Loss-Of-Function Mutations in ATP6AP1 and ATP6AP2 in Granular Cell Tumors

Total Page:16

File Type:pdf, Size:1020Kb

Loss-Of-Function Mutations in ATP6AP1 and ATP6AP2 in Granular Cell Tumors Thomas Jefferson University Jefferson Digital Commons Department of Pathology, Anatomy, and Cell Department of Pathology, Anatomy, and Cell Biology Faculty Papers Biology 12-1-2018 Loss-of-function mutations in ATP6AP1 and ATP6AP2 in granular cell tumors. Fresia Pareja Memorial Sloan Kettering Cancer Center Alissa H. Brandes Memorial Sloan Kettering Cancer Center Thais Basili Memorial Sloan Kettering Cancer Center Pier Selenica Memorial Sloan Kettering Cancer Center Felipe C. Geyer Memorial Sloan Kettering Cancer Center See next page for additional authors Let us know how access to this document benefits ouy Follow this and additional works at: https://jdc.jefferson.edu/pacbfp Part of the Pathology Commons Recommended Citation Pareja, Fresia; Brandes, Alissa H.; Basili, Thais; Selenica, Pier; Geyer, Felipe C.; Fan, Dan; Da Cruz Paula, Arnaud; Kumar, Rahul; Brown, David N.; Gularte-Mérida, Rodrigo; Alemar, Barbara; Bi, Rui; Lim, Raymond S.; de Bruijn, Ino; Fujisawa, Sho; Gardner, Rui; Feng, Elvin; Li, Anqi; da Silva, Edaise M.; Lozada, John R.; Blecua, Pedro; Cohen-Gould, Leona; Jungbluth, Achim A.; Rakha, Emad A.; Ellis, Ian O.; Edelweiss, Maria I.A.; Palazzo, Juan P.; Norton, Larry; Hollmann, Travis; Edelweiss, Marcia; Rubin, Brian P.; Weigelt, Britta; and Reis-Filho, Jorge S., "Loss-of-function mutations in ATP6AP1 and ATP6AP2 in granular cell tumors." (2018). Department of Pathology, Anatomy, and Cell Biology Faculty Papers. Paper 241. https://jdc.jefferson.edu/pacbfp/241 Authors Fresia Pareja, Alissa H. Brandes, Thais Basili, Pier Selenica, Felipe C. Geyer, Dan Fan, Arnaud Da Cruz Paula, Rahul Kumar, David N. Brown, Rodrigo Gularte-Mérida, Barbara Alemar, Rui Bi, Raymond S. Lim, Ino de Bruijn, Sho Fujisawa, Rui Gardner, Elvin Feng, Anqi Li, Edaise M. da Silva, John R. Lozada, Pedro Blecua, Leona Cohen-Gould, Achim A. Jungbluth, Emad A. Rakha, Ian O. Ellis, Maria I.A. Edelweiss, Juan P. Palazzo, Larry Norton, Travis Hollmann, Marcia Edelweiss, Brian P. Rubin, Britta Weigelt, and Jorge S. Reis-Filho This article is available at Jefferson Digital Commons: https://jdc.jefferson.edu/pacbfp/241 ARTICLE DOI: 10.1038/s41467-018-05886-y OPEN Loss-of-function mutations in ATP6AP1 and ATP6AP2 in granular cell tumors Fresia Pareja1, Alissa H. Brandes1, Thais Basili1, Pier Selenica1, Felipe C. Geyer1, Dan Fan1, Arnaud Da Cruz Paula1, Rahul Kumar1, David N. Brown1, Rodrigo Gularte-Mérida1, Barbara Alemar1,2, Rui Bi1,3, Raymond S. Lim1, Ino de Bruijn1, Sho Fujisawa4, Rui Gardner5, Elvin Feng4, Anqi Li1,3, Edaise M. da Silva1, John R. Lozada 1, Pedro Blecua6, Leona Cohen-Gould7, Achim A. Jungbluth1, Emad A. Rakha8, Ian O. Ellis8, Maria I.A. Edelweiss9, Juan Palazzo10, Larry Norton11, Travis Hollmann1, Marcia Edelweiss1, Brian P. Rubin12, Britta Weigelt1 & Jorge S. Reis-Filho1 1234567890():,; Granular cell tumors (GCTs) are rare tumors that can arise in multiple anatomical locations, and are characterized by abundant intracytoplasmic granules. The genetic drivers of GCTs are currently unknown. Here, we apply whole-exome sequencing and targeted sequencing analysis to reveal mutually exclusive, clonal, inactivating somatic mutations in the endosomal pH regulators ATP6AP1 or ATP6AP2 in 72% of GCTs. Silencing of these genes in vitro results in impaired vesicle acidification, redistribution of endosomal compartments, and accumula- tion of intracytoplasmic granules, recapitulating the cardinal phenotypic characteristics of GCTs and providing a novel genotypic–phenotypic correlation. In addition, depletion of ATP6AP1 or ATP6AP2 results in the acquisition of oncogenic properties. Our results demonstrate that inactivating mutations of ATP6AP1 and ATP6AP2 are likely oncogenic dri- vers of GCTs and underpin the genesis of the intracytoplasmic granules that characterize them, providing a genetic link between endosomal pH regulation and tumorigenesis. 