(Heteroptera: Thaumastocoridae) at Different Temperatures

Total Page:16

File Type:pdf, Size:1020Kb

(Heteroptera: Thaumastocoridae) at Different Temperatures www.nature.com/scientificreports OPEN Biological parameters, life table and thermal requirements of Thaumastocoris peregrinus Received: 2 July 2018 Accepted: 11 April 2019 (Heteroptera: Thaumastocoridae) Published: xx xx xxxx at diferent temperatures L. R. Barbosa1, F. Santos2, E. P. Soliman3, A. P. Rodrigues1, C. F. Wilcken3, J. M. Campos4, A. J. V. Zanuncio5 & J. C. Zanuncio6 Temperature afects the development, population dynamics, reproduction and population size of insects. Thaumastocoris peregrinus Carpintero et Dellape (Heteroptera: Thaumastocoridae) is a eucalyptus pest. The objective of this study was to determine biological and life table parameters of T. peregrinus on Eucalyptus benthamii at fve temperatures (18 °C; 22 °C; 25 °C; 27 °C and 30 °C) with a relative humidity (RH) of 70 ± 10% and photoperiod of 12 hours. The duration of each instar and the longevity of this insect were inversely proportional to the temperature, regardless of sex. The nymph stage of T. peregrinus was 36.4 days at 18 °C and 16.1 days at 30 °C. The pre-oviposition period was 5.1 days at 30 °C and 13.1 days at 18 °C and that of oviposition was 7.6 days at 30 °C and 51.2 days at 22 °C. The generation time (T) of T. peregrinus was 27.11 days at 22 °C and 8.22 days at 30 °C. Lower temperatures reduced the development and increased the life stage duration of T. peregrinus. Optimum temperatures for T. peregrinus development and reproduction were 18 and 25 °C, respectively. Te frequent introduction and establishment of exotic insect pests on eucalyptus plantations in Brazil are impact- ing and reducing productivity. Te bronze bug Taumastocoris peregrinus Carpintero & Dellapé (Hemiptera: Taumastocoridae), an Australian eucalyptus pest was frst recorded in Brazil in 20091. At high infestations, this insect decreases the photosynthetic rate, leading to partial or total plant defoliation, and in some cases, plant death2,3. Studies have focused on the biology4–6, chemical control7, chemical ecology8,9, morfology10, remote sensing for monitoring11,12 and biological control13–16 of this pest, aiming to minimize losses. However, the efect of temper- ature on the biological parameters of this species is not yet well known. Ambient temperature is one of the most important abiotic factors afecting the survival, development rate, abundance, behavior and ftness of insects17–20. In fact, each insect species has an optimum temperature at which they thrive, with lower and upper limits for development21,22. High temperatures can decrease fecundity, hatch- ing and survival of these organisms23, while low temperatures can afect the sex ratio (reduce male proportion), behavior, and population distribution of insects24. Te study of temperature in life-history variables, such as nymph development period, adult longevity and fecundity is crucial to the development of pest-management strategies25. Te temperature decrease Parapoynx crisonalis (Lepidoptera: Pyralidae) life tables26 and Brachmia macroscopa (Lepidoptera: Gelechiidae) development 1Empresa Brasileira de Pesquisa Agropecuária- Embrapa Florestas, 83411-000, Colombo, Paraná, Brazil. 