Tremellomycetes Yeasts in Kernel Ecological Niche: Early Indicators of Enhanced Competitiveness of Endophytic and Mycoparasitic Symbionts Against Wheat Pathobiota
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genome Sequence Analysis of Auricularia Heimuer Combined with Genetic Linkage Map
Journal of Fungi Article Genome Sequence Analysis of Auricularia heimuer Combined with Genetic Linkage Map Ming Fang 1, Xiaoe Wang 2, Ying Chen 2, Peng Wang 2, Lixin Lu 2, Jia Lu 2, Fangjie Yao 1,2,* and Youmin Zhang 1,* 1 Lab of genetic breeding of edible mushromm, Horticultural, College of Horticulture, Jilin Agricultural University, Changchun 130118, China; [email protected] 2 Engineering Research Centre of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; [email protected] (X.W.); [email protected] (Y.C.); [email protected] (P.W.); [email protected] (L.L.); [email protected] (J.L.) * Correspondence: [email protected] (F.Y.); [email protected] (Y.Z.) Received: 3 March 2020; Accepted: 12 March 2020; Published: 16 March 2020 Abstract: Auricularia heimuer is one of the most popular edible fungi in China. In this study, the whole genome of A. heimuer was sequenced on the Illumina HiSeq X system and compared with other mushrooms genomes. As a wood-rotting fungus, a total of 509 carbohydrate-active enzymes (CAZymes) were annotated in order to explore its potential capabilities on wood degradation. The glycoside hydrolases (GH) family genes in the A. heimuer genome were more abundant than the genes in the other 11 mushrooms genomes. The A. heimuer genome contained 102 genes encoding class III, IV, and V ethanol dehydrogenases. Evolutionary analysis based on 562 orthologous single-copy genes from 15 mushrooms showed that Auricularia formed an early independent branch of Agaricomycetes. The mating-type locus of A. heimuer was located on linkage group 8 by genetic linkage analysis. -
Idiopathic CD4 Lymphocytopenia: Spectrum of Opportunistic Infections, Malignancies, and Autoimmune Diseases
Published online: 2021-08-09 REVIEW ARTICLE Idiopathic CD4 Lymphocytopenia: Spectrum of opportunistic infections, malignancies, and autoimmune diseases Dina S. Ahmad, Mohammad Esmadi, William C. Steinmann Department of Internal Medicine, University of Missouri School of Medicine, Columbia, MO, USA Access this article online ABSTRACT Website: www.avicennajmed.com DOI: 10.4103/2231-0770.114121 Idiopathic CD4 lymphocytopenia (ICL) was first defined in 1992 by the US Centers for Disease Quick Response Code: Control and Prevention (CDC) as the repeated presence of a CD4+ T lymphocyte count of fewer than 300 cells per cubic millimeter or of less than 20% of total T cells with no evidence of human immunodeficiency virus (HIV) infection and no condition that might cause depressed CD4 counts. Most of our knowledge about ICL comes from scattered case reports. The aim of this study was to collect comprehensive data from the previously published cases to understand the characteristics of this rare condition. We searched the PubMed database and Science Direct for case reports since 1989 for Idiopathic CD4 lymphocytopenia cases. We found 258 cases diagnosed with ICL in 143 published papers. We collected data about age, sex, pathogens, site of infections, CD4 count, CD8 count, CD4:CD8 ratio, presence of HIV risk factors, malignancies, autoimmune diseases and whether the patients survived or died. The mean age at diagnosis of first opportunistic infection (or ICL if no opportunistic infection reported) was 40.7 ± 19.2 years (standard deviation), with a range of 1 to 85. One-sixty (62%) patients were males, 91 (35.2%) were females, and 7 (2.7%) patients were not identified whether males or females. -
153.Full.Pdf
Copyright Ó 2010 by the Genetics Society of America DOI: 10.1534/genetics.109.113027 A Tetrad Analysis of the Basidiomycete Fungus Cryptococcus neoformans Alexander Idnurm Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110 Manuscript received December 10, 2009 Accepted for publication February 9, 2010 ABSTRACT Cryptococcus neoformans is a basidiomycete fungus that is found worldwide and causes disease in humans and animal species. The fungus grows asexually as a budding yeast. Under laboratory conditions it is capable of sexual reproduction between two mating types. After cell fusion a dikaryotic filament develops, at the tip of which a basidium gives rise to four chains of basidiospores. Because the chains each comprise 10–30 spores, rather