) Smart Board or Dry Erase Board with Background Markers In order to grow, many animals have different processes they must 2) Pictures of Complete undergo. Reptiles, mammals, and birds are all born looking like miniature and Incomplete Metamorphosis (found adults. Amphibians hatch looking nothing like their adult form and must in this lesson) undergo metamorphosis, the process of transforming from one life stage to the next. Insects also undergo metamorphosis, but different species of insects will develop by two different types of metamorphosis: complete and incomplete. Complete metamorphosis has 4 steps, egg-larva-pupa- adult, and can be found in butterflies, beetles, mosquitoes and many other insects. In complete metamorphosis, young are born looking nothing like the adults. Incomplete metamorphosis has 3 steps, egg- nymph-adult, and can be found in cicadas, grasshoppers, cockroaches and many other insects. In incomplete metamorphosis, young are born looking like adults but must shed their exoskeleton many times in order to grow. Lake Superior Zoo Education Department • 7210 Fremont Street • Duluth, MN 55807 l www.LSZOODuluth.ORG • (218) 730-4500 Metamorphosis Rock, Paper, Scissors Procedure 1) Ask the students if they know what a life cycle is and explain all animals have a different life cycle.
    [Show full text]
  • What Do Insects Do for a Living?
    4/19/15 What do insects do for a living? Insect Ecology Ground-dwelling: Where are they found and what are they doing? Common habits • Detritivores and saprophages • Rhizophagous insects • Predators and ground-nesting insects • Decaying wood • Coprophages • Necrophages • Fungivores 1 4/19/15 Predators & Ground-nesters Decaying Wood • Usually associated with fungi – What else is there? • Numerous taxa – Wood wasps, bark beetles, ambrosia beetles, scavenger beetles, silken fungus beetles, dance flies, termites, cockroaches. Associations with fungi • Most have specialized Sirex wood wasp structures for carrying fungal spores: mycangia. • Why are most attracted to forest fires?: pyrophilous. 2 4/19/15 Coprophages • What are these? • What are they feeding on? • Why is this such a good lifestyle? • First colonization usually dung flies. • ~45 independent origins of viviparity. Why? Coprophages • These can get to nuisance levels. • Dung dispersers therefore provide an important ecosystem service. • Almost always Scarabaeidae 3 4/19/15 Necrophages • Often a very similar lifestyle to coprophages. • Often very closely related. • Most other origins of viviparity here. Necrophages • Often distinct succession. • Very useful for forensic entomology. • Most initial colonizers are Diptera. • Later are Coleoptera (e.g. Silphidae). • Dried are more Coleoptera (e.g. Dermestidae) • Final stages are tineid larvae (keratin) Fungivores • The true decomposers are fungi. • There is a whole guild of insects that specialize on these. 4 4/19/15 Aquatic Insects • Insecta (even Hexapoda) are plesiomorphically terrestrial. • But there have been numerous colonizations of the freshwater aquatic environment. • Far fewer colonizations of marine aquatic environment. Hemimetabolous Aquatic Insects • Some lineages have almost* exclusively aquatic naiads. – Ephemeroptera – Odonata* – Plecoptera (the only aquatic Polyneoptera) • All of these have terrestrial adults.