2Departamento de Entomologia e Acarologia, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, 13418-900, Piracicaba, São Paulo, Brazil. 3Departamento de Proteção Vegetal, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, 18610-307, Botucatu, São Paulo, Brazil. 4Departamento de Fitotecnia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil. 5Departamento de Engenharia Florestal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil. 6Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil. Correspondence and requests for materials should be addressed to L.R.B. (email: [email protected]) SCIENTIFIC REPORTS | (2019) 9:10174 | https://doi.org/10.1038/s41598-019-45663-5 1 www.nature.com/scientificreports/ www.nature.com/scientificreports °C First instar Second Tird Fourth Fifh Ny-Ad. 6.79 ± 0.23a 6.30 ± 0.21a 6.02 ± 0.23a 6.93 ± 0.22ª 10.42 ± 0.31a 36.37 ± 0.26ª 18 °C n = 84 n = 75 n = 71 n = 63 n = 58 n = 52 6.46 ± 0.14a 5.59 ± 0.17a 5.97 ± 0.21a 6.02 ± 0.26b 8.78 ± 0.29b 32.47 ± 0.33b 22 °C n = 93 n = 82 n = 70 n = 63 n = 51 n = 36 4.561 ± 0.13b 3.82 ± 0.11b 4.05 ± 0.11b 4.24 ± 0.09c 6.15 ± 0.14c 22.69 ± 0.16c 25 °C n = 87 n = 81 n = 74 n = 65 n = 60 n = 52 4.07 ± 0.12c 3.45 ± 0.11b 3.58 ± 0.16c 3.90 ± 0.14c 5.34 ± 0.24 cd 20.0 ± 0.25d 27 °C n = 78 n = 71 n = 60 n = 52 n = 41 n = 33 3.45 ± 0.11d 2.81 ± 0.09c 2.69 ± 0.12d 2.97 ± 0.23d 4.43 ± 0.26d 16.13 ± 0.20e 30 °C n = 81 n = 77 n = 58 n = 45 n = 35 n = 23 Table 1. Duration (mean ± SE) of each instar and of the nymph period (days) (Ny-Ad.) of Taumastocoris peregrinus (Heteroptera: Taumastocoridae) reared at diferent temperatures, RH of 60 ± 10% and photoperiod 12:12 (L: D) h. Means followed by the same letter per line do not difer by the Tukey test (p ≤ 0.05). °C 18 °C 22 °C 25 °C 27 °C 30 °C N 20 11 20 13 8 Preov 13.10 ± 0.61ª 9.09 ± 0.41b 6.20 ± 0.24c 6.31 ± 0.59c 5.13 ± 0.55c Ovip. (days) 36.3 ± 3.8ab 51.2 ± 6.4b 29.9 ± 6.4a 21.5 ± 3.4a 7.6 ± 3.4c Eggs/female 45.9 ± 4.6ab 64.0 ± 9.08b 58.1 ± 8.5ab 49.08 ± 9.18ab 22.8 ± 12.5a Eggs/fem./day 1.1 ± 0.1ª 1.2 ± 0.09ab 1.6 ± 0.1bc 1.9 ± 0.19c 1.8 ± 0.4ac Fem. Long. (days) 41.84 ± 3.9cd 53.6 ± 6.2b 34.3 ± 3.6bc 24.69 ± 3.11ab 10.4 ± 3.4a Male Long. (days) 57.4 ± 3.4c 54.1 ± 7.0c 35.4 ± 1.8b 32.62 ± 3.29b 11.3 ± 2.9a Sex ratio* 0.48ª 0.58ª 0.48ª 0.53a 0.61a Table 2. Duration (mean ± SE) of the pre-oviposition (Preov.) and oviposition (Ovip.) (days), eggs per female (Eggs/female), eggs/female/day (Eggs/fem./day) and female (Fem. Long.) and male (Male Long.) longevity of Taumastocoris peregrinus (Heteroptera: Taumastocoridae) males and females at diferent temperatures, RH of 60 ± 10% and photoperiod 24:12 (L: D) h. Means followed by the same letter per line do not difer by Tukey test (p ≤ 0.05). and fecundity27. Tus, the objective of this study was to evaluate the efect of diferent temperatures on biological parameters of T. peregrinus. Results Nymph development. The nymph development period of T. peregrinus differed across temperatures (Kruskal-Wallis on ranks; df = 4, H = 168.42, P < 0.001) (Table 1). Furthermore, this parameter afected the dura- tion of each instar (frst-instar, Kruskal-Wallis on ranks; df = 4, H = 219.31, P < 0.001; second instar, Kruskal- Wallis on ranks; df = 4, H = 198.67, P < 0.001; third instar, Kruskal-Wallis