than single spores, the analysis of individual meiotic events has not been attempted in C. neoformans in the style of tetrad analyses performed in other fungal species. Here, the basidiospores from .100 basidia were micromanipulated and the resultant .2500 progeny analyzed for three genetic markers to understand the sexual process in this fungus, leading to four observations: (i) Marker seg- regation provides genetic evidence for a single meiotic event within the basidium followed by multiple rounds of mitosis. (ii) Using each basidium as an unordered tetrad, the ADE2 and URA5 genes are linked to their centromeres, consistent with adjacent genomic regions rich in repetitive elements predicted to comprise Cryptococcus centromeres. (iii) Lack of germination of basidiospores is attributed to aneuploidy, rather than dormancy. (iv) Analysis of basidiospores derived from single chains demonstrates that each chain can contain different genotypes. -
<I>Tilletia Indica</I>
ISPM 27 27 ANNEX 4 ENG DP 4: Tilletia indica Mitra INTERNATIONAL STANDARD FOR PHYTOSANITARY MEASURES PHYTOSANITARY FOR STANDARD INTERNATIONAL DIAGNOSTIC PROTOCOLS Produced by the Secretariat of the International Plant Protection Convention (IPPC) This page is intentionally left blank This diagnostic protocol was adopted by the Standards Committee on behalf of the Commission on Phytosanitary Measures in January 2014. The annex is a prescriptive part of ISPM 27. ISPM 27 Diagnostic protocols for regulated pests DP 4: Tilletia indica Mitra Adopted 2014; published 2016 CONTENTS 1. Pest Information ............................................................................................................................... 2 2. Taxonomic Information .................................................................................................................... 2 3. Detection ........................................................................................................................................... 2 3.1 Examination of seeds/grain ............................................................................................... 3 3.2 Extraction of teliospores from seeds/grain, size-selective sieve wash test ....................... 3 4. Identification ..................................................................................................................................... 4 4.1 Morphology of teliospores ................................................................................................ 4 4.1.1 Morphological -
Product Sheet Info
Product Information Sheet for NR-50430 Cryptococcus gattii, Strain C10 Propagation: 1. Keep vial frozen until ready for use; thaw rapidly. Catalog No. NR-50430 2. Inoculate an agar plate with approximately 50 µL of thawed culture and/or transfer the entire thawed aliquot into a single tube of broth For research use only. Not for human use. 3. Incubate the plate and/or tube at 25°C for 2 to 4 days. Contributor: Citation: Brian Wong, M.D., Professor, and Igor Bruzual, Ph.D., Acknowledgment for publications should read “The following Infectious Disease Division, Department of Medicine, Oregon reagent was obtained through BEI Resources, NIAID, NIH: Health and Science University, Portland, Oregon, USA Cryptococcus gattii, Strain C10, NR-50430.” Manufacturer: Biosafety Level: 2 BEI Resources Appropriate safety procedures should always be used with this material. Laboratory safety is discussed in the following Product Description: publication: U.S. Department of Health and Human Services, Classification: Tremellaceae, Cryptococcus Public Health Service, Centers for Disease Control and Species: Cryptococcus gattii Prevention, and National Institutes of Health. Biosafety in Strain: C10 Microbiological and Biomedical Laboratories. 5th ed. Original Source: Cryptococcus gattii (C. gattii), strain C10 Washington, DC: U.S. Government Printing Office, 2009; see was isolated from an unknown human source in the Pacific www.cdc.gov/biosafety/publications/bmbl5/index.htm. Northwest region of North America.1 Comments: C. gattii, strain C10 was deposited as lineage Disclaimers: VGIIa and resistant to azoles.1 You are authorized to use this product for research use only. The Cryptococcus species complex is comprised of four It is not intended for human use. -
The Flora Mycologica Iberica Project Fungi Occurrence Dataset
