Introducing the Transmeta Efficeon TM8000 Microprocessor Family
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ATX-945G Industrial Motherboard in ATX Form Factor with Intel® 945G Chipset
ATX-945G Industrial Motherboard in ATX form factor with Intel® 945G chipset Supports Intel® Core™2 Duo, Pentium® D CPU on LGA775 socket 1066/800/533MHz Front Side Bus Intel® Graphics Media Accelerator 950 Dual Channel DDR2 DIMM, maximum 4GB Integrated PCI Express LAN, USB 2.0 and SATA 3Gb/s ATX-945G Product Overview The ATX-945G is an ATX form factor single-processor (x8) and SATA round out the package for a powerful industrial motherboard that is based on the Intel® 945G industrial PC. I/O features of the ATX-945G include a chipset with ICH7 I/O Controller Hub. It supports the Intel® 32-bit/33MHz PCI Bus, 16-bit/8MHz ISA bus, 1x PCI Express Core™2 Duo, Pentium® D, Pentium® 4 with Hyper-Threading x16 slot, 2x PCI Express x1 slots, 3x PCI slots, 1x ISA slot Technology, or Celeron® D Processor on the LGA775 socket, (shared w/ PCI), onboard Gigabit Ethernet, LPC, EIDE Ultra 1066/800/533MHz Front Side Bus, Dual Channel DDR2 DIMM ATA/100, 4 channels SATA 3Gb/s, Mini PCI card slot, UART 667/533/400MHz, up to 4 DIMMs and a maximum of 4GB. The compatible serial ports, parallel port, floppy drive port, HD Intel® Graphic Media Accelerator 950 technology with Audio, and PS/2 Keyboard and Mouse ports. 2048x1536x8bit at 75Hz resolution, PCI Express LAN, USB 2.0 Block Diagram CPU Core™2 Duo Pentium® D LGA775 package 533/800/1066MHz FSB Dual-Core Hyper-Threading 533/800/1066 MHz FSB D I M Northbridge DDR Channel A M ® x Intel 945G GMCH 2 DDRII 400/533/667 MHz D I CRT M M DB-15 DDR Channel B x 2 Discrete PCIe x16 Graphics DMI Interface 2 GB/s IDE Device -
SIMD Extensions
SIMD Extensions PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 12 May 2012 17:14:46 UTC Contents Articles SIMD 1 MMX (instruction set) 6 3DNow! 8 Streaming SIMD Extensions 12 SSE2 16 SSE3 18 SSSE3 20 SSE4 22 SSE5 26 Advanced Vector Extensions 28 CVT16 instruction set 31 XOP instruction set 31 References Article Sources and Contributors 33 Image Sources, Licenses and Contributors 34 Article Licenses License 35 SIMD 1 SIMD Single instruction Multiple instruction Single data SISD MISD Multiple data SIMD MIMD Single instruction, multiple data (SIMD), is a class of parallel computers in Flynn's taxonomy. It describes computers with multiple processing elements that perform the same operation on multiple data simultaneously. Thus, such machines exploit data level parallelism. History The first use of SIMD instructions was in vector supercomputers of the early 1970s such as the CDC Star-100 and the Texas Instruments ASC, which could operate on a vector of data with a single instruction. Vector processing was especially popularized by Cray in the 1970s and 1980s. Vector-processing architectures are now considered separate from SIMD machines, based on the fact that vector machines processed the vectors one word at a time through pipelined processors (though still based on a single instruction), whereas modern SIMD machines process all elements of the vector simultaneously.[1] The first era of modern SIMD machines was characterized by massively parallel processing-style supercomputers such as the Thinking Machines CM-1 and CM-2. These machines had many limited-functionality processors that would work in parallel. -
Analysis and Comparison of Different Microprocessors Used in Computer
