Inner Product, Orthogonality, and Orthogonal Projection

Total Page:16

File Type:pdf, Size:1020Kb

Inner Product, Orthogonality, and Orthogonal Projection Math 240 TA: Shuyi Weng Winter 2017 March 2, 2017 Inner Product, Orthogonality, and Orthogonal Projection Inner Product The notion of inner product is important in linear algebra in the sense that it provides a sensible notion of length and angle in a vector space. This seems very natural in the Euclidean space Rn through the concept of dot product. However, the inner product is much more general and can be extended to other non-Euclidean vector spaces. For this course, you are not required to understand the non-Euclidean examples. I just want to show you a glimpse of linear algebra in a more general setting in mathematics. Definition. Let V be a vector space. An inner product on V is a function h−; −i: V × V ! R such that for all vectors u; v; w 2 V and scalar c 2 R, it satisfies the axioms 1. hu; vi = hv; ui; 2. hu + v; wi = hu; wi + hv; wi, and hu; v + wi = hu; vi + hu; wi; 3. hcu; vi = chu; vi + hu; cvi; 4. hu; ui ≥ 0, and hu; ui = 0 if and only if u = 0. Definition. In a Euclidean space Rn, the dot product of two vectors u and v is defined to be the function u · v = uT v: In coordinates, if we write 2 3 2 3 u1 v1 6 . 7 6 . 7 u = 6 . 7 ; and v = 6 . 7 ; 4 5 4 5 un vn then 2 3 v1 T h i 6 . 7 u · v = u v = u1 ··· un 6 . 7 = u1v1 + ··· unvn: 4 5 vn The definitions in the remainder of this note will assume the Euclidean vector space Rn, and the dot product as the natural inner product. Lemma. The dot product on Rn is an inner product. Exercise. Verify that the dot product satisfies the four axioms of inner products. " # 7 2 Example 1. Let A = , and define the function 2 4 hu; vi = uT AvT We will show that this function defines an inner product on R2. Write the vectors " # " # " # u v w u = 1 ; v = 1 ; and w = 1 ; u2 v2 w2 then " #" # h i 7 2 v1 hu; vi = u1 u2 = 7u1v1 + 2u1v2 + 2u2v1 + 4u2v2: 2 4 v2 To verify axiom 1, we compute hv; ui = 7v1u1 + 2v1u2 + 2v2u1 + 4v2u2: Hence, we can conclude that hu; vi = hv; ui. To verify axiom 2, we see that hu; v + wi = 7u1(v1 + w1) + 2u1(v2 + w2) + 2u2(v1 + w1) + 4u2(v2 + w2) = (7u1v1 + 2u1v2 + 2u2v1 + 4u2v2) + (7u1w1 + 2u1w2 + 2u2w1 + 4u2w2) = hu; vi + hu; wi: The other equality follows from axiom 1. Thus axiom 2 is verified. To verify axiom 3, we see that chu; vi = c(7u1v1 + 2u1v2 + 2u2v1 + 4u2v2) = 7(cu1)v1 + 2(cu1)v2 + 2(cu2)v1 + 4(cu2)v2 = hcu; vi: The other equality also follows from axiom 1. Thus axiom 3 is verified. To verify axiom 4, notice that 2 2 2 2 hu; ui = 7u1u1 + 2u1u2 + 2u2u1 + 4u2u2 = 7u1 + 4u1u2 + 4u2 = 3u1 + 4(u1 + u2) : If hu; ui = 0, that means u1 = u2 = 0. The converse is clear. Hence, axiom 4 is verified. Remark (Symmetric Bilinear Form). Let A 2 Rn×n be a symmetric matrix. Then the function given by hu; vi = uT Av for any vectors u; v 2 Rn, defines an inner product on Rn. Inner products on Rn defined in this way are called symmetric bilinear form. In fact, every inner product on Rn is a symmetric bilinear form. In particular, the standard dot product is defined with the identity matrix I, which is symmetric. 2 1 Example 2 (` -Space*). Consider the real-valued sequences x = fxigi=1 satisfying 1 X 2 xi < 1 i=1 Define the space `2(N) as the collection of all such sequences, i.e., n 1 o 2 1 X 2 ` (N) = x = fxigi=1 xi 2 R; and xi < 1 : i=1 It is a good exercise to verify that `2(N) is a vector space with scalars in the real numbers. We define a function by 1 X hx; yi = xiyi; i=1 and show that this function defines an inner product on `2(N). To verify axiom 1, we see that 1 1 X X hy; xi = yixi = xiyi = hx; yi: i=1 i=1 To verify axiom 2, we see that 1 1 1 X X X hx; y + zi = xi(yi + zi) = xiyi + xizi = hx; yi + hx; zi: i=1 i=1 i=1 To verify axiom 3, we see that 1 1 X X chx; yi = c xiyi = (cxi)yi = hcx; yi: i=1 i=1 To verify axiom 4, notice that 1 X 2 hx; xi = xi i=1 It is clear from here that hx; xi = 0 if and only if x is the zero sequence. Definition. The length (or norm) of a vector v 2 Rn, denoted by kvk, is defined by p q 2 2 kvk = v · v = v1 + ··· vn Remark. By the last axiom of the inner product, v · v ≥ 0, thus the length of v is always a non-negative real number, and the length is 0 if and only if v is the zero vector. Definition. A vector with length 1 is called a unit vector. If v = 0, then the vector 1 1 u = v = p v kvk v · v is the normalization of v. Example 3. Consider the vector 223 6 7 v = 425 : 1 Its length is p p p kvk = v · v = 22 + 22 + 12 = 9 = 3; and its normalization is 22=33 1 1 u = v = v = 62=37 : kvk 3 4 5 1=3 Definition. For vectors u; v 2 Rn, we can define the distance between them by dist(u; v) = ku − vk: " # " # −4 1 Example 4. Let u = and v = , then the distance between them is 3 1 p ku − vk = p(−4 − 1)2 + (3 − 1)2 = 29: This distance is demonstrated in the following figure. u v Example 5 (`2-Distance*). Analogous to the definition of length in Rn, the `2-norm is defined by 1 1=2 p X 2 kxk2 = hx; xi = xi i=1 Notice that by definition, every x 2 `2(N) has a finite norm. The `2-distance is then canonically defined to be 1 1=2 X 2 dist(x; y) = kx − yk2 = (xi − yi) i=1 Orthogonality The notion of inner product allows us to introduce the notion of orthogonality, together with a rich family of properties in linear algebra. Definition. Two vectors u; v 2 Rn are orthogonal if u · v = 0. Theorem 1 (Pythagorean). Two vectors are orthogonal if and only if ku+vk2 = kuk2 +kvk2. Proof. This well-known theorem has numerous different proofs. The linear-algebraic ver- sion looks like this. Notice that ku + vk2 = (u + v) · (u + v) = u · u + u · v + v · u + v · v = kuk2 + kvk2 + 2u · v: The theorem follows from the fact that u and v are orthogonal if and only if u · v = 0. The following is an important concept involving orthogonality. Definition. Let W ⊆ Rn be a subspace. If a vector x is orthogonal to every vector w 2 W , we say that x is orthogonal to W . The orthogonal complement of W , denoted by W ?, is the collection of all vectors orthogonal to W , i.e., ? n W = fx 2 R j x · w = 0 for all w 2 W g: Lemma. W ? is a subspace of Rn. Exercise. Verify that W ? satisfies the axioms of a subspace. Exercise. Let W ⊆ Rn be a subspace. Prove that dim W + dim W ? = n. [Hint: Use Rank-Nullity Theorem] ? Theorem 2. If fw1;:::; wkg forms a basis of W , then x 2 W if and only if x · wi = 0 for all integers 1 ≤ i ≤ k. Proof. Let fw1;:::; wkg be a basis of W . Assume that x · wi = 0. Let w 2 W be arbitrary. Then w can be written as a linear combination w = c1w1 + ··· + ckwk: By the linearity of dot product, we have x · w = c1x · w1 + ··· + ckx · wk = 0 + ··· + 0 = 0: Thus x 2 W ?. The converse is clear. Example 6. Find the orthogonal complement of W = spanfw1; w2g, where 2 3 2 3 3 0 6 7 6 7 607 627 w1 = 6 7 ; and w2 = 6 7 : 617 657 4 5 4 5 1 1 By the theorem above, to find all vectors x 2 W ?, we only need to make sure we find all x 2 R4 that satisfies x · w1 = x · w2 = 0: If we write 2 3 x1 6 7 6x27 x = 6 7 ; 6x 7 4 35 x4 we immediately obtain a system of linear equations 3x1 + x3 + x4 = 0 2x2 + 5x3 + x4 = 0 A sequence of row operation gives all solutions to this linear system 2 3 2 3 2 3 −x3=3 − x4=3 2 2 6 7 6 7 6 7 6−5x3=2 − x4=27 6 157 6 37 x = 6 7 = s 6 7 + t 6 7 6 x 7 6−67 6 07 4 3 5 4 5 4 5 x4 0 −6 Exercise. Let A be an m × n matrix. Prove that (ColA)? = NulAT . [Hint: Use a similar method as demonstrated in the previous example. ] n Definition. A set of vectors fu1;:::; ukg in R is an orthogonal set if each pair of distinct vectors from the set is orthogonal, i.e., ui · uj = 0 whenever i 6= j. An orthogonal basis for a subspace W is a basis for W that is also an orthogonal set.