on ranks; df = 4, H = 172.49, P < 0.001; fourth instar, Kruskal-Wallis on ranks; df = 4, H = 134.77, P < 0.001; and ffh instar, Kruskal-Wallis on ranks; df = 4, H = 126.4, P < 0.001) of this insect. Adult reproduction and longevity. Te pre-oviposition period of T. peregrinus decreased linearly with increased temperature, ranging from 13 (18 °C) to 5 (30 °C) days (Table 2). Te fertility of this insect was similar at 22 °C (64 eggs), 18 °C (45.9 eggs), 25 °C (58.1) and 27 °C (49.1), while it was lower at 30 °C (22 eggs) (Table 2). Female longevity of T. peregrinus was longest at 22 °C (53 days) and that of males at 18 to 22 °C (57 and 54 days, respectively) (Table 2). Temperature did not afect the sex ratio of this insect (GLM-binomial: χ2190 = 1.96, p = 0.74) (Table 2). Survival analysis. Temperature afected the survival rates of T. peregrinus nymphs (Mantel-Haenzel Test; χ2 = 53.6, P < 0·0001) (Fig. 1A), females (Mantel-Haenzel Test; χ2 = 60.9, P < 0·0001) (Fig. 1B), and males (Mantel-Haenzel Test; χ2 = 103, P < 0.0001) (Fig. 1C). Survival analysis using the Cox’s Proportional Hazards model showed a higher death risk (hazard ratio; HR) for nymphs and adults (females and males) of T. peregrinus as temperature increased (Table 3) and (Fig. 2). Threshold development and thermal constants. Te linear regression estimative for the tempera- ture limit of T. peregrinus frst, second, third, fourth and ffh instars was 7.70, 9.85, 10.33, 10.24 and 10.45 °C, respectively (Fig. 1). Te T. peregrinus thermal constant (K) per instar was 79.34 degree-day (DD) (frst), 58.58 DD (second), 55.57 DD (third), 62.24 DD (fourth) and 88.91 DD (ffh). Te accumulated temperature for the nymph-to-adult period of this insect was 338.50 DD, with a temperature limit of 9.93 °C (Fig. 1). Life table. Te net reproductive rate (R0) of T. peregrinus was higher at 25 °C (6.39) and 18 °C (4.45), the latter being similar to that at 22 °C (4.00). Te net reproduction rate was lower at 30 °C (0.13). Te generation time (T) SCIENTIFIC REPORTS | (2019) 9:10174 | https://doi.org/10.1038/s41598-019-45663-5 2 www.nature.com/scientificreports/ www.nature.com/scientificreports Figure 1. Relationship between temperature, development speed (1/days) of nymph and period of nymph- adult of Taumastocoris peregrinus (Heteroptera: Taumastocoridae), RH of 60 ± 10% and photoperiod 12:12 (L: D) h.____Development time (Days) Velocity of development (1/D).
Recommended publications
  • ANÁLISE MORFOANATÔMICA DE FOLHAS E CAULES E ANÁLISE QUÍMICA E BIOLÓGICA DO ÓLEO ESSENCIAL DE Eucalyptus Saligna Sm.(MYRTACEAE)
    UNIVERSIDADE ESTADUAL DE PONTA GROSSA PRO-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DA SAÚDE CAROLINA CERIANI SAULLE ANÁLISE MORFOANATÔMICA DE FOLHAS E CAULES E ANÁLISE QUÍMICA E BIOLÓGICA DO ÓLEO ESSENCIAL DE Eucalyptus saligna Sm.(MYRTACEAE) PONTA GROSSA 2018 CAROLINA CERIANI SAULLE ANÁLISE MORFOANATÔMICA DE FOLHAS E CAULES E ANÁLISE QUÍMICA E BIOLÓGICA DO ÓLEO ESSENCIAL DE Eucalyptus saligna Sm.(MYRTACEAE) Dissertação apresentada como requisito parcial à obtenção do grau de Mestre em Ciências da Saúde pelo Programa de Pós-graduação em Ciências da Saúde, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa. Orientadora: Profa. Dra. Jane Manfron Budel Coorientador: Prof. Dr. Paulo Vitor Farago PONTA GROSSA 2018 Ficha Catalográfica Elaborada pelo Setor de Tratamento da Informação BICEN/UEPG Saulle, Carolina Ceriani S256 Análise morfoanatômica de folhas e caules e análise química e biológica do óleo essencial de Eucalyptus saligna Sm.