A peer-reviewed open-access journal MycoKeys 15: 59–72 (2016)The Flora Mycologica Iberica Project fungi occurrence dataset 59 doi: 10.3897/mycokeys.15.9765 DATA PAPER MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research The Flora Mycologica Iberica Project fungi occurrence dataset Francisco Pando1, Margarita Dueñas1, Carlos Lado1, María Teresa Telleria1 1 Real Jardín Botánico-CSIC, Claudio Moyano 1, 28014, Madrid, Spain Corresponding author: Francisco Pando ([email protected]) Academic editor: C. Gueidan | Received 5 July 2016 | Accepted 25 August 2016 | Published 13 September 2016 Citation: Pando F, Dueñas M, Lado C, Telleria MT (2016) The Flora Mycologica Iberica Project fungi occurrence dataset. MycoKeys 15: 59–72. doi: 10.3897/mycokeys.15.9765 Resource citation: Pando F, Dueñas M, Lado C, Telleria MT (2016) Flora Mycologica Iberica Project fungi occurrence dataset. v1.18. Real Jardín Botánico (CSIC). Dataset/Occurrence. http://www.gbif.es/ipt/resource?r=floramicologicaiberi ca&v=1.18, http://doi.org/10.15468/sssx1e Abstract The dataset contains detailed distribution information on several fungal groups. The information has been revised, and in many times compiled, by expert mycologist(s) working on the monographs for the Flora Mycologica Iberica Project (FMI). Records comprise both collection and observational data, obtained from a variety of sources including field work, herbaria, and the literature. The dataset contains 59,235 records, of which 21,393 are georeferenced. These correspond to 2,445 species, grouped in 18 classes. The geographical scope of the dataset is Iberian Peninsula (Continental Portugal and Spain, and Andorra) and Balearic Islands. The complete dataset is available in Darwin Core Archive format via the Global Biodi- versity Information Facility (GBIF). -
Plant Life MagillS Encyclopedia of Science
MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D. -
Cryptococcus Gattii Outbreak
The recent Cryptococcus gattii outbreak A deadly pathway… From Trees to Lungs to Brain ryptococcus gattii disease. The route of C has been in the infection is from breathing the news lately, due to a recent airborne organism, which outbreak in the Pacific becomes lodged in the Northwest. This new, more pulmonary tissues. virulent strain is expected to by Jay Hardy, CLS, SM (NRCM) spread further throughout the Symptoms Northwest and Northern California in the coming The pulmonary disease, Jay Hardy is the founder and months. known as cpryptococcosis, president of Hardy Diagnostics. develops slowly. After He began his career in exposure it can take two to microbiology as a Medical Technologist in Santa Barbara, twelve months for symptoms California. to appear, with the usual onset In 1980, he began at six or seven months. manufacturing culture media for the local hospitals. Today, The symptoms include: Hardy Diagnostics is the third largest media manufacturer in the U.S. • Cough that lasts weeks or months To ensure rapid and reliable turn around time, Hardy • Sharp chest pain Figure 1: An India ink stain Diagnostics maintains six • Unexplained shortness of showing the capsule surrounding distribution centers, and breath produces over 3,000 products the C. gattii cells in the yeast form used in clinical and industrial at 1,000X. Photo from Haley/CDC. • Severe headache microbiology laboratories • Confusion throughout the world. The organism is a fungus that • Fever is usually found in the soil • Night sweats www.HardyDiagnostics.com and on trees. It is not spread • Unintended weight loss from human to human or animal to human. -
Use of Whole Genome Sequence Data to Characterize Mating and Rna
USE OF WHOLE GENOME SEQUENCE DATA TO CHARACTERIZE MATING AND RNA SILENCING GENES IN TILLETIA SPECIES By SEAN WESLEY MCCOTTER A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN PLANT PATHOLOGY WASHINGTON STATE UNIVERSITY Department of Plant Pathology DECEMBER 2014 © Copyright by SEAN WESLEY MCCOTTER, 2014 All Rights Reserved © Copyright by SEAN WESLEY MCCOTTER, 2014 All Rights Reserved To the Faculty of Washington State University: The members of the Committee appointed to examine the thesis of SEAN WESLEY MCCOTTER find it satisfactory and recommend that it be accepted. Lori M. Carris, Ph.D., Chair Dorrie Main, Ph.D. Patricia Okubara, Ph.D. Lisa A. Castlebury, Ph. D. ii ACKNOWLEDGMENTS The research presented in this thesis could not have been carried out without the expertise and cooperation of others in the scientific community. Significant contributions were made by colleagues here at