Recommended publications
  • The Grassmann Manifold
    The Grassmann Manifold 1. For vector spaces V and W denote by L(V; W ) the vector space of linear maps from V to W . Thus L(Rk; Rn) may be identified with the space Rk£n of k £ n matrices. An injective linear map u : Rk ! V is called a k-frame in V . The set k n GFk;n = fu 2 L(R ; R ): rank(u) = kg of k-frames in Rn is called the Stiefel manifold. Note that the special case k = n is the general linear group: k k GLk = fa 2 L(R ; R ) : det(a) 6= 0g: The set of all k-dimensional (vector) subspaces ¸ ½ Rn is called the Grassmann n manifold of k-planes in R and denoted by GRk;n or sometimes GRk;n(R) or n GRk(R ). Let k ¼ : GFk;n ! GRk;n; ¼(u) = u(R ) denote the map which assigns to each k-frame u the subspace u(Rk) it spans. ¡1 For ¸ 2 GRk;n the fiber (preimage) ¼ (¸) consists of those k-frames which form a basis for the subspace ¸, i.e. for any u 2 ¼¡1(¸) we have ¡1 ¼ (¸) = fu ± a : a 2 GLkg: Hence we can (and will) view GRk;n as the orbit space of the group action GFk;n £ GLk ! GFk;n :(u; a) 7! u ± a: The exercises below will prove the following n£k Theorem 2. The Stiefel manifold GFk;n is an open subset of the set R of all n £ k matrices. There is a unique differentiable structure on the Grassmann manifold GRk;n such that the map ¼ is a submersion.
    [Show full text]
  • A New Description of Space and Time Using Clifford Multivectors
    A new description of space and time using Clifford multivectors James M. Chappell† , Nicolangelo Iannella† , Azhar Iqbal† , Mark Chappell‡ , Derek Abbott† †School of Electrical and Electronic Engineering, University of Adelaide, South Australia 5005, Australia ‡Griffith Institute, Griffith University, Queensland 4122, Australia Abstract Following the development of the special theory of relativity in 1905, Minkowski pro- posed a unified space and time structure consisting of three space dimensions and one time dimension, with relativistic effects then being natural consequences of this space- time geometry. In this paper, we illustrate how Clifford’s geometric algebra that utilizes multivectors to represent spacetime, provides an elegant mathematical framework for the study of relativistic phenomena. We show, with several examples, how the application of geometric algebra leads to the correct relativistic description of the physical phenomena being considered. This approach not only provides a compact mathematical representa- tion to tackle such phenomena, but also suggests some novel insights into the nature of time. Keywords: Geometric algebra, Clifford space, Spacetime, Multivectors, Algebraic framework 1. Introduction The physical world, based on early investigations, was deemed to possess three inde- pendent freedoms of translation, referred to as the three dimensions of space. This naive conclusion is also supported by more sophisticated analysis such as the existence of only five regular polyhedra and the inverse square force laws. If we lived in a world with four spatial dimensions, for example, we would be able to construct six regular solids, and in arXiv:1205.5195v2 [math-ph] 11 Oct 2012 five dimensions and above we would find only three [1].