Analysis and Comparison of Different Microprocessors used in Computer Architecture Manoj Gyanani Computer Science Department San Jose State University San Jose, CA 95192 408-455-4128 [email protected] ABSTRACT low level activities. It mainly performs the task of uploading, In the current world, it’s almost impossible to imagine that someone downloading and recalling data into and from the memory card. can live without computers. Computers have become an electronic Apart from that it also does complex mathematical calculations device of almost every day use for individuals of every age. we within a single command. cannot imagine of advancements without computers. Hence it becomes very important to understand the principal running entity of 2.2 Reduced Instruction Set Microprocessor the computer architecture. The microprocessor is the brain of a This processor is also called as RISC. These kinds of chips are made computer. it is a multipurpose, programmable device that according to the function in which the microprocessor can carry out accepts digital data as input, processes it according to instructions small things within a particular command. In this way it completes stored in its memory, and provides results as output. Hence, it is more commands at a faster rate. significant to analyze various processors and then compare them. So that we can know about pros and cons of different processors. We 2.3 Superscalar Processors have to select the best microprocessor and for that , it is really This is a processor that copies the hardware on the microprocessor important to analyze & make a comparison among them. Parameters for performing numerous tasks at a time. -
Motherboards, Processors, and Memory
220-1001 COPYRIGHTED MATERIAL c01.indd 03/23/2019 Page 1 Chapter Motherboards, Processors, and Memory THE FOLLOWING COMPTIA A+ 220-1001 OBJECTIVES ARE COVERED IN THIS CHAPTER: ✓ 3.3 Given a scenario, install RAM types. ■ RAM types ■ SODIMM ■ DDR2 ■ DDR3 ■ DDR4 ■ Single channel ■ Dual channel ■ Triple channel ■ Error correcting ■ Parity vs. non-parity ✓ 3.5 Given a scenario, install and configure motherboards, CPUs, and add-on cards. ■ Motherboard form factor ■ ATX ■ mATX ■ ITX ■ mITX ■ Motherboard connectors types ■ PCI ■ PCIe ■ Riser card ■ Socket types c01.indd 03/23/2019 Page 3 ■ SATA ■ IDE ■ Front panel connector ■ Internal USB connector ■ BIOS/UEFI settings ■ Boot options ■ Firmware upgrades ■ Security settings ■ Interface configurations ■ Security ■ Passwords ■ Drive encryption ■ TPM ■ LoJack ■ Secure boot ■ CMOS battery ■ CPU features ■ Single-core ■ Multicore ■ Virtual technology ■ Hyperthreading ■ Speeds ■ Overclocking ■ Integrated GPU ■ Compatibility ■ AMD ■ Intel ■ Cooling mechanism ■ Fans ■ Heat sink ■ Liquid ■ Thermal paste c01.indd 03/23/2019 Page 4 A personal computer (PC) is a computing device made up of many distinct electronic components that all function together in order to accomplish some useful task, such as adding up the numbers in a spreadsheet or helping you to write a letter. Note that this defi nition describes a computer as having many distinct parts that work together. Most PCs today are modular. That is, they have components that can be removed and replaced with another component of the same function but with different specifi cations in order to improve performance. Each component has a specifi c function. Much of the computing industry today is focused on smaller devices, such as laptops, tablets, and smartphones. -
ECS P4M890T-M2 Manual.Pdf
Preface Copyright This publication, including all photographs, illustrations and software, is protected under international copyright laws, with all rights reserved. Neither this manual, nor any of the material contained herein, may be reproduced without written consent of the author. Version 1.0B Disclaimer The information in this document is subject to change without notice. The manufacturer makes no representations or warranties with respect to the contents hereof and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose. The manufacturer reserves the right to revise this publication and to make changes from time to time in the content hereof without obligation of the manufacturer to notify any person of such revision or changes. Trademark Recognition Microsoft, MS-DOS and Windows are registered trademarks of Microsoft Corp. MMX, Pentium, Pentium-II, Pentium-III, Pentium-4, Celeron are registered trademarks of Intel Corporation. Other product names used in this manual are the properties of their respective owners and are acknowledged. Federal Communications Commission (FCC) This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reason- able protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference -
Comparison of High Performance Northbridge Architectures in Multiprocessor Servers
Comparison of High Performance Northbridge Architectures in Multiprocessor Servers Michael Koontz MS CpE Scholarly Paper Advisor: Dr. Jens-Peter Kaps Co-Advisor: Dr. Daniel Tabak - 1 - Table of Contents 1. Introduction ...............................................................................................................3 2. The x86-64 Instruction Set Architecture (ISA) ...................................................... 3 3. Memory Coherency ...................................................................................................4 4. The MOESI and MESI Cache Coherency Models.................................................8 5. Scalable Coherent Interface (SCI) and HyperTransport ....................................14 6. Fully-Buffered DIMMS ..........................................................................................16 7. The AMD Opteron Northbridge ............................................................................19 8. The Intel Blackford Northbridge Architecture .................................................... 27 9. Performance and Power Consumption .................................................................32 10. Additional Considerations ..................................................................................34 11. Conclusion ............................................................................................................ 36 - 2 - 1. Introduction With the continuing growth of today’s multi-media, Internet based culture, businesses are becoming more dependent -
AMD Opteron™ 4200 Series Processor
AMD Opteron™ 4200 Series Processor AMD Opteron™ 4200 Series Processor What’s new in the AMD Opteron™ 4200 Series Processor (Codenamed “Valencia”) and the new “Bulldozer” Microarchitecture? Platform Processor Socket Chipset Opteron 4000 Opteron 4200 C32 56x0 / 5100 (codenamed “San Marino” or “Adelaide”) (codenamed “Valencia") (with BIOS update) In their first microarchitecture rebuild since Opteron, AMD introduces the Bulldozer module, implemented in both the Opteron 4200 and 6200 Series. The modules are engineered to emphasize throughput, core count, and parallel server workloads. A module consists of two tightly coupled cores, in which some core resources are shared. The effect is between a core with two threads and a dual-core processor, in which each core is fully independent. Performance, scalability, and efficiency for today’s applications. Processor Features Platform Features . 32nm process technology . 2 DDR3 memory channels, LRDIMM, RDIMM, UDIMM . Up to 8 Bulldozer cores up to 1600 GT/s . Evolved integrated northbridge o 1.25 and 1.35V Low-voltage DRAM o 8M L3 cache o 1.5V also available o Bandwidth improvements . 2 HyperTransport™ technology 3.0 links up to 6.4 GT/s o Memory capacity improvements . Advanced Platform Management Link (APML) for o Power efficiency improvements system management . Up to16MB combined L2 + L3 cache . Compatible with existing C32 socket with BIOS update Product Specifications Clock Frequency / Turbo L3 Max Memory System Bus Process TDP1 / ACP2 Model Cores L2 Cache Core Frequency (GHz) Cache Speed Speed 4284 3.0 / 3.7 8 4 x 2MB 4280 2.8 / 3.5 95 W / 75W 4238 3.3 / 3.7 8MB DDR3-1600 MHz 6.4 GT/s 4234 3.1 / 3.5 6 3 x 2MB 32nm 4226 2.7 / 3.1 4274 HE 2.5 / 3.5 8 4 x 2MB 65 W / 50W 8MB DDR3-1600 MHz 6.4 GT/s 4228 HE 2.8 / 3.6 6 3 x 2MB 35W / 32W 4256 EE 1.6 / 2.8 8 4 x 2MB 8MB DDR3-1600 MHz 6.4 GT/s 1 TDP stands for Thermal Design Power. -
ESPRIMO Mobile V5505