1 Department of Pathology, Memorial Sloan Kettering Cancer Center, New York 10065 NY, USA. 2 Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil. 3 Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China. 4 Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York 10065 NY, USA. 5 Flow Cytometry Core Facility, Memorial Sloan Kettering Cancer Center, New York 10065 NY, USA. 6 Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York 10065 NY, USA. 7 Department of Biochemistry, Weill Cornell Medical College, New York 10065 NY, USA. 8 Department of Pathology, University of Nottingham, Nottingham NG7 2RD, UK. 9 Hospital de Clínicas, Federal University of Rio Grande do Sul, Porto Alegre 90035-903, Brazil. 10 Department of Pathology, Jefferson Medical College, Philadelphia 19107 PA, USA. 11 Department of Medicine, Memorial Sloan Kettering Cancer Center, New York 10065 NY, USA. 12 Departments of Pathology and Cancer Biology, Robert J. Tomsich Pathology and Laboratory Medicine Institute and The Lerner Research Institute, Cleveland Clinic, Cleveland 44195 OH, USA. These authors contributed equally: Fresia Pareja, Alissa H. Brandes, Thais Basili. Correspondence and requests for materials should be addressed to B.W. (email: [email protected]) or to J.S.R-F. (email: reisfi[email protected]) NATURE COMMUNICATIONS | (2018) 9:3533 | DOI: 10.1038/s41467-018-05886-y | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05886-y ranular cell tumors (GCTs) are uncommon neoplasms Our study comprised a discovery cohort (n = 17) and a which can arise in multiple anatomical sites. These validation cohort (n = 65; Fig. 1). To determine whether GCTs G 1 tumors usually follow a benign course , but may occa- would be underpinned by a pathognomonic genetic alteration, we sionally exhibit an aggressive behavior with local and distant subjected the 17 GCTs of the discovery cohort to WES and 11 recurrences1–3. GCTs are characterized by abundant intracyto- GCTs to RNA sequencing, with 10 cases being subjected to both plasmic granules, whose nature and function remain unclear1. (Fig. 1, Supplementary Table 1). These analyses revealed a paucity The genetic landscape of GCTs and the mechanisms under- of CNAs (Supplementary Fig. 1a), no recurrently mutated known pinning the presence of their characteristic intracytoplasmic cancer genes, and no recurrent likely pathogenic fusion genes granules are currently unknown1. (Fig. 2a, Supplementary Table 2). Rather, WES analysis revealed There is a burgeoning body of evidence indicating that genetic recurrent, mutually exclusive, and clonal loss-of-function (i.e., analysis of rare cancer types may provide unique opportunities nonsense or frameshift) somatic mutations affecting ATP6AP1 or for the identification of novel cancer drivers4. A subset of rare ATP6AP2 in 12/17 of the GCTs analyzed (p = 0.041, CoMEt; tumors not uncommonly have simple genomes, with a paucity of Fig. 2a, Supplementary Fig. 1b, Supplementary Tables 3–4). All copy number alterations (CNAs) and somatic mutations, and are ATP6AP1 and ATP6AP2 somatic mutations identified by WES characterized by highly recurrent, specific, or even pathogno- were validated by Sanger sequencing (Supplementary