    [Show full text]
  • Orthogonal Bases and the -So in Section 4.8 We Discussed the Problem of Finding the Orthogonal Projection P
    Orthogonal Bases and the -So In Section 4.8 we discussed the problemR. of finding the orthogonal projection p the vector b into the V of , . , suhspace the vectors , v2 ho If v1 v,, form a for V, and the in x n matrix A has these basis vectors as its column vectors. ilt the orthogonal projection p is given by p = Ax where x is the (unique) solution of the normal system ATAx = A7b. The formula for p takes an especially simple and attractive Form when the ba vectors , . .. , v1 v are mutually orthogonal. DEFINITION Orthogonal Basis An orthogonal basis for the suhspacc V of R” is a basis consisting of vectors , ,v,, that are mutually orthogonal, so that v v = 0 if I j. If in additii these basis vectors are unit vectors, so that v1 . = I for i = 1. 2 n, thct the orthogonal basis is called an orthonormal basis. Example 1 The vectors = (1, 1,0), v2 = (1, —1,2), v3 = (—1,1,1) form an orthogonal basis for . We “normalize” ‘ R3 can this orthogonal basis 1w viding each basis vector by its length: If w1=—- (1=1,2,3), lvii 4.9 Orthogonal Bases and the Gram-Schmidt Algorithm 295 then the vectors /1 I 1 /1 1 ‘\ 1 2” / I w1 0) W2 = —— _z) W3 for . form an orthonormal basis R3 , . ..., v, of the m x ii matrix A Now suppose that the column vectors v v2 form an orthogonal basis for the suhspacc V of R’. Then V}.VI 0 0 v2.v ..
    [Show full text]
  • 2 Hilbert Spaces You Should Have Seen Some Examples Last Semester
    2 Hilbert spaces You should have seen some examples last semester. The simplest (finite-dimensional) ex- C • A complex Hilbert space H is a complete normed space over whose norm is derived from an ample is Cn with its standard inner product. It’s worth recalling from linear algebra that if V is inner product. That is, we assume that there is a sesquilinear form ( , ): H H C, linear in · · × → an n-dimensional (complex) vector space, then from any set of n linearly independent vectors we the first variable and conjugate linear in the second, such that can manufacture an orthonormal basis e1, e2,..., en using the Gram-Schmidt process. In terms of this basis we can write any v V in the form (f ,д) = (д, f ), ∈ v = a e , a = (v, e ) (f , f ) 0 f H, and (f , f ) = 0 = f = 0. i i i i ≥ ∀ ∈ ⇒ ∑ The norm and inner product are related by which can be derived by taking the inner product of the equation v = aiei with ei. We also have n ∑ (f , f ) = f 2. ∥ ∥ v 2 = a 2. ∥ ∥ | i | i=1 We will always assume that H is separable (has a countable dense subset). ∑ Standard infinite-dimensional examples are l2(N) or l2(Z), the space of square-summable As usual for a normed space, the distance on H is given byd(f ,д) = f д = (f д, f д). • • ∥ − ∥ − − sequences, and L2(Ω) where Ω is a measurable subset of Rn. The Cauchy-Schwarz and triangle inequalities, • √ (f ,д) f д , f + д f + д , | | ≤ ∥ ∥∥ ∥ ∥ ∥ ≤ ∥ ∥ ∥ ∥ 2.1 Orthogonality can be derived fairly easily from the inner product.
    [Show full text]
  • 1 Euclidean Vector Space and Euclidean Affi Ne Space
    Profesora: Eugenia Rosado. E.T.S. Arquitectura. Euclidean Geometry1 1 Euclidean vector space and euclidean a¢ ne space 1.1 Scalar product. Euclidean vector space. Let V be a real vector space. De…nition. A scalar product is a map (denoted by a dot ) V V R ! (~u;~v) ~u ~v 7! satisfying the following axioms: 1. commutativity ~u ~v = ~v ~u 2. distributive ~u (~v + ~w) = ~u ~v + ~u ~w 3. ( ~u) ~v = (~u ~v) 4. ~u ~u 0, for every ~u V 2 5. ~u ~u = 0 if and only if ~u = 0 De…nition. Let V be a real vector space and let be a scalar product. The pair (V; ) is said to be an euclidean vector space. Example. The map de…ned as follows V V R ! (~u;~v) ~u ~v = x1x2 + y1y2 + z1z2 7! where ~u = (x1; y1; z1), ~v = (x2; y2; z2) is a scalar product as it satis…es the …ve properties of a scalar product. This scalar product is called standard (or canonical) scalar product. The pair (V; ) where is the standard scalar product is called the standard euclidean space. 1.1.1 Norm associated to a scalar product. Let (V; ) be a real euclidean vector space. De…nition. A norm associated to the scalar product is a map de…ned as follows V kk R ! ~u ~u = p~u ~u: 7! k k Profesora: Eugenia Rosado, E.T.S. Arquitectura. Euclidean Geometry.2 1.1.2 Unitary and orthogonal vectors. Orthonormal basis. Let (V; ) be a real euclidean vector space. De…nition.
