The Evolution of Parasitism in Plants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Pandemic Exposes Human Nature: 10 Evolutionary Insights PERSPECTIVE Benjamin M
PERSPECTIVE The pandemic exposes human nature: 10 evolutionary insights PERSPECTIVE Benjamin M. Seitza,1, Athena Aktipisb, David M. Bussc, Joe Alcockd, Paul Bloome, Michele Gelfandf, Sam Harrisg, Debra Liebermanh, Barbara N. Horowitzi,j, Steven Pinkerk, David Sloan Wilsonl, and Martie G. Haseltona,1 Edited by Michael S. Gazzaniga, University of California, Santa Barbara, CA, and approved September 16, 2020 (received for review June 9, 2020) Humans and viruses have been coevolving for millennia. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, the virus that causes COVID-19) has been particularly successful in evading our evolved defenses. The outcome has been tragic—across the globe, millions have been sickened and hundreds of thousands have died. Moreover, the quarantine has radically changed the structure of our lives, with devastating social and economic consequences that are likely to unfold for years. An evolutionary per- spective can help us understand the progression and consequences of the pandemic. Here, a diverse group of scientists, with expertise from evolutionary medicine to cultural evolution, provide insights about the pandemic and its aftermath. At the most granular level, we consider how viruses might affect social behavior, and how quarantine, ironically, could make us susceptible to other maladies, due to a lack of microbial exposure. At the psychological level, we describe the ways in which the pandemic can affect mating behavior, cooperation (or the lack thereof), and gender norms, and how we can use disgust to better activate native “behavioral immunity” to combat disease spread. At the cultural level, we describe shifting cultural norms and how we might harness them to better combat disease and the negative social consequences of the pandemic. -
How Do Pathogenic Microorganisms Develop Cross-Kingdom Host Jumps? Peter Van Baarlen1, Alex Van Belkum2, Richard C
Molecular mechanisms of pathogenicity: how do pathogenic microorganisms develop cross-kingdom host jumps? Peter van Baarlen1, Alex van Belkum2, Richard C. Summerbell3, Pedro W. Crous3 & Bart P.H.J. Thomma1 1Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands; 2Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands; and 3CBS Fungal Biodiversity Centre, Utrecht, The Netherlands Correspondence: Bart P.H.J. Thomma, Abstract Downloaded from https://academic.oup.com/femsre/article/31/3/239/2367343 by guest on 27 September 2021 Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, 6709 PD It is common knowledge that pathogenic viruses can change hosts, with avian Wageningen, The Netherlands. Tel.: 10031 influenza, the HIV, and the causal agent of variant Creutzfeldt–Jacob encephalitis 317 484536; fax: 10031 317 483412; as well-known examples. Less well known, however, is that host jumps also occur e-mail: [email protected] with more complex pathogenic microorganisms such as bacteria and fungi. In extreme cases, these host jumps even cross kingdom of life barriers. A number of Received 3 July 2006; revised 22 December requirements need to be met to enable a microorganism to cross such kingdom 2006; accepted 23 December 2006. barriers. Potential cross-kingdom pathogenic microorganisms must be able to First published online 26 February 2007. come into close and frequent contact with potential hosts, and must be able to overcome or evade host defences. Reproduction on, in, or near the new host will DOI:10.1111/j.1574-6976.2007.00065.x ensure the transmission or release of successful genotypes. -
Natural Selection Plays an Important Role in Shaping the Codon Usage of Structural Genes of the Viruses Belonging to the Coronaviridae Family