Washington State University, at the United States Department of Agriculture and at Agriculture and Agri-Food Canada. I would like to start by thanking my committee members Dr. Lori Carris, Dr. Lisa Castlebury, Dr. Pat Okubara and Dr. Dorrie Main, who provided guidance on procedure, feedback on my research as well as contacts and laboratory resources. Dr. André Lévesque of AAFC initially alerted me to the prospect of collaboration with other AAFC Tilletia researchers and placed me in contact with Dr. Sarah Hambleton, whose lab sequenced four out of five strains of Tilletia used in this study (CSSP CRTI 09-462RD). Dr. Prasad Kesanakurti and Jeff Cullis coordinated my access to AAFC’s genome and transcriptome data for these species. -
Karnal Bunt of Wheat in India and Its Management: a Review Article
Plant Pathology & Quarantine 7(2): 165–173 (2017) ISSN 2229-2217 www.ppqjournal.org Article Doi 10.5943/ppq/7/2/10 Copyright © Mushroom Research Foundation Karnal bunt of wheat in India and its management: a review Sharma A1*, Sharma P1, Dixit A2 and Tyagi R3 1Department of Zoology, Stani Memorial PG College, Jaipur-302020, India 2Department of Zoology, St. Xavier's College, Nevta, Jaipur-302029, India 3Department of Biotechnology, Suresh Gyan Vihar University, Jaipur-302017, India Sharma A, Sharma P, Dixit A, Tyagi R 2017 – Karnal bunt of wheat in India and its management: a review. Plant Pathology & Quarantine 7(2), 165–173, Doi 10.5943/ppq/7/2/10 Abstract Wheat has been a source of staple food to mankind since ancient times. Decreased production of wheat in the major wheat growing countries may be attributed to prevalence of Karnal bunt disease. The major impact of Karnal bunt is yield reduction and a decrease in quality of grains by imparting a fishy odour and taste to the wheat. The disease has gained significant importance due to the fact that it is prevalent only in a few countries around the world. The pathogen Tilletia indica is soil and seed borne which pose a serious quarantine problem and thus interferes with wheat trade. Early recognition of the pathogen is a critical step in analysis and its management. The present review highlights a brief outline of the pathogen, symptoms and various methods like seed treatment, crop rotation, fungicide application etc. for the control of Karnal bunt disease. Keywords – disease – fungicide – pathogen – Tilletia indica – quarantine Introduction Agriculture plays a vital role in the economy and stability of India. -
Yeasts Diversity in Brazilian Cerrado Soils: Study of the Enzymatic Activities
Vol. 7(32), pp. 4176-4190, 9 August, 2013 DOI: 10.5897/AJMR2013.5752 ISSN 1996-0808 ©2013 Academic Journals African Journal of Microbiology Research http://www.academicjournals.org/AJMR Full Length Research Paper Yeasts diversity in Brazilian Cerrado soils: Study of the enzymatic activities Fernanda Paula Carvalho1, Angélica Cristina de Souza1, Karina Teixeira Magalhães-Guedes1*, Disney Ribeiro Dias2, Cristina Ferreira Silva1 and Rosane Freitas Schwan1 1Department of Biology, Federal University of Lavras (UFLA), Campus Universitário, 37.200-000, Lavras, MG, Brazil. 2Department of Food Science, Federal University of Lavras (UFLA), Campus Universitário, 37.200-000, Lavras, MG, Brazil. Accepted 22 July, 2013 A total of 307 yeasts strains were isolated from native Cerrado (Brazilian Savannah) soils collected at Passos, Luminárias and Arcos areas in Minas Gerais State, Brazil. The soils were chemically characterized. Ten yeast genera (Candida, Cryptococcus, Debaryomyces, Kazachstania, Kodamaea, Lindnera, Pichia, Schwanniomyces, Torulaspora and Trichosporon) and 23 species in both rainy and dry seasons were identified. All genera were abundant during the dry season. The pH values of the soil from the Passos, Luminárias and Arcos areas varied from 4.1 to 5.5. There were no significant differences in the concentrations of phosphorus, magnesium and organic matter in the soils among the studied areas. The Arcos area contained large amounts of aluminum during the rainy season and both hydrogen and aluminum in the rainy and dry seasons. The yeast populations identified seemed to be unaffected by the high levels of aluminum in the soil. The API ZYM® (BioMérieux, France) system was employed to characterize the extracellular enzymatic activity profiles of the yeast isolates. -
A Higher-Level Phylogenetic Classification of the Fungi
mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information,