    [Show full text]
  • Lecture 4: April 8, 2021 1 Orthogonality and Orthonormality
    Mathematical Toolkit Spring 2021 Lecture 4: April 8, 2021 Lecturer: Avrim Blum (notes based on notes from Madhur Tulsiani) 1 Orthogonality and orthonormality Definition 1.1 Two vectors u, v in an inner product space are said to be orthogonal if hu, vi = 0. A set of vectors S ⊆ V is said to consist of mutually orthogonal vectors if hu, vi = 0 for all u 6= v, u, v 2 S. A set of S ⊆ V is said to be orthonormal if hu, vi = 0 for all u 6= v, u, v 2 S and kuk = 1 for all u 2 S. Proposition 1.2 A set S ⊆ V n f0V g consisting of mutually orthogonal vectors is linearly inde- pendent. Proposition 1.3 (Gram-Schmidt orthogonalization) Given a finite set fv1,..., vng of linearly independent vectors, there exists a set of orthonormal vectors fw1,..., wng such that Span (fw1,..., wng) = Span (fv1,..., vng) . Proof: By induction. The case with one vector is trivial. Given the statement for k vectors and orthonormal fw1,..., wkg such that Span (fw1,..., wkg) = Span (fv1,..., vkg) , define k u + u = v − hw , v i · w and w = k 1 . k+1 k+1 ∑ i k+1 i k+1 k k i=1 uk+1 We can now check that the set fw1,..., wk+1g satisfies the required conditions. Unit length is clear, so let’s check orthogonality: k uk+1, wj = vk+1, wj − ∑ hwi, vk+1i · wi, wj = vk+1, wj − wj, vk+1 = 0. i=1 Corollary 1.4 Every finite dimensional inner product space has an orthonormal basis.
    [Show full text]
  • Orthogonal Complements (Revised Version)
    Orthogonal Complements (Revised Version) Math 108A: May 19, 2010 John Douglas Moore 1 The dot product You will recall that the dot product was discussed in earlier calculus courses. If n x = (x1: : : : ; xn) and y = (y1: : : : ; yn) are elements of R , we define their dot product by x · y = x1y1 + ··· + xnyn: The dot product satisfies several key axioms: 1. it is symmetric: x · y = y · x; 2. it is bilinear: (ax + x0) · y = a(x · y) + x0 · y; 3. and it is positive-definite: x · x ≥ 0 and x · x = 0 if and only if x = 0. The dot product is an example of an inner product on the vector space V = Rn over R; inner products will be treated thoroughly in Chapter 6 of [1]. Recall that the length of an element x 2 Rn is defined by p jxj = x · x: Note that the length of an element x 2 Rn is always nonnegative. Cauchy-Schwarz Theorem. If x 6= 0 and y 6= 0, then x · y −1 ≤ ≤ 1: (1) jxjjyj Sketch of proof: If v is any element of Rn, then v · v ≥ 0. Hence (x(y · y) − y(x · y)) · (x(y · y) − y(x · y)) ≥ 0: Expanding using the axioms for dot product yields (x · x)(y · y)2 − 2(x · y)2(y · y) + (x · y)2(y · y) ≥ 0 or (x · x)(y · y)2 ≥ (x · y)2(y · y): 1 Dividing by y · y, we obtain (x · y)2 jxj2jyj2 ≥ (x · y)2 or ≤ 1; jxj2jyj2 and (1) follows by taking the square root.