(Myrtaceae)/ Carolina Ceriani Saulle. Ponta Grossa, 2018. 97f. Dissertação (Mestrado em Ciências da Saúde - Área de Concentração: Atenção Interdisciplinar em Saúde), Universidade Estadual de Ponta Grossa. Orientadora: Profª Drª Jane Manfron Budel. Coorientador: Prof. Dr. Paulo Vitor Farago. 1.Atividade antimicrobiana. 2.Atividade antioxidante. 3.Citotoxicidade. 4.Morfoanatomia. 5.Óleo essencial. I.Budel, Jane Manfron. II. Farago, Paulo Vitor. III. Universidade Estadual de Ponta Grossa. Mestrado em Ciências da Saúde. IV. T. CDD: 616.01 CAROLINA CERIANI SAULLE ANÁLISE MORFOANATÔMICA DE FOLHAS E CAULES E ANÁLISE QUÍMICA E BIOLÓGICA DO ÓLEO ESSENCIAL DE Eucalyptus saligna Sm.(MYRTACEAE) Dissertação apresentada para obtenção do título de mestre na Universidade Estadual de Ponta Grossa, Área de Atenção Interdisciplinar em Saúde, Programa de Pós Graduação em Ciências da Saúde.
    [Show full text]
  • The Native Vegetation of the Nattai and Bargo Reserves
    The Native Vegetation of the Nattai and Bargo Reserves Project funded under the Central Directorate Parks and Wildlife Division Biodiversity Data Priorities Program Conservation Assessment and Data Unit Conservation Programs and Planning Branch, Metropolitan Environmental Protection and Regulation Division Department of Environment and Conservation ACKNOWLEDGMENTS CADU (Central) Manager Special thanks to: Julie Ravallion Nattai NP Area staff for providing general assistance as well as their knowledge of the CADU (Central) Bioregional Data Group area, especially: Raf Pedroza and Adrian Coordinator Johnstone. Daniel Connolly Citation CADU (Central) Flora Project Officer DEC (2004) The Native Vegetation of the Nattai Nathan Kearnes and Bargo Reserves. Unpublished Report. Department of Environment and Conservation, CADU (Central) GIS, Data Management and Hurstville. Database Coordinator This report was funded by the Central Peter Ewin Directorate Parks and Wildlife Division, Biodiversity Survey Priorities Program. Logistics and Survey Planning All photographs are held by DEC. To obtain a Nathan Kearnes copy please contact the Bioregional Data Group Coordinator, DEC Hurstville Field Surveyors David Thomas Cover Photos Teresa James Nathan Kearnes Feature Photo (Daniel Connolly) Daniel Connolly White-striped Freetail-bat (Michael Todd), Rock Peter Ewin Plate-Heath Mallee (DEC) Black Crevice-skink (David O’Connor) Aerial Photo Interpretation Tall Moist Blue Gum Forest (DEC) Ian Roberts (Nattai and Bargo, this report; Rainforest (DEC) Woronora, 2003; Western Sydney, 1999) Short-beaked Echidna (D. O’Connor) Bob Wilson (Warragamba, 2003) Grey Gum (Daniel Connolly) Pintech (Pty Ltd) Red-crowned Toadlet (Dave Hunter) Data Analysis ISBN 07313 6851 7 Nathan Kearnes Daniel Connolly Report Writing and Map Production Nathan Kearnes Daniel Connolly EXECUTIVE SUMMARY This report describes the distribution and composition of the native vegetation within and immediately surrounding Nattai National Park, Nattai State Conservation Area and Bargo State Conservation Area.