Issue February 2008 ESPRIMO Mobile V5505 Pages 3 The ESPRIMO Mobile V5505 is a versatile all-round notebook, equally suitable for occasional or professional users, and heavy-duty operation by mobile field sales people. This professional notebook features a superb 15.4-inch WXGA display, an ergonomic keyboard and a built-in super multi DVD writer drive. LAN are integrated for easier connection, courtesy of the latest Intel® Centrino® Duo Mobile Technology based on Intel® 965GM chipset. It has great connections; four USB ports and an integrated 3in1 Card Reader. Connect to printers, scanners, cameras or any other accessory. Elegance Designed for the most demanding mobile users, ESPRIMO Mobile is the perfect synthesis of form, function and style. Power-saving Intel® Centrino® Duo Mobile for long independent working Increased productivity due to latest Intel® 965GM chipset which supports latest technology standards: DDR2 memory, PCI Express and S-ATA Ergonomics Enjoy the viewing quality of brilliant 15.4-inch WXGA TFT display Convenient working with full sized keyboard Connectivity Ideal connectivity through WLAN. Antennas are integrated for best signal reception. Variety of interfaces for best connection to the peripherals Reliability Germany‘s quality standard Award-winning best-in-class manufacturing Mechanical and function stability through extensive quality tests Data Sheet ⏐ Issue: February 2008⏐ ESPRIMO Mobile V5505 Page 2 / 3 System ESPRIMO Mobile V5505 Processor Intel® Core™2 Duo Processor Up to T7500 (2.2 GHz) Second level -
Evolution Des X86befehlssatzes Und Seiner Erweiterungen
Technische Universität Dresden Evolution des x86-Befehlssatzes und seiner Erweiterungen Peter Ebert Dresden, 15.07.2009 Einführung · Überblick & Historie · Konkurrierende Befehlssatzarchitekture n · Befehlsarten · Registerstruktur · x87 15.07.2009 Evolution des x86-Befehlssatzes und seiner Erweiterungen 2/24 Übersicht & Historie · IBM 1981: erster PC · x86-Architektur verwendet einen CISC-Befehlssatz · alle Prozessoren seit dem Pentium Pro sind aber hybride CISC/RISC-Prozessoren 1978 1. Gen.: 8086 1982 2. Gen.: 80286 1985 3. Gen.: 80386 IA-32 1989 4. Gen.: 80486 1993 5. Gen.: Pentium MMX 1995 6. Gen.: P2, P3 3DNow!, SSE 1999 7. Gen.: Athlon (XP), P4 SSE2 2003 8. Gen.: Opteron x86-64 15.07.2009 Evolution des x86-Befehlssatzes und seiner Erweiterungen 3/24 Konkurrierende Befehlssatzarchitekturen · ARM (Acorn Risc Machine) RISC-Architektur 1983 vom englischen Computerhersteller Acorn. Einsatz vor allem im eingebetteten Bereich z.B.: Mobiltelefonen, PDAs, Routern, iPod, iPhone, Internet Tablets von Nokia und den neueren PDAs von ASUS, Konsolen wie der Nintendo DS, der GP2X und die Pandora. · PowerPC (Performance optimization with enhanced RISC Performance Chip) 1991 durch ein Konsortium aus Apple, IBM und Motorola. z.B.: Nintendo GameCube und Wii, Xbox 360 von Microsoft, Playstation 3 von Sony und in vielen eingebetteten Systemen. Auch benutzen PKW und Produkte in der Luft- und Raumfahrt · SPARC (Scalable Processor ARChitecture) Von Sun Microsystems entwickelt ab 1985 und vermarktete ab 1987, offene Architektur, 1995 64-Bit-Erweiterung (UltraSparc) 15.07.2009 Evolution des x86-Befehlssatzes und seiner Erweiterungen 4/24 Befehlsarten · Transferbefehlen werden Daten innerhalb des Systems bewegt. Die Daten werden dabei nur kopiert, d. h. bleiben an ihrem Quellort unverändert. -
Blackford:Blackford: AA Dualdual Processorprocessor Chipsetchipset Forfor Serversservers Andand Workstationsworkstations