Fig. 1c). To monic, somatic mutations, or fusion genes4. These tumors have validate our findings, we subjected 65 additional GCTs from the distinctive phenotypes and often arise in diverse anatomic loca- validation cohort to targeted massively parallel sequencing, which tions. Akin to these tumors, GCTs are rare, arise in different revealed mutually exclusive loss-of-function mutations (i.e., anatomic locations, and display peculiar morphologic features; nonsense, frameshift, or splice-site) affecting ATP6AP1 and hence, we posited that they could also be underpinned by a highly ATP6AP2 in 36/65 and 6/65 cases, respectively (p = 0.0028, recurrent genetic alteration. CoMEt; Figs. 1 and 2b, Supplementary Table 1). In addition, 5/65 Here, through a whole-exome sequencing (WES) and targeted GCTs harbored ATP6AP1 in-frame indels affecting evolutionarily sequencing analysis of GCTs, we uncovered highly recurrent and conserved residues (Fig. 2b, Supplementary Fig. 1d). All mutually exclusive inactivating mutations targeting the endoso- ATP6AP1 and ATP6AP2 mutations identified by targeted mal pH regulators ATP6AP1 and ATP6AP2 in GCTs. In vitro sequencing (n = 47) were validated by Sanger sequencing and/ silencing of ATP6AP1 and ATP6AP2 in human Schwann cells or repeat targeted capture sequencing analysis (Fig. 1a and and epithelial cells resulted in the accumulation of intracyto- Supplementary Table 1). In total, 72% (59/82) of the GCTs plasmic granules that are ultra-structurally and phenotypically analyzed here harbored likely inactivating somatic mutations in similar to those of human GCTs, altered endosomal acidification ATP6AP1 or ATP6AP2. Of note, no differences in histologic and oncogenic properties, thereby establishing a novel features (Supplementary Table 5) or anatomical site (Fig. 2c) of genotypic–phenotypic correlation. GCTs according to the ATP6AP1/ATP6AP2 mutational status were observed. Results Recurrent ATP6AP1 and ATP6AP2 somatic mutations in ATP6AP1 and ATP6AP2 inactivating mutations are expressed. GCTs. GCTs were retrieved from the authors’ institutions, fol- ATP6AP1 and ATP6AP2 map to Xq28 and Xp11.4, respectively. lowing the approval of this study by the local research ethics Therefore, a single inactivating mutation in either gene targeting committees or institutional
Recommended publications
  • Stelios Pavlidis3, Matthew Loza3, Fred Baribaud3, Anthony
    Supplementary Data Th2 and non-Th2 molecular phenotypes of asthma using sputum transcriptomics in UBIOPRED Chih-Hsi Scott Kuo1.2, Stelios Pavlidis3, Matthew Loza3, Fred Baribaud3, Anthony Rowe3, Iaonnis Pandis2, Ana Sousa4, Julie Corfield5, Ratko Djukanovic6, Rene 7 7 8 2 1† Lutter , Peter J. Sterk , Charles Auffray , Yike Guo , Ian M. Adcock & Kian Fan 1†* # Chung on behalf of the U-BIOPRED consortium project team 1Airways Disease, National Heart & Lung Institute, Imperial College London, & Biomedical Research Unit, Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, United Kingdom; 2Department of Computing & Data Science Institute, Imperial College London, United Kingdom; 3Janssen Research and Development, High Wycombe, Buckinghamshire, United Kingdom; 4Respiratory Therapeutic Unit, GSK, Stockley Park, United Kingdom; 5AstraZeneca R&D Molndal, Sweden and Areteva R&D, Nottingham, United Kingdom; 6Faculty of Medicine, Southampton University, Southampton, United Kingdom; 7Faculty of Medicine, University of Amsterdam, Amsterdam, Netherlands; 8European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, Université de Lyon, France. †Contributed equally #Consortium project team members are listed under Supplementary 1 Materials *To whom correspondence should be addressed: [email protected] 2 List of the U-BIOPRED Consortium project team members Uruj Hoda & Christos Rossios, Airways Disease, National Heart & Lung Institute, Imperial College London, UK & Biomedical Research Unit, Biomedical Research Unit, Royal