    [Show full text]
  • Eucalyptus 2018 17-21 September 2018, Le Corum, Montpellier - France
    Eucalyptus 2018 17-21 September 2018, Le Corum, Montpellier - France Eucalyptus 2018 Managing Eucalyptus plantations under global changes Abstracts Book Foreword Eucalyptus trees cover about 20 million hectares in more than 90 countries around the world with major centers in Brazil (5.7 m ha), India (3.9 m ha) and China (4.5 m ha). Eucalypts are widely grown in commercial plantations to produce raw material for the industry (pulp and paper, charcoal, sawn timber, wood panels) but also in small woodlots for the production of firewood and charcoal for domestic uses. The considerable expansion of these plantations in recent decades reflects major competitive advantages of eucalypts relative to other tree species in terms of productivity, tolerance to biotic and abiotic stresses, wood quality for a wide variety of uses and ability to be managed in coppice. However, the requirements in water and nutrients of eucalypt trees are high to reach high biomass productions and the environmental impact of the silviculture is still a matter of debate. In a context of global changes with more frequent drought events, temperature rise and rapid expansion of pests and diseases, the sustainability of eucalypt plantations is of concern in many regions. Interdisciplinary research is urgently needed to improve the adaptation of eucalypt plantations to global changes. Cirad and I-Site MUSE organize an international conference under the auspices of IUFRO (Division 2.08.03 Improvement and culture of eucalypts and Division 1.02.01 Ecology and silviculture of plantation forests in the tropics) to present recent advances likely to improve the management of eucalypt plantations in tropical, sub-tropical and Mediterranean regions.
    [Show full text]
  • Insects and Molluscs, According to the Procedures Outlined Below
    Bush Blitz – ACT Expedition 26 Nov – 6 Dec 2018 ACT Expedition Bush Blitz Hemiptera, Hymenoptera, Lepidoptera, Orthoptera, Terrestrial molluscs 26 Nov – 6 Dec 2018 Submitted: 5 April 2019 Debbie Jennings and Olivia Evangelista Nomenclature and taxonomy used in this report is consistent with: The Australian Faunal Directory (AFD) http://www.environment.gov.au/biodiversity/abrs/online-resources/fauna/afd/home Page 1 of 43 Bush Blitz – ACT Expedition 26 Nov – 6 Dec 2018 Contents Contents .................................................................................................................................. 2 List of contributors ................................................................................................................... 3 Abstract ................................................................................................................................... 4 1. Introduction ...................................................................................................................... 4 2. Methods .......................................................................................................................... 6 2.1 Site selection ............................................................................................................. 6 2.2 Survey techniques ..................................................................................................... 6 2.2.1 Methods used at standard survey sites ................................................................... 7 2.3 Identifying
    [Show full text]
  • Regional Pest Management Strategy 2012–17: Blue Mountains Region
    Regional Pest Management Strategy 2012–17: Blue Mountains Region A new approach for reducing impacts on native species and park neighbours © Copyright Office of Environment and Heritage on behalf of State of NSW With the exception of photographs, the Office of Environment and Heritage and State of NSW are pleased to allow this material to be reproduced in whole or in part for educational and non-commercial use, provided the meaning is unchanged and its source, publisher and authorship are acknowledged. Specific permission is required for the reproduction of photographs (OEH copyright). The New South Wales National Parks and Wildlife Service (NPWS) is part of the Office of Environment and Heritage (OEH). Throughout this strategy, references to NPWS should be taken to mean NPWS carrying out functions on behalf of the Director General of the Department of Premier and Cabinet, and the Minister for the Environment. For further information contact: Blue Mountains Region Metropolitan and Mountains Branch National Parks and Wildlife Service Office of Environment and Heritage Department of Premier and Cabinet PO Box 552 Katoomba NSW 2780 Phone: (02) 4784 7300 Report pollution and environmental incidents Environment Line: 131 555 (NSW only) or [email protected] See also www.environment.nsw.gov.au/pollution. Published by: Office of Environment and Heritage 59–61 Goulburn Street, Sydney, NSW 2000 PO Box A290, Sydney South, NSW 1232 Phone: (02) 9995 5000 (switchboard) Phone: 131 555 (environment information and publications requests) Phone: 1300 361 967 (national parks, climate change and energy efficiency information and publications requests) Fax: (02) 9995 5999 TTY: (02) 9211 4723 Email: [email protected] Website: www.environment.nsw.gov.au ISBN 978 1 74293 621 5 OEH 2012/0370 August 2013 This plan may be cited as: OEH 2012, Regional Pest Management Strategy 2012–17, Blue Mountains Region: a new approach for reducing impacts on native species and park neighbours, Office of Environment and Heritage, Sydney.