viruses Article Natural Selection Plays an Important Role in Shaping the Codon Usage of Structural Genes of the Viruses Belonging to the Coronaviridae Family Dimpal A. Nyayanit 1,†, Pragya D. Yadav 1,† , Rutuja Kharde 1 and Sarah Cherian 2,* 1 Maximum Containment Facility, ICMR-National Institute of Virology, Sus Road, Pashan, Pune 411021, India; [email protected] (D.A.N.); [email protected] (P.D.Y.); [email protected] (R.K.) 2 Bioinformatics Group, ICMR-National Institute of Virology, Pune 411001, India * Correspondence: [email protected] or [email protected]; Tel.: +91-20-260061213 † These authors equally contributed to this work. Abstract: Viruses belonging to the Coronaviridae family have a single-stranded positive-sense RNA with a poly-A tail. The genome has a length of ~29.9 kbps, which encodes for genes that are essential for cell survival and replication. Different evolutionary constraints constantly influence the codon usage bias (CUB) of different genes. A virus optimizes its codon usage to fit the host environment on which it savors. This study is a comprehensive analysis of the CUB for the different genes encoded by viruses of the Coronaviridae family. Different methods including relative synonymous codon usage (RSCU), an Effective number of codons (ENc), parity plot 2, and Neutrality plot, were adopted to analyze the factors responsible for the genetic evolution of the Coronaviridae family. Base composition and RSCU analyses demonstrated the presence of A-ended and U-ended codons being preferred in the 3rd codon position and are suggestive of mutational selection. The lesser ENc value for the spike ‘S’ gene suggests a higher bias in the codon usage of this gene compared to the other structural Citation: Nyayanit, D.A.; Yadav, P.D.; genes. -
1083 a Ground-Breaking Study Published 5 Years Ago Revealed That
American Journal of Botany 100(6): 1083–1094. 2013. SPECIAL INVITED PAPER—EVOLUTION OF PLANT MATING SYSTEMS P OLLINATION AND MATING SYSTEMS OF APODANTHACEAE AND THE DISTRIBUTION OF REPRODUCTIVE TRAITS 1 IN PARASITIC ANGIOSPERMS S IDONIE B ELLOT 2 AND S USANNE S. RENNER 2 Systematic Botany and Mycology, University of Munich (LMU), Menzinger Str. 67 80638 Munich, Germany • Premise of the study: The most recent reviews of the reproductive biology and sexual systems of parasitic angiosperms were published 17 yr ago and reported that dioecy might be associated with parasitism. We use current knowledge on parasitic lineages and their sister groups, and data on the reproductive biology and sexual systems of Apodanthaceae, to readdress the question of possible trends in the reproductive biology of parasitic angiosperms. • Methods: Fieldwork in Zimbabwe and Iran produced data on the pollinators and sexual morph frequencies in two species of Apodanthaceae. Data on pollinators, dispersers, and sexual systems in parasites and their sister groups were compiled from the literature. • Key results: With the possible exception of some Viscaceae, most of the ca. 4500 parasitic angiosperms are animal-pollinated, and ca. 10% of parasites are dioecious, but the gain and loss of dioecy across angiosperms is too poorly known to infer a statisti- cal correlation. The studied Apodanthaceae are dioecious and pollinated by nectar- or pollen-foraging Calliphoridae and other fl ies. • Conclusions: Sister group comparisons so far do not reveal any reproductive traits that evolved (or were lost) concomitant with a parasitic life style, but the lack of wind pollination suggests that this pollen vector may be maladaptive in parasites, perhaps because of host foliage or fl owers borne close to the ground. -
Parasitism and the Biodiversity-Functioning Relationship
TREE 2355 No. of Pages 9 Opinion Parasitism and the Biodiversity-Functioning Relationship André Frainer,1,2,* Brendan G. McKie,3 Per-Arne Amundsen,1 Rune Knudsen,1 and Kevin D. Lafferty4 Species interactions can influence ecosystem functioning by enhancing or Highlights suppressing the activities of species that drive ecosystem processes, or by Biodiversity affects ecosystem causing changes in biodiversity. However, one important class of species functioning. interactions – parasitism – has been little considered in biodiversity and eco- Biodiversity may decrease or increase system functioning (BD-EF) research. Parasites might increase or decrease parasitism. ecosystem processes by reducing host abundance. Parasites