Haustorium 41 July 2002 - 1 - HAUSTORIUM Parasitic Plants Newsletter Official Organ of the International Parasitic Plant Society

Total Page:16

File Type:pdf, Size:1020Kb

Haustorium 41 July 2002 - 1 - HAUSTORIUM Parasitic Plants Newsletter Official Organ of the International Parasitic Plant Society Haustorium 41 July 2002 - 1 - HAUSTORIUM Parasitic Plants Newsletter Official Organ of the International Parasitic Plant Society July 2002 Number 41 STATUS OF HAUSTORIUM A MESSAGE FROM THE NEW EDITOR The banner above shows that Haustorium is Dear readers, now the official organ of the International Parasitic Plant Society (IPPS) which has You may notice some changes in this 41st issue effectively replaced the shadowy (but of Haustorium as compared to previous ones. effective!) Parasitic Seed Plant Research This issue marks the official union of Group. The format remains the same for the Haustorium with the IPPS, and reflects time being but we welcome Jim Westwood, increased IPPS involvement in producing what Editor of IPPS, as an additional editor and he is now our Society’s newsletter. You will will in due course be introducing new features, notice a new item, the President’s Message, as indicated by his personal message below. written by IPPS President Andr¾ Fer. We plan to continue this as regular component of We are pleased to acknowledge that Old Haustorium and to look for other features that Dominion University is once again supporting will be of interest and continue to provide the printing and mailing of this issue of value for all parasitic plant researchers. Haustorium. To help guide this “evolution of the The future circulation of the newsletter has yet Haustorium” we are establishing an Editorial to be decided and there are some doubts Board, composed of scientists representing a whether non-members of IPPS will continue to variety of disciplines and geographical receive Haustorium, especially if they wish to distribution. The Editorial Board will consider receive hard copy, rather than the electronic issues related to Haustorium content, offer version. Many readers are already receiving suggestions on new features, and generate Haustorium by Email. If any more of you wish and/or review articles in their area of expertise. to do so, please let Chris Parker know (Email address on the last page). Bear in mind that Of course, one should not tamper recklessly having an electronic version of the newsletter with something that has worked so well for also enables you to ‘search’. many years. Rather, we hope to build on the strengths of Haustorium by involving more The web-site version of this issue and past IPPS members as contributors. This is one of issues of Haustorium are now available on our best ways to communicate as a society and http://web.odu.edu/haustorium, and on the we welcome ideas and feedback from all of IPPS site – http://www.ppws.vt.edu/IPPS/ you. Jim Westwood Haustorium 41 July 2002 - 2 - IPPS NEWS Message from thePresident Another challenge for the parasitic plant research community is to understand why, The International Parasitic Plant society (IPPS) within the same host crop species, some was inaugurated last year during the Seventh genotypes are resistant while other are International Parasitic Weed Symposium in susceptible. Competition between host and Nantes and was registered in Amsterdam parasitic sinks may be a decisive factor in during the summer. The founders of IPPS were determining susceptibility or resistance of the primarily interested in stimulating the host to root-holoparasites that obtain their development of research in the extraordinary nutrients mainly from the phloem of the field of parasitic flowering plants. We hope parasitized plants. Composition of host xylem that formalizing a society that has existed sap (mainly the C:N ratio of transported informally for many years will provide both substances) depends on the sink strength of the stability and renewed energy to carry us host root and can affect the nutritional balance through the coming years. of xylem-taping root-hemiparasites. Histological and cellular responses related to One of the aims of the new society was to resistance are regularly observed. But are these continue the invaluable work that Lytton responses the cause or the consequence of Musselman and Chris Parker have put into resistance? Finally, are phytoalexins involved editing the Haustorium newsletter for many in resistance to parasitic plants? When the years. But, of course, the activity of the society main factors responsible for resistance to a should not be limited to publishing parasite are clearly identified and understood, Haustorium. It is also necessary to promote then we will be able to design crop genotypes interdisciplinary research to significantly exhibiting stable polygenic resistance. Here improve our understanding of parasitic plants. again, studies of the mechanisms of resistance Several parasitic plant genera have a severe require a highly interdisciplinary program. impact on the production of major crops. Surely existing approaches (mainly chemical) If the molecular dialogue resulting in host for controlling such pests can be