    [Show full text]
  • Tmcm1de1.Pdf
    Departament de Biologia Facultat de Ciències Hybridization patterns in Balearic endemic plants assessed by molecular and morphological markers — Ph. D. Thesis — Miquel Àngel Conesa Muñoz Supervisors: Dr. Maurici Mus Amézquita (Universitat de les Illes Balears) Dr. Josep Antoni Rosselló Picornell (Universitat de València) May 2010 Palma de Mallorca El doctor Maurici Mus Amézquita, professor titular de la Universitat de les Illes Balears, i el doctor Josep Antoni Rosselló Picornell, professor titular de la Universitat de València, CERTIFIQUEN: Que D. Miquel Àngel Conesa Muñoz ha realitzat, baix la seva direcció en el Laboratori de Botànica de la Universitat de les Illes Balears i en el Departament de Botànica del Jardí Botànic de la Universitat de València, el treball per optar al grau de Doctor en Biologia de les Plantes en Condicions Mediterrànies, amb el títol: “HYBRIDIZATION PATTERNS IN BALEARIC ENDEMIC PLANTS ASSESSED BY MOLECULAR AND MORPHOLOGICAL MARKERS” Considerant finalitzada la present memòria, autoritzem la seva presentació amb la finalitat de ser jutjada pel tribunal corresponent. I per tal que així consti, signem el present certificat a Palma de Mallorca, a 27 de maig de 2010. Dr. Maurici Mus Dr. Josep A. Rosselló 1 2 A la meva família, als meus pares. 3 4 Agraïments - Acknowledgements En la vida tot arriba. A moments semblava que no seria així, però aquesta tesi també s’ha acabat. Per arribar avui a escriure aquestes línies, moltes persones han patit amb mi, per mi, o m’han aportat el seu coneixement i part del seu temps. Així doncs, merescut és que els recordi aquí. Segurament deixaré algú, que recordaré quan ja sigui massa tard per incloure’l.
    [Show full text]
  • The Vegetation of Granitic Outcrop Communities on the New England Batholith of Eastern Australia
    547 The vegetation of granitic outcrop communities on the New England Batholith of eastern Australia John T. Hunter and Peter J. Clarke Hunter, John T. and Clarke, Peter J. (Division of Botany, University of New England, Armidale, NSW 2350) 1998. The vegetation of granitic outcrop communities on the New England Batholith of eastern Australia. Cunninghamia 5 (3): 547–618. The vegetation of 22 areas of granitic outcrops on the New England Batholith has been surveyed using semi-quantitative quadrat sampling. In total 399 0.1 ha quadrats were placed on 216 outcrops. Twenty-eight plant communities in nine major groups and an additional unsurveyed community are circumscribed. A high number of nationally rare or threatened taxa, many of which are restricted to outcrop areas, have been found in these communities along with many taxa of special note. Previous studies have over-emphasised structure which can vary considerably with negligible floristic change. Suggestions are made on potential areas for reservation. Introduction Studies concentrating on the vegetation of granitic outcrops have been undertaken throughout the world (e.g. Whitehouse 1933; Oosting & Anderson 1937; McVaugh 1943; Keever et al. 1951; Keever 1957; Hambler 1964; Murdy et al. 1970; Sharitz & McCormick 1973; Rundel 1975; Shure & Fagsdale 1977; Wyatt 1977; Phillips 1981; Phillips 1982; Wyatt 1981; Baskin & Baskin 1982; Walters 1982; Burbanck & Phillips 1983; Wyatt 1984a, b; Uno & Collins 1987; Baskin & Baskin 1988; Houle & Phillips 1988; Houle & Phillips 1989a, b; Houle 1990; Porembski et al. 1994; Ibisch et al. 1995; Porembski 1995; Porembski et al. 1996). Research into outcrops, and in particular granitic outcrops, has culminated in the formation of the ‘Inselberg-Projeckt’ supported by the Deutsche Forschungsge-meinschaft (Porembski et al.