    [Show full text]
  • Embryology BOLK’S COMPANIONS FOR‑THE STUDY of MEDICINE
    Embryology BOLK’S COMPANIONS FOR‑THE STUDY OF MEDICINE EMBRYOLOGY Early development from a phenomenological point of view Guus van der Bie MD We would be interested to hear your opinion about this publication. You can let us know at http:// www.kingfishergroup.nl/ questionnaire/ About the Louis Bolk Institute The Louis Bolk Institute has conducted scientific research to further the development of organic and sustainable agriculture, nutrition, and health care since 1976. Its basic tenet is that nature is the source of knowledge about life. The Institute plays a pioneering role in its field through national and international collaboration by using experiential knowledge and by considering data as part of a greater whole. Through its groundbreaking research, the Institute seeks to contribute to a healthy future for people, animals, and the environment. For the Companions the Institute works together with the Kingfisher Foundation. Publication number: GVO 01 ISBN 90-74021-29-8 Price 10 € (excl. postage) KvK 41197208 Triodos Bank 212185764 IBAN: NL77 TRIO 0212185764 BIC code/Swift code: TRIONL 2U For credit card payment visit our website at www.louisbolk.nl/companions For further information: Louis Bolk Institute Hoofdstraat 24 NL 3972 LA Driebergen, Netherlands Tel: (++31) (0) 343 - 523860 Fax: (++31) (0) 343 - 515611 www.louisbolk.nl [email protected] Colofon: © Guus van der Bie MD, 2001, reprint 2011 Translation: Christa van Tellingen and Sherry Wildfeuer Design: Fingerprint.nl Cover painting: Leonardo da Vinci BOLK FOR THE STUDY OF MEDICINE Embryology ’S COMPANIONS Early Development from a Phenomenological Point of view Guus van der Bie MD About the author Guus van der Bie MD (1945) worked from 1967 to Education, a project of the Louis Bolk Instituut to 1976 as a lecturer at the Department of Medical produce a complement to the current biomedical Anatomy and Embryology at Utrecht State scientific approach of the human being.
    [Show full text]
  • Juvenile Ontogeny and Metamorphosis in the Most Primitive Living Sessile Barnacle, Neoverruca, from Abyssal Hydrothermal Springs
    BULLETIN OF MARINE SCIENCE, 45(2): 467-477. 1989 JUVENILE ONTOGENY AND METAMORPHOSIS IN THE MOST PRIMITIVE LIVING SESSILE BARNACLE, NEOVERRUCA, FROM ABYSSAL HYDROTHERMAL SPRINGS William A. Newman ABSTRACT Neoverruca brachylepadoformis Newman recently described from abyssal hydrothermal springs at 3600 m in the Mariana Trough, has the basic organization of the most primitive sessile barnacles, the extinct Brachylepadomorpha (Jurassic-Miocene). However, a subtle asymmetry diagnostic of the Verrucomorpha (Cretaceous-Recent) is superimposed on this plan, and it is evident that Neoverruca also represents a very primitive verrucomorphan. A median latus, unpredicted in such a form, occurs on one side as part of the operculum, and the outermost whorl of basal imbricating plates is the oldest, rather than the youngest as in the primitive balanomorphans, Catophragmus s.1.and Chionelasmus and as inferred in Bra- chylepas. Neoverruca is further distinguished from higher sessile barnacles in passing through a number of well developed pedunculate stages before undergoing an abrupt metamorphosis into the sessile mode. Theses unpredicted ontogenetic events in the life history of an early sessile barnacle indicate that the transitory pedunculate stage of higher sessile barnacles, first noted in Semibalanus balanoides by Darwin, reflects the compression ofpedunculatejuvenile stages into a single stage, rather than simply a vestigial reminiscence of their pedunculate ancestry. From these observations it is evident that the transition from a pedunculate to a sessile way of life was evolutionarily more complicated than previously understood, and this has a significant bearing on our understanding of the paleoecology as well as the evolution of sessile barnacles. Abyssal hydrothermal vents have yielded two remarkable endemic barnacles, Neolepas zevinae Newman (1979) from approximately 2600 m, at 13° and 21°N on the East Pacific Rise, and Neoverruca brachylepadoformis in Newman and Hessler, 1989 from approximately 3600 m in the Mariana Trough in the western Pacific.