further parasite association (including understanding improved, but new control strategies that of mechaisms of resistance to root-parasites) is would be acceptable for the development of a very important topic, it is also clear that sustainable agriculture are also needed. For studies need to be conducted on other parasite this to be realized, it is clear that we have to species. This is most important for species that greatly increase our understanding of host- have dramatic effects on forest trees and parasite relationships. timber production (mistletoes) and for parasites of economic importance For example, it is necessary to make progress (sandalwood). in identifying the signals responsible for triggering germination, and also those involved As I have tried to point out in this short article, in inducing and controlling haustorium our ignorance in the area of parasitic flowering formation. The signaling pathways acting in plants is still enormous. This presents an these processes are still almost unknown, and exciting challenge for our young society, and it we need to put more effort into detailed studies is an urgent task of IPPS to develop and of the molecular dialogue that results in the maintain an international network for the building of the host-parasite association. advancement of parasitic plant research and Molecular approaches (i.e. gene expression) control. Working together, we can hope to and the use of genetically engineered host make progress. plants and mutants are some of the tools that will be necessary. Such research programs André Fer, President, IPPS benefit from collaboration between laboratories and should be encouraged. Resulting data could be invaluable for the development of selective control methods and new resistant host varieties. Haustorium 41 July 2002 - 3 - COST ACTION 849 – PARASITIC PLANT Cradled by the Knuckles Mountains is a MANAGEMENT IN SUSTAINABLE botanically fascinating area of short wet AGRICULTURE grassland wonderfully rich in insectivorous Drosera and Utricularia species. Among these The first meeting of the Working Groups was was what reminded me very much of Cycnium held in Bari, Italy in October, 2001, and a tubulosum in Africa. This turned out to be the listing of the papers presented is now provided related hemi-parasite Centranthera indica. below, under Proceedings of Meetings. Other Scrophulariaceae in Sri Lanka include Pedicularis and Striga spp. Further meetings of Working Group 1 (Biology and Epidemiology) and WG 3 Among other parasites seen that day were (Resistance) were held in Sofia, in February. several populations of Cuscuta campestris Meetings of WG 2 (Biological Control) and which, as in parts of India, is being locally WG 4 (Integrated Control) and of the mistaken for C. chinensis Management Committee are now scheduled for July 24-28 in Obermarchtal, Germany. Several representatives of Olacaceae, Abstracts will be published on a COST website Santalaceae and Opiliaceae also occur. I – details in the next issue. strongly recommend Sri Lanka as a rich hunting ground for the parasitic plant specialist. PARASITIC PLANTS IN SRI LANKA Ref: Tennakoon, K. and Weerasooriya, A. In the course of a holiday trip to Sri Lanka, I 1998. Nature’s scroungers – The fascinating enjoyed a very interesting day out with Dr world of plant parasites. Sri Lanka Nature Kushan Tennakoon of University of March 1998: 45-58. Peradeniya. Dr Tennakoon has contributed to this newsletter on the topic of sandalwood. We Chris Parker drove from Kandy at about 300 m elevation up to the Knuckles Mountains at 1200 m, passing through tea plantations and then natural forest SCREENING LEGUMES FOR which between the elevations of 800 and 1100 RESISTANCE TO ALECTRA IN MALAWI m is wonderfully rich in mistletoes. Most were out of reach but we were able to collect one The incidence of yellow witchweed (Alectra sample of the abundant and very variable vogelii) is on the increase in Malawi due to Dendropthoe falcata. The host in this case was greater efforts to promote legume crops. A Eucalytpus grandis but the literature shows study was initiated at Chitedze Research that D. falcata has an extremely wide host Station in Malawi in November 2000 with the range including many garden fruit and native objective of screening amongst existing and forest tree species. promising varieties of soybean, groundnuts and pigeon peas (medium maturity), and According to the well-illustrated article by several green manure crop species for Tennakoon and Weerasooriya (1998), susceptibility to Alectra vogelii.. belatedly noted in this issue, there are 22 species of Loranthaceae and 9 Viscaceae in Sri Four trials were conducted including, Lanka. Altogether 57 parasitic plant species respectively, 11 soybean lines; 7 groundnut belonging to 22 genera in 8 families are lines; 8 pigeon pea lines; and 10 green manure currently recognised in the Sri Lankan flora, entries (4 entries of Mucuna pruriens, 3 of many of them endemic. The biology and host Canavalia ensiformis and one each of range of many of these species is not well Crotalaria ochroleuca, C. juncea and C. known. Dr Tennakoon is keen to develop a grahamiana).