    [Show full text]
  • Atrazine and Cell Death Symbol Synonym(S)
    Supplementary Table S1: Atrazine and Cell Death Symbol Synonym(s) Entrez Gene Name Location Family AR AIS, Andr, androgen receptor androgen receptor Nucleus ligand- dependent nuclear receptor atrazine 1,3,5-triazine-2,4-diamine Other chemical toxicant beta-estradiol (8R,9S,13S,14S,17S)-13-methyl- Other chemical - 6,7,8,9,11,12,14,15,16,17- endogenous decahydrocyclopenta[a]phenanthrene- mammalian 3,17-diol CGB (includes beta HCG5, CGB3, CGB5, CGB7, chorionic gonadotropin, beta Extracellular other others) CGB8, chorionic gonadotropin polypeptide Space CLEC11A AW457320, C-type lectin domain C-type lectin domain family 11, Extracellular growth factor family 11, member A, STEM CELL member A Space GROWTH FACTOR CYP11A1 CHOLESTEROL SIDE-CHAIN cytochrome P450, family 11, Cytoplasm enzyme CLEAVAGE ENZYME subfamily A, polypeptide 1 CYP19A1 Ar, ArKO, ARO, ARO1, Aromatase cytochrome P450, family 19, Cytoplasm enzyme subfamily A, polypeptide 1 ESR1 AA420328, Alpha estrogen receptor,(α) estrogen receptor 1 Nucleus ligand- dependent nuclear receptor estrogen C18 steroids, oestrogen Other chemical drug estrogen receptor ER, ESR, ESR1/2, esr1/esr2 Nucleus group estrone (8R,9S,13S,14S)-3-hydroxy-13-methyl- Other chemical - 7,8,9,11,12,14,15,16-octahydro-6H- endogenous cyclopenta[a]phenanthren-17-one mammalian G6PD BOS 25472, G28A, G6PD1, G6PDX, glucose-6-phosphate Cytoplasm enzyme Glucose-6-P Dehydrogenase dehydrogenase GATA4 ASD2, GATA binding protein 4, GATA binding protein 4 Nucleus transcription TACHD, TOF, VSD1 regulator GHRHR growth hormone releasing
    [Show full text]
  • Prognostic and Immunological Value of ATP6AP1 in Breast Cancer: Implications for SARS-Cov-2
    www.aging-us.com AGING 2021, Vol. 13, No. 13 Research Paper Prognostic and immunological value of ATP6AP1 in breast cancer: implications for SARS-CoV-2 Jintian Wang1, Yunjiang Liu1, Shuo Zhang1 1Department of Breast Surgery, The Fourth Hospital of Hebei Medical University, Hebei, Shijiazhuang 050011, China Correspondence to: Yunjiang Liu; email: [email protected], https://orcid.org/0000-0001-7202-2004 Keywords: ATP6AP1, breast cancer, prognosis, immune infiltration, bioinformatics, SARS-CoV-2, COVID-19 Received: November 28, 2020 Accepted: May 11, 2021 Published: July 6, 2021 Copyright: © 2021 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Abnormal ATPase H+ Transporting Accessory Protein 1 (ATP6AP1) expression may promote carcinogenesis. We investigated the association of ATP6AP1 with breast cancer (BC) and COVID-19. The Oncomine, Gene Expression Profiling Interactive Analysis, Human Protein Atlas and Kaplan-Meier plotter databases were used to evaluate the expression and prognostic value of ATP6AP1 in BC. ATP6AP1 was upregulated in BC tissues, and higher ATP6AP1 expression was associated with poorer outcomes. Data from the Tumor Immune Estimation Resource, Tumor-Immune System Interaction Database and Kaplan-Meier plotter indicated that ATP6AP1 expression correlated with immune infiltration, and that its prognostic effects in BC depended on tumor-infiltrating immune cell subtype levels. Multiple databases were used to evaluate the association of ATP6AP1 with clinicopathological factors, assess the mutation and methylation of ATP6AP1, and analyze gene co-expression and enrichment.