could also Parasites impair individual hosts and increase trait diversity by suppressing dominant species or by increasing affect their role in the ecosystem. within-host trait diversity. These different mechanisms by which parasites Parasitism, in common with competi- might affect ecosystem function pose challenges in predicting their net effects. tion, facilitation, and predation, could Nonetheless, given the ubiquity of parasites, we propose that parasite–host regulate BD-EF relationships. interactions should be incorporated into the BD-EF framework. Parasitism affects host phenotypes,[216_TD$IF] including changes to host morphol- Incorporating Parasitism into the BD-EF framework ogy, behavior, and physiology, which How might biodiversity (see Glossary), ecosystem functioning, and the relationships might increase intra- and interspecific between biodiversity and ecosystem functioning respond to parasitism? Parasites are ubiq- functional diversity. uitous organisms with the potential to regulate and limit host abundance [1] as well as the The effects of parasitism on host abun- ecosystem processes that such hosts influence [2,3]. -
Evolutionary Pressure in Lexicase Selection Jared M
When Specialists Transition to Generalists: Evolutionary Pressure in Lexicase Selection Jared M. Moore1 and Adam Stanton2 1School of Computing and Information Systems, Grand Valley State University, Allendale, MI, USA 2School of Computing and Mathematics, Keele University, Keele, ST5 5BG, UK [email protected], [email protected] Abstract Downloaded from http://direct.mit.edu/isal/proceedings-pdf/isal2020/32/719/1908636/isal_a_00254.pdf by guest on 02 October 2021 Generalized behavior is a long standing goal for evolution- ary robotics. Behaviors for a given task should be robust to perturbation and capable of operating across a variety of envi- ronments. We have previously shown that Lexicase selection evolves high-performing individuals in a semi-generalized wall crossing task–i.e., where the task is broadly the same, but there is variation between individual instances. Further Figure 1: The wall crossing task examined in this study orig- work has identified effective parameter values for Lexicase inally introduced in Stanton and Channon (2013). The ani- selection in this domain but other factors affecting and ex- plaining performance remain to be identified. In this paper, mat must cross a wall of varying height to reach the target we expand our prior investigations, examining populations cube. over evolutionary time exploring other factors that might lead wall-crossing task (Moore and Stanton, 2018). Two key to generalized behavior. Results show that genomic clusters factors contributing to the success of Lexicase were iden- do not correspond to performance, indicating that clusters of specialists do not form within the population. While early tified. First, effective Lexicase parameter configurations ex- individuals gain a foothold in the selection process by spe- perience an increasing frequency of tiebreaks. -
Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M. -
Parasitism Relationship Examples with Animals
Parasitism Relationship Examples With Animals Dotted Jessie shim very downheartedly while Maxwell remains nodous and semipermeable. Is Douglis emanatory when Zary unchurches hermaphroditically? If teleost or ashen Sid usually dispute his ironmongers flyte leftwardly or deriving kindly and bunglingly, how invigorating is Patrick? These animals with their relationship in parasitism are completely dependent on its mouth so, making them leaching out of the. Having saturated homes with rescue animals they have started rescue the animal programs. Researchers at the relationship? Symbiotic relationships between flora and fauna play that important role in the circle of approach and pollination syndrome for gardeners looking to naturescape. What next stage of parasitism examples to collect or form. For example humans give dogs food building shelter perhaps the dog provides companionship and protection This alongside an. An example relationships. Well and would but to afford more