Recommended publications
  • Anatomical, Proximate, Mineral and Vitamin Studies on Celosia Argentea (Linn.)
    British Biotechnology Journal 15(4): 1-7, 2016, Article no.BBJ.28300 ISSN: 2231–2927, NLM ID: 101616695 SCIENCEDOMAIN international www.sciencedomain.org Anatomical, Proximate, Mineral and Vitamin Studies on Celosia argentea (Linn.) C. V. Ilodibia1*, C. Chukwuka1, U. M. Chukwuma2, E. E. Akachukwu2, N. A. Igboabuchi2 and R. N. Adimonyemma2 1Department of Botany, Nnamdi Azikiwe University, P. M. B 5025, Awka, Anambra State, Nigeria. 2Department of Biology, Nwafor Orizu College of Education Nsugbe, Anambra State, Nigeria. Authors’ contributions This work was carried out in collaboration of all authors. Author CVI designed the study. Author CC carried out the experiment and wrote the first draft of the manuscript. Authors CC and CVI managed the analyses of the study. Author CVI supervised the work. All authors read and approved the final manuscript. Article Information DOI: 10.9734/BBJ/2016/28300 Editor(s): (1) Sukesh Voruganti, Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, USA. Reviewers: (1) Rita Andini, Teuku Umar University, Indonesia. (2) Yesufu Hassan Braimah, University of Maiduguri, Nigeria. Complete Peer review History: http://www.sciencedomain.org/review-history/16069 Received 13th July 2016 Accepted 30th August 2016 Original Research Article Published 7th September 2016 ABSTRACT Anatomical, Proximate, Vitamin and Mineral studies were carried out on the various parts (root, stem, leaf and petiole) of Celosia argentea L. using standard techniques. Analysis of variance (ANOVA) was used for the statistical analysis. Anatomical result revealed similar features in their epidermis and cortex and differences in their vascular bundles arrangement. Proximate analysis revealed that protein and fat contents were highest in the leaf (13.11± 0.01%) and (10.61±0.00%) respectively.