Blackford:Blackford: AA DualDual ProcessorProcessor ChipsetChipset forfor ServersServers andand WorkstationsWorkstations Kai Cheng, Sundaram Chinthamani, Sivakumar Radhakrishnan, Fayé Briggs and Kathy Debnath IntelIntel CorporationCorporation 8/22/20068/22/2006 © Copyright 2006, Intel Corporation. All rights reserved. Hot Chips 2006 *Third party marks and brands are the property of their respective owners. Digital Enterprise Group 1 LegalLegal DisclaimeDisclaimerr • Intel, the Intel logo, Centrino, the Centrino logo, Intel Core, Core Inside, Pentium, Pentium Inside, Itanium, Itanium Inside, Xeon, Xeon Inside, Pentium III Xeon, Celeron, Celeron Inside, and Intel SpeedStep are trademarks or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries. • This document is provided “as is” with no warranties whatsoever, including any warranty of merchantability, non-infringement fitness for any particular purpose, or any warranty otherwise arising out of any proposal, specification or sample • Information in this document is provided in connection with Intel products. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications. • Intel does not control or audit the design or implementation of 3rd party benchmarks or websites referenced in this document. -
Memory Controller Design and Optimizations for High-Performance Systems
MEMORY CONTROLLER DESIGN AND OPTIMIZATIONS FOR HIGH-PERFORMANCE SYSTEMS Project Report By Yanwei Song, Raj Parihar In Partial Fulfillment of the Course CSC458 – Parallel and Distributed Systems April 2009 University of Rochester Rochester, New York TABLE OF CONTENT ABSTRACT........................................................................................................................ 3 1. INTRODUCTION ...................................................................................................... 4 2. OVERVIEW: DRAM BASCIS .................................................................................. 5 3. DRAM MEMORY CONTROLLER .......................................................................... 7 4. PARALLELISM IN MEMORY SYSTEM.............................................................. 10 5. SURVEY: TECHNIQUES/ IMPLEMENTATIONS ............................................... 11 6. SIMULATIONS AND ANALYSIS......................................................................... 13 7. FUTURE WORK...................................................................................................... 17 8. CONCLUSION......................................................................................................... 18 REFERENCES ................................................................................................................. 19 2 ABSTRACT “Memory wall” continues to grow despite the technological advancement and gap between memory sub-system and processor’s clock speed is still increasing. On-chip -
AMD Athlon Northbridge with 4X AGP and Next Generation Memory
AMD AthlonTM Northbridge with 4x AGP and Next Generation Memory Subsystem Chetana Keltcher, Jim Kelly, Ramani Krishnan, John Peck, Steve Polzin, Sridhar Subramanian, Fred Weber Advanced Micro Devices, Sunnyvale, CA * AMD Athlon was formerly code-named AMD-K7 1 Outline of the Talk • Introduction • Architecture • Clocking and Gearbox • Performance • Silicon Statistics • Conclusion 2 Introduction • NorthBridge: “Electronic traffic cop” that directs data flow between the main memory and the rest of the system • Bridge the gap between processor speed and memory speed – Higher bandwidth busses • Example: AGP 2.0, EV6 and AMD Athlon system bus – Better memory technology • Example: Double data rate SDRAM, RDRAM 3 System Block Diagram 100MHz for PC-100 SDRAM AMD Athlon 200MHz for DDR SDRAM System Bus 533-800MHz for RDRAM DRAM CPU 200 MHz, 64 bits NorthBridge Scaleable to 400 MHz 66MHz, 32 bits (1x,2x,4x) Graphics CPU AGP Bus Device 33MHz, 32 bits PCI PCI Bus Devices SouthBridge ISA Bus IDE USBSerial Printer Port Port 4 Features of the AMD Athlon Northbridge • Can support one or two AMD Athlon or EV6 processors • 200MHz data rate (scaleable to 400MHz), 64-bit processor interface • 33MHz, 32-bit PCI 2.2 compliant interface • 66MHz, 32-bit AGP 2.0 compliant interface supports 1x, 2x and 4x data transfer modes • Versions for SDRAM, DDR SDRAM and RDRAM memory • Single bit error correction and multiple bit error detection (ECC) • Distributed Graphics Aperture Remapping Table (GART) • Power management features including powerdown self-refresh of SDRAM