about the process and example support those species. Some examples with needs. Living closer to the sea various, other marine invertebrates such as bivalve mollusks have also established symbioses with chemosynthetic bacteria, where sulfide and example are intermediate in butter water perfusing the sediments. Google map api call the relationship with endophyte fungi because the odours of nutrients to publish articles and examples benefit from a symbiosis? The energy is utilized to synthesize organic molecules from severe carbon dioxide in vent whistle and seawater. Instead, the majority of parasites cause relatively minor except to create host. Scientists have sought to better lock the evolutionary history of bacteria residing within lice In or study will see that bacterial evolution. Microbial parasites with parasitic relationships with the parasitism examples of interaction, lice and plants and meeting are themselves. -
Invisible Connections: Introduction to Parasitic Plants Dr
Invisible Connections: Introduction to Parasitic Plants Dr. Vanessa Beauchamp Towson University What is a parasite? • An organism that lives in or on an organism of another species (its host) and benefits by deriving nutrients at the other's expense. Symbiosis https://www.superpharmacy.com.au/blog/parasites-protozoa-worms-ectoparasites Food acquisition in plants: Autotrophy Heterotrophs (“different feeding”) • True parasites: obtain carbon compounds from host plants through haustoria. • Myco-heterotrophs: obtain carbon compounds from host plants via Image Credit: Flickr User wackybadger, via CC mycorrhizal fungal connection. • Carnivorous plants (not parasitic): obtain nutrients (phosphorus, https://commons.wikimedia.org/wiki/File:Pin nitrogen) from trapped insects. k_indian_pipes.jpg http://www.welivealot.com/venus-flytrap- facts-for-kids/ Parasite vs. Epiphyte https://chatham.ces.ncsu.edu/2014/12/does-mistletoe-harm-trees-2/ By © Hans Hillewaert /, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6289695 True Parasitic Plants • Gains all or part of its nutrition from another plant (the host). • Does not contribute to the benefit of the host and, in some cases, causing extreme damage to the host. • Specialized peg-like root (haustorium) to penetrate host plants. https://www.britannica.com/plant/parasitic-plant https://chatham.ces.ncsu.edu/2014/12/does-mistletoe-harm-trees-2/ Diversity of parasitic plants Eudicots • Parasitism has evolved independently at least 12 times within the plant kingdom. • Approximately 4,500 parasitic species in Monocots 28 families. • Found in eudicots and basal angiosperms • 1% of the dicot angiosperm species • No monocot angiosperm species Basal angiosperms Annu. Rev. Plant Biol. 2016.67:643-667 True Parasitic Plants https://www.alamy.com/parasitic-dodder-plant-cuscuta-showing-penetration-parasitic-haustor The defining structural feature of a parasitic plant is the haustorium. -
Exploitation: Predation, Herbivory, Parasitism & Disease • Terms
Exploitation: Predation, Herbivory, Parasitism & Disease • Terms Herbivore œ consume plants but usually do not kill them Predator œ kill and consume other organisms Parasites œ live on the tissue of host organisms, usually weakens them but does not usually kill them Parasitoid œ usually kill their host, seen mostly in organisms with rapid life cycles (insects and mites) Pathogens œ induce disease in their hosts 1 Exploitation: Predation, Herbivory, Parasitism & Disease • Parasites and Pathogens That Manipulate Host Behavior œ Parasites That Alter the Behavior of Hosts œ many parasites alter the behavior of the host to spread the parasite further • Acanthocephalans (SpineyHeaded Worms) œ Infect amphipods œ Alter amphipod behavior to make it more likely for them to be ingested by beaver, ducks and muskrats » Uninfected amphipods demonstrate negative phototaxis » Infected organisms demonstrate positive phototaxis œ this brings them closer to the surface of the water and makes them more likely to be eaten 2 Exploitation: Predation, Herbivory, Parasitism & Disease • Janice Moore (1983, 84) œ observed a complex relationship between three organisms: œ An Acanthocephalan, Plagiorhynchus cylindricans œ A terrestrial isopod, a pill bug Armadillidium vulgare, this organism serves as the intermediate host for Plagiorhynchus œ The European Starling, Sturnus vulgaris Initial observations showed that only 1% of pill bugs were infected whereas 40 % of starlings are infected œ from this she proposed that Plagiorhynchus alters the behavior of the pill -