    [Show full text]
  • Celosia Argentea Linn. and Its Phytochemical Activity
    wjpmr, 2020,6(5), 107-109 SJIF Impact Factor: 5.922 WORLD JOURNAL OF PHARMACEUTICAL Review Article Gajanan et al. World Journal of Pharmaceutical and Medical Research AND MEDICAL RESEARCH ISSN 2455-3301 www.wjpmr.com WJPMR REVIEW: CELOSIA ARGENTEA LINN. AND ITS PHYTOCHEMICAL ACTIVITY 1*Dr. Vd. Gajanan Shankarrao Patil, 2Vd. Pankaj P. Surve and 3Dr. Aparna M. Ghotankar 1(PG Scholar) Department of Dravyaguna, CSMSS Ayurved Mahavidyalaya, Kanchanwadi Aurangabad. 2(Reader P.G. Guide) Department of Dravyaguna, CSMSS Ayurved Mahavidyalaya, Kanchanwadi Aurangabad. 3MD. PhD. HOD Department of Dravyaguna, CSMSS Ayurved Mahavidyalaya, Kanchanwadi Aurangabad. *Corresponding Author: Dr. Vd. Gajanan Shankarrao Patil (PG Scholar) Department of Dravyaguna, CSMSS Ayurved Mahavidyalaya, Kanchanwadi Aurangabad. Article Received on 29/02/2020 Article Revised on 19/03/2020 Article Accepted on 09/04/2020 ABSTRACT Since ancient time in India. Celosia argentea linn. Is widely used in traditional medicine, to cure several disorders such as fever, diarrhea, mouth sores, itching wound, jaundice, gonorrhea and inflammation. Literaterature survey from books and journal of traditional Indian medicine revealed that celosia argentia linn. has a lot of medicinal properties. Leaves, stem and root have been reported for medicinal activity, the plant has pharmacologically been studied for various cativities like anti-cancer ,hepatoprotection, anti-dibetes etc. However too many scientific studies have been carried out on this plant. For exploring these traditional uses. The present report is deals with traditional uses and pharmacological activity of celosia argentea linn. In the treatment of various diseases. KEYWORDS: Celosia argentea linn, traditional uses and pharmacological activity. INTRODUCTION bioactivities such as hepato-protection, anti- tumor anti - diabetic anti- oxidant etc.
    [Show full text]
  • How Do Pathogenic Microorganisms Develop Cross-Kingdom Host Jumps? Peter Van Baarlen1, Alex Van Belkum2, Richard C
    Molecular mechanisms of pathogenicity: how do pathogenic microorganisms develop cross-kingdom host jumps? Peter van Baarlen1, Alex van Belkum2, Richard C. Summerbell3, Pedro W. Crous3 & Bart P.H.J. Thomma1 1Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands; 2Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands; and 3CBS Fungal Biodiversity Centre, Utrecht, The Netherlands Correspondence: Bart P.H.J. Thomma, Abstract Downloaded from https://academic.oup.com/femsre/article/31/3/239/2367343 by guest on 27 September 2021 Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, 6709 PD It is common knowledge that pathogenic viruses can change hosts, with avian Wageningen, The Netherlands. Tel.: 10031 influenza, the HIV, and the causal agent of variant Creutzfeldt–Jacob encephalitis 317 484536; fax: 10031 317 483412; as well-known examples. Less well known, however, is that host jumps also occur e-mail: [email protected] with more complex pathogenic microorganisms such as bacteria and fungi. In extreme cases, these host jumps even cross kingdom of life barriers. A number of Received 3 July 2006; revised 22 December requirements need to be met to enable a microorganism to cross such kingdom 2006; accepted 23 December 2006. barriers. Potential cross-kingdom pathogenic microorganisms must be able to First published online 26 February 2007. come into close and frequent contact with potential hosts, and must be able to overcome or evade host defences. Reproduction on, in, or near the new host will DOI:10.1111/j.1574-6976.2007.00065.x ensure the transmission or release of successful genotypes.