    [Show full text]
  • Glossary of Linear Algebra Terms
    INNER PRODUCT SPACES AND THE GRAM-SCHMIDT PROCESS A. HAVENS 1. The Dot Product and Orthogonality 1.1. Review of the Dot Product. We first recall the notion of the dot product, which gives us a familiar example of an inner product structure on the real vector spaces Rn. This product is connected to the Euclidean geometry of Rn, via lengths and angles measured in Rn. Later, we will introduce inner product spaces in general, and use their structure to define general notions of length and angle on other vector spaces. Definition 1.1. The dot product of real n-vectors in the Euclidean vector space Rn is the scalar product · : Rn × Rn ! R given by the rule n n ! n X X X (u; v) = uiei; viei 7! uivi : i=1 i=1 i n Here BS := (e1;:::; en) is the standard basis of R . With respect to our conventions on basis and matrix multiplication, we may also express the dot product as the matrix-vector product 2 3 v1 6 7 t î ó 6 . 7 u v = u1 : : : un 6 . 7 : 4 5 vn It is a good exercise to verify the following proposition. Proposition 1.1. Let u; v; w 2 Rn be any real n-vectors, and s; t 2 R be any scalars. The Euclidean dot product (u; v) 7! u · v satisfies the following properties. (i:) The dot product is symmetric: u · v = v · u. (ii:) The dot product is bilinear: • (su) · v = s(u · v) = u · (sv), • (u + v) · w = u · w + v · w.
    [Show full text]
  • Vector Differential Calculus
    KAMIWAAI – INTERACTIVE 3D SKETCHING WITH JAVA BASED ON Cl(4,1) CONFORMAL MODEL OF EUCLIDEAN SPACE Submitted to (Feb. 28,2003): Advances in Applied Clifford Algebras, http://redquimica.pquim.unam.mx/clifford_algebras/ Eckhard M. S. Hitzer Dept. of Mech. Engineering, Fukui Univ. Bunkyo 3-9-, 910-8507 Fukui, Japan. Email: [email protected], homepage: http://sinai.mech.fukui-u.ac.jp/ Abstract. This paper introduces the new interactive Java sketching software KamiWaAi, recently developed at the University of Fukui. Its graphical user interface enables the user without any knowledge of both mathematics or computer science, to do full three dimensional “drawings” on the screen. The resulting constructions can be reshaped interactively by dragging its points over the screen. The programming approach is new. KamiWaAi implements geometric objects like points, lines, circles, spheres, etc. directly as software objects (Java classes) of the same name. These software objects are geometric entities mathematically defined and manipulated in a conformal geometric algebra, combining the five dimensions of origin, three space and infinity. Simple geometric products in this algebra represent geometric unions, intersections, arbitrary rotations and translations, projections, distance, etc. To ease the coordinate free and matrix free implementation of this fundamental geometric product, a new algebraic three level approach is presented. Finally details about the Java classes of the new GeometricAlgebra software package and their associated methods are given. KamiWaAi is available for free internet download. Key Words: Geometric Algebra, Conformal Geometric Algebra, Geometric Calculus Software, GeometricAlgebra Java Package, Interactive 3D Software, Geometric Objects 1. Introduction The name “KamiWaAi” of this new software is the Romanized form of the expression in verse sixteen of chapter four, as found in the Japanese translation of the first Letter of the Apostle John, which is part of the New Testament, i.e.
    [Show full text]
  • Math 2331 – Linear Algebra 6.2 Orthogonal Sets
    6.2 Orthogonal Sets Math 2331 { Linear Algebra 6.2 Orthogonal Sets Jiwen He Department of Mathematics, University of Houston [email protected] math.uh.edu/∼jiwenhe/math2331 Jiwen He, University of Houston Math 2331, Linear Algebra 1 / 12 6.2 Orthogonal Sets Orthogonal Sets Basis Projection Orthonormal Matrix 6.2 Orthogonal Sets Orthogonal Sets: Examples Orthogonal Sets: Theorem Orthogonal Basis: Examples Orthogonal Basis: Theorem Orthogonal Projections Orthonormal Sets Orthonormal Matrix: Examples Orthonormal Matrix: Theorems Jiwen He, University of Houston Math 2331, Linear Algebra 2 / 12 6.2 Orthogonal Sets Orthogonal Sets Basis Projection Orthonormal Matrix Orthogonal Sets Orthogonal Sets n A set of vectors fu1; u2;:::; upg in R is called an orthogonal set if ui · uj = 0 whenever i 6= j. Example 82 3 2 3 2 39 < 1 1 0 = Is 4 −1 5 ; 4 1 5 ; 4 0 5 an orthogonal set? : 0 0 1 ; Solution: Label the vectors u1; u2; and u3 respectively. Then u1 · u2 = u1 · u3 = u2 · u3 = Therefore, fu1; u2; u3g is an orthogonal set. Jiwen He, University of Houston Math 2331, Linear Algebra 3 / 12 6.2 Orthogonal Sets Orthogonal Sets Basis Projection Orthonormal Matrix Orthogonal Sets: Theorem Theorem (4) Suppose S = fu1; u2;:::; upg is an orthogonal set of nonzero n vectors in R and W =spanfu1; u2;:::; upg. Then S is a linearly independent set and is therefore a basis for W . Partial Proof: Suppose c1u1 + c2u2 + ··· + cpup = 0 (c1u1 + c2u2 + ··· + cpup) · = 0· (c1u1) · u1 + (c2u2) · u1 + ··· + (cpup) · u1 = 0 c1 (u1 · u1) + c2 (u2 · u1) + ··· + cp (up · u1) = 0 c1 (u1 · u1) = 0 Since u1 6= 0, u1 · u1 > 0 which means c1 = : In a similar manner, c2,:::,cp can be shown to by all 0.