    [Show full text]
  • Tenrold HORMONES and GOITROGEN-INDUCED METAMORPHOSIS in the SEA LAMPREY (Pett-Omyzonmarinus)
    TENROlD HORMONES AND GOITROGEN-INDUCED METAMORPHOSIS IN THE SEA LAMPREY (Pett-omyzonmarinus). Richard Giuseppe Manzon A thesis submitted in confodty with the requirements for the degree of Doctor of Philosophy Graduate Department of Zoology University of Toronto 8 Copyright by Richard Giuseppe Manzon, 2ûûû. National Library Bibliotfieque nationale: du Canada Acquisitions and AcquisitTons et BiMiogmphE Services services bibliographiques The author has granted a non- L'auteur a accorde une licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, 10- distribue or sen reproduire, prêter, distn%uerou copies of this thesis in microforni, vendre des copies de cette thèse sous paper or electronic formats. la fonne de micxofiche/nlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être ïmpthés reproduced without the author's ou autrement reproduits sans son permission. autorisation. ABSTRACT THYROlD HORMONES AND GOLTROGEN-INDUCED METAMORPHOSIS IN THE SEA LAMPREY (Petromyzon mariBus). Richard Giuseppe Manzon Doctor of Philosophy, 2000 Department of Zoology, University of Toronto The larval sea lamprey undergoes a tme metamorphosis fiom a sedentary, filter- feeding larva to a fiee-swimming, parasitic juvenile that feeds on the blooà and body fluids of teleost fishes, As is the case with arnphibians and teleosts, thyroid hormones (TH) are believed to be involved in lamprey metamorphosis.
    [Show full text]
  • The Complete Stories
    The Complete Stories by Franz Kafka a.b.e-book v3.0 / Notes at the end Back Cover : "An important book, valuable in itself and absolutely fascinating. The stories are dreamlike, allegorical, symbolic, parabolic, grotesque, ritualistic, nasty, lucent, extremely personal, ghoulishly detached, exquisitely comic. numinous and prophetic." -- New York Times "The Complete Stories is an encyclopedia of our insecurities and our brave attempts to oppose them." -- Anatole Broyard Franz Kafka wrote continuously and furiously throughout his short and intensely lived life, but only allowed a fraction of his work to be published during his lifetime. Shortly before his death at the age of forty, he instructed Max Brod, his friend and literary executor, to burn all his remaining works of fiction. Fortunately, Brod disobeyed. Page 1 The Complete Stories brings together all of Kafka's stories, from the classic tales such as "The Metamorphosis," "In the Penal Colony" and "The Hunger Artist" to less-known, shorter pieces and fragments Brod released after Kafka's death; with the exception of his three novels, the whole of Kafka's narrative work is included in this volume. The remarkable depth and breadth of his brilliant and probing imagination become even more evident when these stories are seen as a whole. This edition also features a fascinating introduction by John Updike, a chronology of Kafka's life, and a selected bibliography of critical writings about Kafka. Copyright © 1971 by Schocken Books Inc. All rights reserved under International and Pan-American Copyright Conventions. Published in the United States by Schocken Books Inc., New York. Distributed by Pantheon Books, a division of Random House, Inc., New York.
    [Show full text]
  • Browntail Moth and the Big Itch: Public Health Implications and Management of an Invasive Species
    Browntail Moth and the Big Itch: Public Health Implications and Management of an Invasive Species July 22, 2021 Jill H. Colvin, MD, FAAD MDFMR Dermatology photo credits: Jon Karnes, MD Thomas E. Klepach, PhD Assistant Professor of Biology, Colby College Ward 3 City Councilor, Waterville, Maine Financial disclosure statement Jill H Colvin MD and Thomas E. Klepach, PhD do not have a financial interest/arrangement or affiliation with any organizations that could be perceived as a conflict of interest in the context of this presentation. OBJECTIVES • Identify: • Impacts of browntail moth (BTM) infestation on humans and the environment • Review: • Presentation and treatment of BTM dermatoses • Biology of the BTM • Population trends of the BTM • BTM mitigation strategies JUNE 2021, AUGUSTA, MAINE PERVASIVE! COMPLICATIONS OF INVASIVE BROWNTAIL MOTH SOCIAL MEDIA RADIO ARBORISTS PHARMACY NEWSPAPERS FRIENDS COLLEAGUES HEALTH CARE FAMILY TEXTS TOURISM PATIENTS MAINE.GOV SELF REALTY PHONE CALLS ACTIVISM TREES SOCIAL MEDIA IMPACT: TOURISM, REAL ESTATE, DAILY LIFE Maine.gov Maine.gov Photo credit: Jon Karnes, MD Photo credit: Robert Kenney, DO BTM: Risk to Human Health Mediated by: Toxic hairs on caterpillars, female moths, environment Direct contact Airborne Damage skin, eye, airway in multiple ways Mechanical: Barbs on hair Chemical: toxin Irritant Allergen One report of Death – 1914: ”severe internal poisoning caused by inhaling the hairs” Definitions Lepidopterism is the term for cutaneous and systemic reactions that result from contact with larvae (ie, caterpillars) or adult forms of moths and butterflies (order, Lepidoptera). Erucism (from Latin "eruca," caterpillar) is also used to refer to reactions from contact with caterpillars. photo credit: Jon Karnes, MD “The BTM, its caterpillar and their rash” Clinical and Experimental Dermatology (1979), Cicely P.