    [Show full text]
  • HAUSTORIUM 76 1 HAUSTORIUM Parasitic Plants Newsletter ISSN 1944-6969 Official Organ of the International Parasitic Plant Society (
    HAUSTORIUM 76 1 HAUSTORIUM Parasitic Plants Newsletter ISSN 1944-6969 Official Organ of the International Parasitic Plant Society (http://www.parasiticplants.org/) July 2019 Number 76 CONTENTS MESSAGE FROM THE IPPS PRESIDENT (Julie Scholes)………………………………………………..………2 MEETING REPORTS 15th World Congress on Parasitic Plants, 30 June – 5 July 2019, Amsterdam, the Netherlands.………….……..2 MISTLETOE (VISCUM ALBUM) AND ITS HOSTS IN BRITAIN (Brian Spooner)……………………………10 PHELIPANCHE AEGYPTIACA IN WESTERN IRAN (Alireza Taab)……………………………………………12 NEW AND CURRENT PROJECTS Delivering high-yielding, disease-resistant finger millet to farmers…………………………………………….…..13 N2AFRICA – new Striga project – update……………………………………………………………………….…...14 Striga asiatica Madagascar fieldwork summary 2019……………………………………………………………......14 Pea (Pisum sativum) breeding for disease and pest resistance ………………………………………………….......15 REQUEST FOR SEEDS OF OROBANCHE CRENATA (Gianniantonio Domina)…………………………...…..15 PRESS REPORTS Metabolite stimulates a crop while suppressing a weed………………………………………………………….…..16 Dodder plant poses threat to trees and crops (in Kenya)………………………………………………………...….17 PhD OPPORTUNITY AT NRI (Jonne Rodenburg)…………………………………………………………………18 THESIS Sarah Huet. An overview of Phelipanche ramosa seeds: sensitivity to germination stimulants and microbiome profile. …………………………………………………………………………………………………………………..18 BOOK REVIEW Strigolactones – Biology and Applications. Ed. by Hinanit Koltai and Cristina Prandi. (Koichi Yoneyama) …………………………………………………………………………………………………………………………....19
    [Show full text]
  • Biotrophy and Rust Haustoria
    Physiological and Molecular Plant Pathology (2000) 56, 141±145 doi:10.1006/pmpp.2000.0264, available online at http://www.idealibrary.com on MINI-REVIEW Biotrophy and rust haustoria KURT MENDGEN*, CHRISTINE STRUCK, RALF T. VOEGELE and MATTHIAS HAHN UniversitaÈt Konstanz, Department of Biology, Phytopathology, D-78457 Konstanz, Germany (Accepted for publication March 2000) INTRODUCTION to a haustorial body reaching into the host cell. Around the neck is an iron- and phosphorus-rich neckband which Haustoria produced by biotrophic fungi and Oomycetes bridges the plant and fungal plasma membrane. It seems are extensions into living host cells. However, they are not to serve as a seal against the ¯ow of solutes from the truly intracellular. They breach the cell wall only and a extrahaustorial matrix into the apoplast of the plant [17, newly formed host plasma membrane (the extrahaustorial 20, 22]. The lack of intramembrane particles, as revealed membrane) surrounds them, resulting in a close associ- by freeze fracture electron microscopy and dierent ation of fungal and plant membranes only separated by a cytochemical methods, convincingly demonstrated that thin fungal wall and an extrahaustorial matrix. The the extrahaustorial membrane diers from ``conventional extrahaustorial matrix is mainly of host origin. Heath and membranes'' in plant cells [17]. Although these methods Skalamera [23] suggest that this interface is the site for were unable to reveal the molecular basis of such translocation of nutrients and exchange of information. modi®cations, they proved the existence of a specialized Two more aspects seem to be of utmost importance. First, membrane surrounding the haustorium. In light of the the fungal haustorium must not be recognized as foreign apparent similar tasks that these diverse morphological by the host in order to avoid defence reactions.
    [Show full text]
  • Phytochemical and Phytotherapeutic Properties of Celosia Species- a Review
    Available online on www.ijppr.com International Journal of Pharmacognosy and Phytochemical Research 2017; 9(6); 820-825 DOI number: 10.25258/phyto.v9i6.8185 ISSN: 0975-4873 Review Article Phytochemical and Phytotherapeutic Properties of Celosia species- A Review Vanitha Varadharaj*, Jayalakshmi Muniyappan Vels university, Department of biochemistry, Velan nagar, p.v. vaithiyalingam road, pallavaram, chennai - 600 117, Tamil nadu, India Received: 20th Jan, 17; Revised 28th May, 17, Accepted: 15th June, 17; Available Online:25th June, 2017 ABSTRACT Medicinal plants have been used basically in all cultures as a source of medicine. Medicinal plants play an important role in public health, especially in developed and developing countries and leads to examination for therapeutic and pharmacological applications. Medicinal Plants have been used for thousands of years to flavor and conserve food, to treat different health issues and to prevent diseases including epidemics. Active compounds produced during secondary metabolism are usually posses the biological properties of plant species used throughout the globe for various purposes, including treatment of infectious diseases. Based on the medicinal values, the Celosia species has been chosen for this study. Celosia species plays an important role in traditional medicine to cure several disorders such as fever, diarrohea, mouth sores, itching, wounds, jaundice, gonorrhea, and inflammation. A variety of phytoconstituents are isolated from the Celosia species which includes triterpenoids, saponins, alkaloids, phenols, tannins, flavonoids, cardiac glycosides, steroids, phytosterols, and phlobatannins. The plant having potential pharmacological values screened for its various pharmacological activities, namely, anti-inflammatory, immune-stimulating, anticancer, hepatoprotective, antioxidant, wound healing, antidiabetic, antinociceptive effect and antibacterial activities which are reported in the extracts of different parts of the plant.