    [Show full text]
  • Downloaded 18 July 2014 with a 1% False Discovery Rate (FDR)
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Chemical glycoproteomics for identification and discovery of glycoprotein alterations in human cancer Permalink https://escholarship.org/uc/item/0t47b9ws Author Spiciarich, David Publication Date 2017 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Chemical glycoproteomics for identification and discovery of glycoprotein alterations in human cancer by David Spiciarich A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Chemistry in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Carolyn R. Bertozzi, Co-Chair Professor David E. Wemmer, Co-Chair Professor Matthew B. Francis Professor Amy E. Herr Fall 2017 Chemical glycoproteomics for identification and discovery of glycoprotein alterations in human cancer © 2017 by David Spiciarich Abstract Chemical glycoproteomics for identification and discovery of glycoprotein alterations in human cancer by David Spiciarich Doctor of Philosophy in Chemistry University of California, Berkeley Professor Carolyn R. Bertozzi, Co-Chair Professor David E. Wemmer, Co-Chair Changes in glycosylation have long been appreciated to be part of the cancer phenotype; sialylated glycans are found at elevated levels on many types of cancer and have been implicated in disease progression. However, the specific glycoproteins that contribute to cell surface sialylation are not well characterized, specifically in bona fide human cancer. Metabolic and bioorthogonal labeling methods have previously enabled enrichment and identification of sialoglycoproteins from cultured cells and model organisms. The goal of this work was to develop technologies that can be used for detecting changes in glycoproteins in clinical models of human cancer.
    [Show full text]
  • Lncrna SNHG8 Is Identified As a Key Regulator of Acute Myocardial
    Zhuo et al. Lipids in Health and Disease (2019) 18:201 https://doi.org/10.1186/s12944-019-1142-0 RESEARCH Open Access LncRNA SNHG8 is identified as a key regulator of acute myocardial infarction by RNA-seq analysis Liu-An Zhuo, Yi-Tao Wen, Yong Wang, Zhi-Fang Liang, Gang Wu, Mei-Dan Nong and Liu Miao* Abstract Background: Long noncoding RNAs (lncRNAs) are involved in numerous physiological functions. However, their mechanisms in acute myocardial infarction (AMI) are not well understood. Methods: We performed an RNA-seq analysis to explore the molecular mechanism of AMI by constructing a lncRNA-miRNA-mRNA axis based on the ceRNA hypothesis. The target microRNA data were used to design a global AMI triple network. Thereafter, a functional enrichment analysis and clustering topological analyses were conducted by using the triple network. The expression of lncRNA SNHG8, SOCS3 and ICAM1 was measured by qRT-PCR. The prognostic values of lncRNA SNHG8, SOCS3 and ICAM1 were evaluated using a receiver operating characteristic (ROC) curve. Results: An AMI lncRNA-miRNA-mRNA network was constructed that included two mRNAs, one miRNA and one lncRNA. After RT-PCR validation of lncRNA SNHG8, SOCS3 and ICAM1 between the AMI and normal samples, only lncRNA SNHG8 had significant diagnostic value for further analysis. The ROC curve showed that SNHG8 presented an AUC of 0.850, while the AUC of SOCS3 was 0.633 and that of ICAM1 was 0.594. After a pairwise comparison, we found that SNHG8 was statistically significant (P SNHG8-ICAM1 = 0.002; P SNHG8-SOCS3 = 0.031).
    [Show full text]
  • (V)-Atpase Interactome: Identification of Proteins Involved in Trafficking
    www.nature.com/scientificreports OPEN Mapping the H+ (V)-ATPase interactome: identification of proteins involved in trafficking, Received: 24 October 2014 Accepted: 02 September 2015 folding, assembly and Published: 07 October 2015 phosphorylation Maria Merkulova, Teodor G. Păunescu, Anie Azroyan, Vladimir Marshansky, Sylvie Breton & Dennis Brown V-ATPases (H+ ATPases) are multisubunit, ATP-dependent proton pumps that regulate pH homeostasis in virtually all eukaryotes. They are involved in key cell biological processes including vesicle trafficking, endosomal pH sensing, membrane fusion and intracellular signaling. They also have critical systemic roles in renal acid excretion and blood pH balance, male fertility, bone remodeling, synaptic transmission, olfaction and hearing. Furthermore, V-ATPase dysfunction either results in or aggravates various other diseases, but little is known about the complex protein interactions that regulate these varied V-ATPase functions. Therefore, we performed a proteomic analysis to identify V-ATPase associated proteins and construct a V-ATPase interactome. Our analysis using kidney tissue revealed V-ATPase-associated protein clusters involved in protein quality control, complex assembly and intracellular trafficking. ARHGEF7, DMXL1, EZR, NCOA7, OXR1, RPS6KA3, SNX27 and 9 subunits of the chaperonin containing TCP1 complex (CCT) were found to interact with V-ATPase for the first time in this study. Knockdown of two interacting proteins, DMXL1 and WDR7, inhibited V-ATPase-mediated intracellular vesicle acidification in a kidney cell line, providing validation for the utility of our interactome as a screen for functionally important novel V-ATPase- regulating proteins. Our data, therefore, provide new insights and directions for the analysis of V-ATPase cell biology and (patho)physiology.