    [Show full text]
  • Feeding and Oviposition Preferences of Ctenarytaina Spatulata Taylor 149 SHORT COMMUNICATION
    Feeding and oviposition preferences of Ctenarytaina spatulata Taylor 149 SHORT COMMUNICATION Feeding and oviposition preferences of Ctenarytaina spatulata Taylor (Hemiptera, Psyllidae) for Eucalyptus spp. and other Myrtaceae in Brazil Dalva Luiz de Queiroz1, Keti M. R. Zanol2, Edílson B. Oliveira1, Norivaldo dos Anjos3 & Jonathan Majer4 1Embrapa Florestas, Estrada da Ribeira, Km 111, Caixa Postal 319, 83411-000 Colombo-PR, Brazil. [email protected] 2Departmento de Zoologia, Universidade Federal de Paraná, Caixa Postal 19020, 81513-990 Curitiba-PR, Brazil. [email protected] 3Departmento de Biologia Animal, Universidade Federal de Viçosa, 36570-000 Viçosa-MG, Brazil. [email protected] 4Department of Environmental Biology, Curtin University of Technology, P. O. Box U 1987, Perth-WA 6845, Australia. [email protected] ABSTRACT. Feeding and oviposition preferences of Ctenarytaina spatulata Taylor (Hemiptera, Psyllidae) for Eucalyptus spp. and other Myrtaceae in Brazil. The Australian psyllid, Ctenarytaina spatulata Taylor (Hemiptera, Psyllidae), was first detected in Brazil in 1994, where it was found on drought-affected shoots of Eucalyptus grandis in a plantation located in the northern part of Paraná State. The oviposition and feeding preferences of this psyllid were examined on 19 Eucalyptus species, one Eucalyptus hybrid (Cambiju), three Corymbia species and four native Myrtaceae species (Hexaclames edulis, Marlieria edulis, Plinia trunciflora, and Psydium sp.) under greenhouse conditions. The largest populations of C. spatulata were found on E. robusta and E. pellita, while sizeable infestations were also found on E. urophylla, E. grandis, and the Cambiju hybrid. The plants with the greatest symptoms of damage were E. grandis and E. resinifera. Eucalyptus cinerea, E.
    [Show full text]
  • Ornamental Plants in Different Approaches
    Ornamental Plants in Different Approaches Assoc. Prof. Dr. Arzu ÇIĞ cultivation sustainibility ecology propagation ORNAMENTAL PLANTS IN DIFFERENT APPROACHES EDITOR Assoc. Prof. Dr. Arzu ÇIĞ AUTHORS Atilla DURSUN Feran AŞUR Husrev MENNAN Görkem ÖRÜK Kazım MAVİ İbrahim ÇELİK Murat Ertuğrul YAZGAN Muhemet Zeki KARİPÇİN Mustafa Ercan ÖZZAMBAK Funda ANKAYA Ramazan MAMMADOV Emrah ZEYBEKOĞLU Şevket ALP Halit KARAGÖZ Arzu ÇIĞ Jovana OSTOJIĆ Bihter Çolak ESETLILI Meltem Yağmur WALLACE Elif BOZDOGAN SERT Murat TURAN Elif AKPINAR KÜLEKÇİ Samim KAYIKÇI Firat PALA Zehra Tugba GUZEL Mirjana LJUBOJEVIĆ Fulya UZUNOĞLU Nazire MİKAİL Selin TEMİZEL Slavica VUKOVIĆ Meral DOĞAN Ali SALMAN İbrahim Halil HATİPOĞLU Dragana ŠUNJKA İsmail Hakkı ÜRÜN Fazilet PARLAKOVA KARAGÖZ Atakan PİRLİ Nihan BAŞ ZEYBEKOĞLU M. Anıl ÖRÜK Copyright © 2020 by iksad publishing house All rights reserved. No part of this publication may be reproduced, distributed or transmitted in any form or by any means, including photocopying, recording or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. Institution of Economic Development and Social Researches Publications® (The Licence Number of Publicator: 2014/31220) TURKEY TR: +90 342 606 06 75 USA: +1 631 685 0 853 E mail: [email protected] www.iksadyayinevi.com It is responsibility of the author to abide by the publishing ethics rules. Iksad Publications – 2020© ISBN: 978-625-7687-07-2 Cover Design: İbrahim KAYA December / 2020 Ankara / Turkey Size = 16 x 24 cm CONTENTS PREFACE Assoc. Prof. Dr. Arzu ÇIĞ……………………………………………1 CHAPTER 1 DOUBLE FLOWER TRAIT IN ORNAMENTAL PLANTS: FROM HISTORICAL PERSPECTIVE TO MOLECULAR MECHANISMS Prof.