    [Show full text]
  • Effects of Cytokinins on Fungus Development and Host Response in Powdery Mildew of Barley
    Physiological andMolecular Plant Pathology (1986) 29,41-52 Effects of cytokinins on fungus development and host response in powdery mildew of barley ZHANJIANO Lru and W. R. BUSHNELLt Cereal RustLaboratory, Agricultural Research Service, U.S. Department ojAgriculture, andDepartment ofPlantPathology, Universiry of Minnesota, St Paul,Minnesota 55108, U.S.A. (AcceptedJor publication December 1985) Epidermal tissues partially dissected from coleoptiles of barley (Hordeum vulgare L.) were inoculated with Erysiphe graminis (DC) Merat f.sp, hordei Em. Marchal to test the effects of cytokinins on fungus development and the hypersensitive reaction (HR). Kinetin at 1O-5to 10-4 M applied 16 h after inoculation accelerated HR in an incompatible host-parasite combination and doubled the number of ceUsthat died at each infection site, suggesting that kinetin had increased the spread of killing factors beyond the cells that contained primary haustoria. With a compatible host-parasite combination, kinetin applied at 16 h after inoculation decreased initiation of hyphae at 10-5 to 4 6 4 10- M and decreased hypha! growth at 10- to 10- M. Kinetin applied at inoculation slowed haustorium development, interfered with haustorium differentiation and decreased the number of secondary haustoria formed by hyphal colonies. The central bodies of haustoria were enlarged and spherical, indicating that kinetin had interfered with the normal elongation processes of the bodies. Zeatin had no effects on either fungus development or HR. Kinetin inhibited appressorium formation apart from the host on nitrocellulose membranes, suggesting that the inhibitory effects of kinetin on fungus development were direct rather than through the host. INTRODUCTION Kinetin has been reported to influence resistance in plant disease in diverse ways.
    [Show full text]
  • A Comprehensive Review of Phytochemical and Pharmacological Overview on Celosia Cristata for Future Prospective Research
    Online - 2455-3891 Online - 2455-3891 Vol 13, Issue 12, 2020 Print - 0974-2441 Vol 13, Issue 12, 2020 Print - 0974-2441 Review Article A COMPREHENSIVE REVIEW OF PHYTOCHEMICAL AND PHARMACOLOGICAL OVERVIEW ON CELOSIA CRISTATA FOR FUTURE PROSPECTIVE RESEARCH MAHAVEER SING1, SRAVAN KUMAR P1, BIRENDRA SHRIVASTAVA1, PAMULA REDDY B2 1Department of Pharmacy, School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India. 2Department of Pharmacy, School of Pharmacy, Guru Nanak Group of Institutions, Hyderabad, Telangana, India. Email: mahaveer [email protected] Received: 08 September 2020, Revised and Accepted: 20 October 2020 ABSTRACT Celosia cristata (CC) is used in traditional medicine to cure several disorders. It is a member of the genus Celosia and is commonly known as cockscomb, since the flower looks like the head on a rooster. Many sensitive ingredients were isolated from different parts of the plant. The recent studies showed that the plant exerted a wide range of pharmacological activities. The chemical constituents and pharmacological activities of CC were presented in this review. Keywords: Celosia cristata, cockscomb, chemical constituent. © 2020 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4. 0/) DOI: http://dx.doi.org/10.22159/ajpcr.2020.v13i12.38675 INTRODUCTION CULTIVATION Medicinal plants have a wide range of pharmacological effects. Celosia CC can grow of tropic origin. They can be grown in summer months cristata (CC) is an annual plant [1-6] of tropical origin and lacking a in the colder climate. The plants [29-32] being annual plants grow for woody stem.