    [Show full text]
  • Large-Scale Proteomics and Phosphoproteomics of Urinary Exosomes
    JASN Express. Published on December 3, 2008 as doi: 10.1681/ASN.2008040406 BASIC RESEARCH www.jasn.org Large-Scale Proteomics and Phosphoproteomics of Urinary Exosomes Patricia A. Gonzales,*† Trairak Pisitkun,* Jason D. Hoffert,* Dmitry Tchapyjnikov,* ʈ Robert A. Star,‡ Robert Kleta,§ ¶ Nam Sun Wang,† and Mark A. Knepper* *Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, ‡Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, §Section of Human ʈ Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, and Office of Rare Diseases, Office of the Director, National Institutes of Health, Bethesda, and †Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland; and ¶London Epithelial Group, Centre for Nephrology, University College London, London, United Kingdom ABSTRACT Normal human urine contains large numbers of exosomes, which are 40- to 100-nm vesicles that originate as the internal vesicles in multivesicular bodies from every renal epithelial cell type facing the urinary space. Here, we used LC-MS/MS to profile the proteome of human urinary exosomes. Overall, the analysis identified 1132 proteins unambiguously, including 177 that are represented on the Online Mendelian Inheritance in Man database of disease-related genes, suggesting that exosome analysis is a potential approach to discover urinary biomarkers. We extended the proteomic analysis to phospho- proteomic profiling using neutral loss scanning, and this yielded multiple novel phosphorylation sites, including serine-811 in the thiazide-sensitive Na-Cl co-transporter, NCC. To demonstrate the potential use of exosome analysis to identify a genetic renal disease, we carried out immunoblotting of exosomes from urine samples of patients with a clinical diagnosis of Bartter syndrome type I, showing an absence of the sodium-potassium-chloride co-transporter 2, NKCC2.
    [Show full text]
  • Loss-Of-Function Mutations in ATP6AP1 and ATP6AP2 in Granular Cell Tumors
    Thomas Jefferson University Jefferson Digital Commons Department of Pathology, Anatomy, and Cell Department of Pathology, Anatomy, and Cell Biology Faculty Papers Biology 12-1-2018 Loss-of-function mutations in ATP6AP1 and ATP6AP2 in granular cell tumors. Fresia Pareja Memorial Sloan Kettering Cancer Center Alissa H. Brandes Memorial Sloan Kettering Cancer Center FThaisollow Basilithis and additional works at: https://jdc.jefferson.edu/pacbfp Memorial Sloan Kettering Cancer Center Part of the Pathology Commons LetPier Selenica us know how access to this document benefits ouy Memorial Sloan Kettering Cancer Center RecommendedFelipe C. Geyer Citation Memorial Sloan Kettering Cancer Center Pareja, Fresia; Brandes, Alissa H.; Basili, Thais; Selenica, Pier; Geyer, Felipe C.; Fan, Dan; Da Cruz Paula, Arnaud; Kumar, Rahul; Brown, David N.; Gularte-Mérida, Rodrigo; Alemar, Barbara; Bi, Rui; SeeLim, next Raymond page for S.; additional de Bruijn, authors Ino; F ujisawa, Sho; Gardner, Rui; Feng, Elvin; Li, Anqi; da Silva, Edaise M.; Lozada, John R.; Blecua, Pedro; Cohen-Gould, Leona; Jungbluth, Achim A.; Rakha, Emad A.; Ellis, Ian O.; Edelweiss, Maria I.A.; Palazzo, Juan P.; Norton, Larry; Hollmann, Travis; Edelweiss, Marcia; Rubin, Brian P.; Weigelt, Britta; and Reis-Filho, Jorge S., "Loss-of-function mutations in ATP6AP1 and ATP6AP2 in granular cell tumors." (2018). Department of Pathology, Anatomy, and Cell Biology Faculty Papers. Paper 241. https://jdc.jefferson.edu/pacbfp/241 This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools.