    [Show full text]
  • Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
    ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4.
    [Show full text]
  • Mini Data Sheet on Thaumastocoris Peregrinus
    EPPO, 2015 Mini data sheet on Thaumastocoris peregrinus Added in 2012 – Deleted in 2015 Reasons for deletion: Thaumastocoris peregrinus has been included in EPPO Alert List for more than 3 years and during this period no particular international action was requested by the EPPO member countries (in this particular case, a specific letter had been sent to eucalyptus-growing countries). The Panel on Quarantine Pests for Forestry and the Panel on Phytosanitary Measures agreed that it could be deleted. In 2015, it was therefore considered that sufficient alert has been given and the pest was deleted from the Alert List. Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae) – Bronze bug Why Thaumastocoris peregrinus is native to Australia where it feeds on a wide range of Eucalyptus species. The insect has become a pest on Eucalyptus trees in Sydney (AU) where heavy infestations are found on street and garden trees. In 2003, T. peregrinus was first detected in South Africa and in 2005 in Argentina. It has since spread to Eucalyptus trees in Brazil, Uruguay, Chile, Paraguay, Malawi, Kenya, Zimbabwe, Italy and New Zealand. In some cases, heavy infestations have led to tree mortality. Considering the invasive behaviour of this insect and its potential damage to eucalyptus trees, the EPPO Secretariat added T. peregrinus to the Alert List. Where Originating from Australia, in the last decade it has spread to many other countries in different parts of the world. EPPO region: Italy (first found in 2011, Lazio region – then found in Campania and Sicilia), Portugal (first found in 2012 near Lisbon). Africa: Kenya, Malawi, South Africa, Zimbabwe.
    [Show full text]
  • Pavlostysia Wunderlichi Gen. Nov. and Sp. Nov., the First Fossil Spider-Web
    ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Published 8.xii.2008 Volume 48(2), pp. 497-502 ISSN 0374-1036 Pavlostysia wunderlichi gen. nov. and sp. nov., the fi rst fossil spider-web bug (Hemiptera: Heteroptera: Cimicomorpha: Plokiophilidae) from the Baltic Eocene amber Yuri A. POPOV Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya str. 123, 117997 Moscow, Russia; e-mail: [email protected], [email protected] Abstract. Pavlostysia wunderlichi gen. nov. and sp. nov., a remarkable new fossil genus and species of the cimicomorphan family Plokiophilidae, is described from Baltic amber. Key words. Heteroptera, Cimicomorpha, Plokiophilidae, taxonomy, new genus, new species, fossil, comparative notes, Baltic amber Introduction The present paper is a continuation of a series devoted to fossil true bugs described or recorded so far from different types of amber (mainly Baltic and Dominican amber). The fossil fauna in the Eocene Baltic amber has certain similarities with the extant Oriental, Ethiopian, and Australian faunas (WUNDERLICH 1986) and the fauna of Central America. This opinion is supported, e.g., by the occurrence of some reduviids from the Oriental subfamily Centrocneminae in Baltic amber (PUTSHKOV & POPOV 1993, POPOV & PUTSHKOV 1998). Fami- lies known at present only from Southern Hemisphere also occur in Baltic amber, e.g., the Thaumastocoridae (Proxylastodoris gerdae Bechly & Wittmann, 2000); recent representatives of this family show a discontinuous distribution in South America, the Caribbean, Australia, and Southern India (BECHLY & WITTMANN 2000, HEISS & POPOV 2002). A record of the small arachnophilic family Plokiophilidae from Baltic amber is there- fore not totally unexpected. The fi rst record of a fossil Plokiophilidae from Baltic amber, described here as Pavlostysia wunderlichi gen.
    [Show full text]