    [Show full text]
  • Reformation of Specialty Cut Flower Production for Celosia Cristata
    Reformation of specialty cut flower production for Celosia cristata Cameron Zuck, University oF Minnesota (Landscape Design and Planning, Department oF Landscape Architecture) December 18, 2015 EXECUTIVE SUMMARY Celosia cristata is an interesting and increasingly popular crop in specialty cut flower production. With origins of dry, temperate climates in Africa and Asia, this herbaceous annual plant is now distributed and cultivated worldwide. C. cristata has a wide variety of cultivars available on the market including the ‘Chief Series’ and the ‘Bombay’. To become a more sustainable and energy-efficient crop in the future, one potential change in production is an overall increase on growth efficiency. By evaluating the current practices and traits of C. cristata, a new ideotype is UNIVERSITY OF MINNESOTA: Celosia cristata: Cut Flower Production 1 proposed that addresses possible genetic improvements that can create a more sustainable production of C. cristata. I. INTRODUCTION A. Study Species. Celosias are eye-catching flowers that come in many different colors and forms. The unique inflorescence of Celosia cristata have been compared to a rooster comb, a brain and elegant ribbon; whichever way they are described, they are sure to strike the attention of anyone who catches a glimpse (Cornell 2006). Celosia are versatile plants that have been used as herbal remedies, as ornamental annuals in the garden and as cut and dry flowers. Celosia cristata is still considered fairly unknown to consumers in specialty cut flower production and has potential to grow (Gilman and Howe 1999). Since C. celosia is a temperate climate species, field production is restricted in location and time.
    [Show full text]
  • Yeasts in Pucciniomycotina
    Mycol Progress DOI 10.1007/s11557-017-1327-8 REVIEW Yeasts in Pucciniomycotina Franz Oberwinkler1 Received: 12 May 2017 /Revised: 12 July 2017 /Accepted: 14 July 2017 # German Mycological Society and Springer-Verlag GmbH Germany 2017 Abstract Recent results in taxonomic, phylogenetic and eco- to conjugation, and eventually fructificaction (Brefeld 1881, logical studies of basidiomycetous yeast research are remark- 1888, 1895a, b, 1912), including mating experiments (Bauch able. Here, Pucciniomycotina with yeast stages are reviewed. 1925; Kniep 1928). After an interval, yeast culture collections The phylogenetic origin of single-cell basidiomycetes still re- were established in various institutions and countries, and mains unsolved. But the massive occurrence of yeasts in basal yeast manuals (Lodder and Kreger-van Rij 1952;Lodder basidiomycetous taxa indicates their early evolutionary pres- 1970;Kreger-vanRij1984; Kurtzman and Fell 1998; ence. Yeasts in Cryptomycocolacomycetes, Mixiomycetes, Kurtzman et al. 2011) were published, leading not only to Agaricostilbomycetes, Cystobasidiomycetes, Septobasidiales, the impression, but also to the practical consequence, that, Heterogastridiomycetes, and Microbotryomycetes will be most often, researchers studying yeasts were different from discussed. The apparent loss of yeast stages in mycologists and vice versa. Though it was well-known that Tritirachiomycetes, Atractiellomycetes, Helicobasidiales, a yeast, derived from a fungus, represents the same species, Platygloeales, Pucciniales, Pachnocybales, and most scientists kept to the historical tradition, and, even at the Classiculomycetes will be mentioned briefly for comparative same time, the superfluous ana- and teleomorph terminology purposes with dimorphic sister taxa. Since most phylogenetic was introduced. papers suffer considerably from the lack of adequate illustra- In contrast, biologically meaningful academic teaching re- tions, plates for representative species of orders have been ar- quired rethinking of the facts and terminology, which very ranged.