    [Show full text]
  • The Pdx1 Bound Swi/Snf Chromatin Remodeling Complex Regulates Pancreatic Progenitor Cell Proliferation and Mature Islet Β Cell
    Page 1 of 125 Diabetes The Pdx1 bound Swi/Snf chromatin remodeling complex regulates pancreatic progenitor cell proliferation and mature islet β cell function Jason M. Spaeth1,2, Jin-Hua Liu1, Daniel Peters3, Min Guo1, Anna B. Osipovich1, Fardin Mohammadi3, Nilotpal Roy4, Anil Bhushan4, Mark A. Magnuson1, Matthias Hebrok4, Christopher V. E. Wright3, Roland Stein1,5 1 Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 2 Present address: Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 3 Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 4 Diabetes Center, Department of Medicine, UCSF, San Francisco, California 5 Corresponding author: [email protected]; (615)322-7026 1 Diabetes Publish Ahead of Print, published online June 14, 2019 Diabetes Page 2 of 125 Abstract Transcription factors positively and/or negatively impact gene expression by recruiting coregulatory factors, which interact through protein-protein binding. Here we demonstrate that mouse pancreas size and islet β cell function are controlled by the ATP-dependent Swi/Snf chromatin remodeling coregulatory complex that physically associates with Pdx1, a diabetes- linked transcription factor essential to pancreatic morphogenesis and adult islet-cell function and maintenance. Early embryonic deletion of just the Swi/Snf Brg1 ATPase subunit reduced multipotent pancreatic progenitor cell proliferation and resulted in pancreas hypoplasia. In contrast, removal of both Swi/Snf ATPase subunits, Brg1 and Brm, was necessary to compromise adult islet β cell activity, which included whole animal glucose intolerance, hyperglycemia and impaired insulin secretion. Notably, lineage-tracing analysis revealed Swi/Snf-deficient β cells lost the ability to produce the mRNAs for insulin and other key metabolic genes without effecting the expression of many essential islet-enriched transcription factors.
    [Show full text]
  • Supplemental Figures 04 12 2017
    Jung et al. 1 SUPPLEMENTAL FIGURES 2 3 Supplemental Figure 1. Clinical relevance of natural product methyltransferases (NPMTs) in brain disorders. (A) 4 Table summarizing characteristics of 11 NPMTs using data derived from the TCGA GBM and Rembrandt datasets for 5 relative expression levels and survival. In addition, published studies of the 11 NPMTs are summarized. (B) The 1 Jung et al. 6 expression levels of 10 NPMTs in glioblastoma versus non‐tumor brain are displayed in a heatmap, ranked by 7 significance and expression levels. *, p<0.05; **, p<0.01; ***, p<0.001. 8 2 Jung et al. 9 10 Supplemental Figure 2. Anatomical distribution of methyltransferase and metabolic signatures within 11 glioblastomas. The Ivy GAP dataset was downloaded and interrogated by histological structure for NNMT, NAMPT, 12 DNMT mRNA expression and selected gene expression signatures. The results are displayed on a heatmap. The 13 sample size of each histological region as indicated on the figure. 14 3 Jung et al. 15 16 Supplemental Figure 3. Altered expression of nicotinamide and nicotinate metabolism‐related enzymes in 17 glioblastoma. (A) Heatmap (fold change of expression) of whole 25 enzymes in the KEGG nicotinate and 18 nicotinamide metabolism gene set were analyzed in indicated glioblastoma expression datasets with Oncomine. 4 Jung et al. 19 Color bar intensity indicates percentile of fold change in glioblastoma relative to normal brain. (B) Nicotinamide and 20 nicotinate and methionine salvage pathways are displayed with the relative expression levels in glioblastoma 21 specimens in the TCGA GBM dataset indicated. 22 5 Jung et al. 23 24 Supplementary Figure 4.