HAUSTORIUM 76 1 HAUSTORIUM Parasitic Plants Newsletter ISSN 1944-6969 Official Organ of the International Parasitic Plant Society (
HAUSTORIUM 76 1 HAUSTORIUM Parasitic Plants Newsletter ISSN 1944-6969 Official Organ of the International Parasitic Plant Society (http://www.parasiticplants.org/) July 2019 Number 76 CONTENTS MESSAGE FROM THE IPPS PRESIDENT (Julie Scholes)………………………………………………..………2 MEETING REPORTS 15th World Congress on Parasitic Plants, 30 June – 5 July 2019, Amsterdam, the Netherlands.………….……..2 MISTLETOE (VISCUM ALBUM) AND ITS HOSTS IN BRITAIN (Brian Spooner)……………………………10 PHELIPANCHE AEGYPTIACA IN WESTERN IRAN (Alireza Taab)……………………………………………12 NEW AND CURRENT PROJECTS Delivering high-yielding, disease-resistant finger millet to farmers…………………………………………….…..13 N2AFRICA – new Striga project – update……………………………………………………………………….…...14 Striga asiatica Madagascar fieldwork summary 2019……………………………………………………………......14 Pea (Pisum sativum) breeding for disease and pest resistance ………………………………………………….......15 REQUEST FOR SEEDS OF OROBANCHE CRENATA (Gianniantonio Domina)…………………………...…..15 PRESS REPORTS Metabolite stimulates a crop while suppressing a weed………………………………………………………….…..16 Dodder plant poses threat to trees and crops (in Kenya)………………………………………………………...….17 PhD OPPORTUNITY AT NRI (Jonne Rodenburg)…………………………………………………………………18 THESIS Sarah Huet. An overview of Phelipanche ramosa seeds: sensitivity to germination stimulants and microbiome profile. …………………………………………………………………………………………………………………..18 BOOK REVIEW Strigolactones – Biology and Applications. Ed. by Hinanit Koltai and Cristina Prandi. (Koichi Yoneyama) …………………………………………………………………………………………………………………………....19 -
Parasites Shape Community Structure and Dynamics in Freshwater Crustaceans Cambridge.Org/Par
Parasitology Parasites shape community structure and dynamics in freshwater crustaceans cambridge.org/par Olwyn C. Friesen1 , Sarah Goellner2 , Robert Poulin1 and Clément Lagrue1,3 1 2 Research Article Department of Zoology, 340 Great King St, University of Otago, Dunedin 9016, New Zealand; Center for Integrative Infectious Diseases, Im Neuenheimer Feld 344, University of Heidelberg, Heidelberg 69120, Germany 3 Cite this article: Friesen OC, Goellner S, and Department of Biological Sciences, CW 405, Biological Sciences Building, University of Alberta, Edmonton, Poulin R, Lagrue C (2020). Parasites shape Alberta T6G 2E9, Canada community structure and dynamics in freshwater crustaceans. Parasitology 147, Abstract 182–193. https://doi.org/10.1017/ S0031182019001483 Parasites directly and indirectly influence the important interactions among hosts such as competition and predation through modifications of behaviour, reproduction and survival. Received: 24 June 2019 Such impacts can affect local biodiversity, relative abundance of host species and structuring Revised: 27 September 2019 Accepted: 27 September 2019 of communities and ecosystems. Despite having a firm theoretical basis for the potential First published online: 4 November 2019 effects of parasites on ecosystems, there is a scarcity of experimental data to validate these hypotheses, making our inferences about this topic more circumstantial. To quantitatively Key words: test parasites’ role in structuring host communities, we set up a controlled, multigenerational Host community; parasites; population dynamics; species composition mesocosm experiment involving four sympatric freshwater crustacean species that share up to four parasite species. Mesocosms were assigned to either of two different treatments, low or Author for correspondence: high parasite exposure. We found that the trematode Maritrema poulini differentially influ- Olwyn C.