    [Show full text]
  • Chemical Constituents of Celosia Argentea Va. Cristata L. Plants As Affected by Foliar Application of Putrescine and Alpha-Tocopherol
    International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.8, No.12 pp 464-470, 2015 Chemical constituents of Celosia argentea va. cristata L. plants as affected by foliar application of putrescine and alpha-tocopherol El-Saady M. Badawy1, Magda M. Kandil2, Mona H. Mahgoub2, Nermeen T. Shanan1, Noha A. Hegazi2 1Dept. Of Ornamental Hortic., Fac., of Agric., Cairo Univ., Giza,Egypt. 2Dept. Of Ornamental Plants and Woody Trees, National Research Centre, 33 El-Bohouth St., ( Former. El-Tahrir ), Dokki, Giza, Egypt. Abstract: The effect of putrescine at 50,100 and 200 ppm and alpha- tocopherol at 200, 400 and 600 ppm on chemical constituents of Celosia argentea var. cristata L. plants had been studied in pot experiment during two successive seasons (2009-2010) and (2010-2011). Data indicated that most criteria of chlorophylls, anthocyanin and total carbohydrates contents were significantly affected by the application of putrescine and alpha- tocopherol as compared with the control plants. Foliar application with 200 ppm putrescine resulted in the highest increase values in these studied characters as compared with the other treatments and the untreated plants in the two seasons of study. Spraying the plants with alpha- tocopherol at the concentration of 400 ppm resulted in the highest values as compared to the control plants in the two successive seasons. Keywords: Celosia cristata, putrescine, alpha-tocopherol, chlorophylls, anthocyanin , total carbohydrate. Introduction Celosia argentea var. cristata is an herbaceous plant, family Amaranthaceae. Celosia is one of the most popular of the field cut flowers. The plant is used frequently as an indoors ornamental plant, its leaves and flowers can be used as vegetables, which can be used as foods in India, Western Africa, and South America.
    [Show full text]
  • Plant Infection and the Establishment of Fungal Biotrophy
    Review TRENDS in Plant Science 1 Plant infection and the establishment of fungal biotrophy Kurt Mendgen and Matthias Hahn To exploit plants as living substrates, biotrophic fungi have evolved remarkable Molecular studies of obligate and non-obligate variations of their tubular cells, the hyphae. They form infection structures such biotrophs are beginning to provide insights into the as appressoria, penetration hyphae and infection hyphae to invade the plant nature of biotrophy. with minimal damage to host cells. To establish compatibility with the host, To our knowledge, the following properties appear controlled secretory activity and distinct interface layers appear to be essential. to be hallmarks of biotrophic fungi: (1) highly Colletotrichum species switch from initial biotrophic to necrotrophic growth developed infection structures; (2) limited secretory and are amenable to mutant analysis and molecular studies. Obligate activity, especially of lytic enzymes; (3) carbohydrate- biotrophic rust fungi can form the most specialized hypha: the haustorium. rich and protein-containing interfacial layers that Gene expression and immunocytological studies with rust fungi support separate fungal and plant plasma membranes; the idea that the haustorium is a transfer apparatus for the long-term (4) long-term suppression of host defense; absorption of host nutrients. (5) haustoria, which are specialized hyphae for nutrient absorption and metabolism. In this DOI: 10.1016/S1360-1385(02)02297-5 article, we discuss recent data about cytological and molecular aspects of fungal biotrophy. To keep As early as 1866, the German botanist Anton De Bary within the available space, we restrict our focus to observed that plant parasitic fungi alter the Colletotrichum spp.
    [Show full text]