    [Show full text]
  • SYMBOL CPG Beta Case Avg Beta Control Avg Statistic APEX2
    SYMBOL CPG beta_case_avg beta_control_avg statistic APEX2 cg00145348 0.304378043 0.525155809 4 APEX2 cg05961595 0.086223841 0.391721523 0 AR cg21966410 0.165473217 0.442882615 5 ARAF cg10455133 0.161405482 0.377744027 3 ARMCX2 cg19055639 0.243267762 0.469073221 4 ARMCX4 cg20085077 0.148357351 0.448889984 3 ATP6AP1 cg18742441 0.251936481 0.579558783 4 ATP6AP2 cg06731599 0.234928945 0.440567345 1 BCORL1 cg23269489 0.177700273 0.452990623 1 BEX1 cg21509846 0.248093251 0.456332464 5 BEX1 cg23936476 0.216536417 0.508821366 4 CCDC22 cg26606552 0.169091479 0.391232317 0 CHRDL1 cg05921207 0.159465331 0.378257517 5 CXorf17 cg04944936 0.224055191 0.432080854 0 CXorf34 cg13286902 0.212864925 0.484243372 5 DXS9879E cg20641280 0.348963779 0.615338396 0 EBP cg13771629 0.164444754 0.425900556 4 EFNB1 cg04907664 0.263685845 0.480712929 4 EFNB1 cg15977272 0.190310963 0.557484275 4 EFNB1 cg23545272 0.180778395 0.517216093 3 ELF4 cg06428055 0.180094512 0.437961331 4 EMD cg09229960 0.095908109 0.560263425 1 ESX1 cg04721883 0.271735193 0.491698969 5 FAM11A cg21030483 0.171941029 0.431038485 4 FAM3A cg23698956 0.165340271 0.399881743 3 FAM58A cg01140782 0.12326633 0.387522994 4 FHL1 cg14506668 0.236270414 0.443527637 4 FLJ10178 cg03057808 0.168680352 0.400217251 4 FLJ30058 cg24813163 0.180266345 0.444843904 3 FMR1 cg08434396 0.243858603 0.490003472 0 FTSJ1 cg06489418 0.286942932 0.577463477 4 FUNDC2 cg21697779 0.185036681 0.425358975 3 G6PD cg12536534 0.17148449 0.445852352 1 GK cg15636587 0.111602098 0.417954521 1 GLT28D1 cg19963797 0.136983004 0.40076927
    [Show full text]
  • X Chromosome Dosage Compensation and Gene Expression in the Sheep Kaleigh Flock [email protected]
    University of Connecticut OpenCommons@UConn Master's Theses University of Connecticut Graduate School 8-29-2017 X Chromosome Dosage Compensation and Gene Expression in the Sheep Kaleigh Flock [email protected] Recommended Citation Flock, Kaleigh, "X Chromosome Dosage Compensation and Gene Expression in the Sheep" (2017). Master's Theses. 1144. https://opencommons.uconn.edu/gs_theses/1144 This work is brought to you for free and open access by the University of Connecticut Graduate School at OpenCommons@UConn. It has been accepted for inclusion in Master's Theses by an authorized administrator of OpenCommons@UConn. For more information, please contact [email protected]. X Chromosome Dosage Compensation and Gene Expression in the Sheep Kaleigh Flock B.S., University of Connecticut, 2014 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Masters of Science at the University of Connecticut 2017 i Copyright by Kaleigh Flock 2017 ii APPROVAL PAGE Masters of Science Thesis X Chromosome Dosage Compensation and Gene Expression in the Sheep Presented by Kaleigh Flock, B.S. Major Advisor___________________________________________________ Dr. Xiuchun (Cindy) Tian Associate Advisor_________________________________________________ Dr. David Magee Associate Advisor_________________________________________________ Dr. Sarah A. Reed Associate Advisor_________________________________________________ Dr. John Malone University of Connecticut 2017 iii Dedication This thesis is dedicated to my major advisor Dr. Xiuchun (Cindy) Tian, my lab mates Mingyuan Zhang and Ellie Duan, and my mother and father. This thesis would not be possible without your hard work, unwavering support, and guidance. Dr. Tian, I am so thankful for the opportunity to pursue a Master’s degree in your lab. The knowledge and technical skills that I have gained are invaluable and have opened many doors in my career as a scientist and future veterinarian.
    [Show full text]