    [Show full text]
  • CLIFFORD ALGEBRAS Property, Then There Is a Unique Isomorphism (V ) (V ) Intertwining the Two Inclusions of V
    CHAPTER 2 Clifford algebras 1. Exterior algebras 1.1. Definition. For any vector space V over a field K, let T (V ) = k k k Z T (V ) be the tensor algebra, with T (V ) = V V the k-fold tensor∈ product. The quotient of T (V ) by the two-sided⊗···⊗ ideal (V ) generated byL all v w + w v is the exterior algebra, denoted (V ).I The product in (V ) is usually⊗ denoted⊗ α α , although we will frequently∧ omit the wedge ∧ 1 ∧ 2 sign and just write α1α2. Since (V ) is a graded ideal, the exterior algebra inherits a grading I (V )= k(V ) ∧ ∧ k Z M∈ where k(V ) is the image of T k(V ) under the quotient map. Clearly, 0(V )∧ = K and 1(V ) = V so that we can think of V as a subspace of ∧(V ). We may thus∧ think of (V ) as the associative algebra linearly gener- ated∧ by V , subject to the relations∧ vw + wv = 0. We will write φ = k if φ k(V ). The exterior algebra is commutative | | ∈∧ (in the graded sense). That is, for φ k1 (V ) and φ k2 (V ), 1 ∈∧ 2 ∈∧ [φ , φ ] := φ φ + ( 1)k1k2 φ φ = 0. 1 2 1 2 − 2 1 k If V has finite dimension, with basis e1,...,en, the space (V ) has basis ∧ e = e e I i1 · · · ik for all ordered subsets I = i1,...,ik of 1,...,n . (If k = 0, we put { } k { n } e = 1.) In particular, we see that dim (V )= k , and ∅ ∧ n n dim (V )= = 2n.
    [Show full text]
  • Orthogonality Handout
    3.8 (SUPPLEMENT) | ORTHOGONALITY OF EIGENFUNCTIONS We now develop some properties of eigenfunctions, to be used in Chapter 9 for Fourier Series and Partial Differential Equations. 1. Definition of Orthogonality R b We say functions f(x) and g(x) are orthogonal on a < x < b if a f(x)g(x) dx = 0 . [Motivation: Let's approximate the integral with a Riemann sum, as follows. Take a large integer N, put h = (b − a)=N and partition the interval a < x < b by defining x1 = a + h; x2 = a + 2h; : : : ; xN = a + Nh = b. Then Z b f(x)g(x) dx ≈ f(x1)g(x1)h + ··· + f(xN )g(xN )h a = (uN · vN )h where uN = (f(x1); : : : ; f(xN )) and vN = (g(x1); : : : ; g(xN )) are vectors containing the values of f and g. The vectors uN and vN are said to be orthogonal (or perpendicular) if their dot product equals zero (uN ·vN = 0), and so when we let N ! 1 in the above formula it makes R b sense to say the functions f and g are orthogonal when the integral a f(x)g(x) dx equals zero.] R π 1 2 π Example. sin x and cos x are orthogonal on −π < x < π, since −π sin x cos x dx = 2 sin x −π = 0. 2. Integration Lemma Suppose functions Xn(x) and Xm(x) satisfy the differential equations 00 Xn + λnXn = 0; a < x < b; 00 Xm + λmXm = 0; a < x < b; for some numbers λn; λm. Then Z b 0 0 b (λn − λm) Xn(x)Xm(x) dx = [Xn(x)Xm(x) − Xn(x)Xm(x)]a: a Proof.
    [Show full text]