    [Show full text]
  • Entomologia Experimentalis Et Applicata 150: 217–225, 2014 217 218 Murphy Et Al
    DOI: 10.1111/eea.12155 Host ontogeny determines parasitoid use of a forest caterpillar Shannon M. Murphy1*, Teresa M. Stoepler2§, Kylee Grenis1 & John T. Lill2 1Department of Biological Sciences, University of Denver, Denver, CO, USA, and 2Department of Biological Sciences, George Washington University, Washington, DC, USA Accepted: 5 November 2013 Key words: complementary predation, niche partitioning, ontogenetic niche, size-structured parasitism, trophic interaction, Euclea delphinii,Limacodidae,Lepidoptera,Hymenoptera,Diptera Abstract For most organisms, patterns of natural enemy-mediated mortality change over the course of devel- opment. Shifts in enemy pressure are particularly relevant for organisms that exhibit exponential growth during development, such as juvenile insects that increase their mass by several orders of magnitude. As one of the dominant groups of insect herbivores in most terrestrial plant communi- ties, larval lepidopterans (caterpillars) are host to a diverse array of parasitoids. Previous research has described how the frequency of herbivore parasitism varies among host plants or habitats, but much less is known about how parasitism pressure changes during host development. To test whether the two major parasitoid taxa, wasps and flies, differentially attack shared hosts based on host develop- mental stage, we simultaneously exposed early- and late-instar Euclea delphinii Boisduval (Lepido- ptera: Limacodidae) caterpillars to parasitism in the field. We found strong evidence that parasitoids partition hosts by size; adult female wasps preferentially parasitized small caterpillars, whereas adult female flies preferred to attack large caterpillars. Our results demonstrate that host ontogeny is a major determinant of parasitoid host selection. Documenting how shifts in enemy pressure vary with development is important to understanding both the population biology and evolutionary ecology of prey species and their enemies.
    [Show full text]
  • Arthropods of Public Health Significance in California
    ARTHROPODS OF PUBLIC HEALTH SIGNIFICANCE IN CALIFORNIA California Department of Public Health Vector Control Technician Certification Training Manual Category C ARTHROPODS OF PUBLIC HEALTH SIGNIFICANCE IN CALIFORNIA Category C: Arthropods A Training Manual for Vector Control Technician’s Certification Examination Administered by the California Department of Health Services Edited by Richard P. Meyer, Ph.D. and Minoo B. Madon M V C A s s o c i a t i o n of C a l i f o r n i a MOSQUITO and VECTOR CONTROL ASSOCIATION of CALIFORNIA 660 J Street, Suite 480, Sacramento, CA 95814 Date of Publication - 2002 This is a publication of the MOSQUITO and VECTOR CONTROL ASSOCIATION of CALIFORNIA For other MVCAC publications or further informaiton, contact: MVCAC 660 J Street, Suite 480 Sacramento, CA 95814 Telephone: (916) 440-0826 Fax: (916) 442-4182 E-Mail: [email protected] Web Site: http://www.mvcac.org Copyright © MVCAC 2002. All rights reserved. ii Arthropods of Public Health Significance CONTENTS PREFACE ........................................................................................................................................ v DIRECTORY OF CONTRIBUTORS.............................................................................................. vii 1 EPIDEMIOLOGY OF VECTOR-BORNE DISEASES ..................................... Bruce F. Eldridge 1 2 FUNDAMENTALS OF ENTOMOLOGY.......................................................... Richard P. Meyer 11 3 COCKROACHES ...........................................................................................
    [Show full text]