Inner Products and Orthogonality
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Math 317: Linear Algebra Notes and Problems
Math 317: Linear Algebra Notes and Problems Nicholas Long SFASU Contents Introduction iv 1 Efficiently Solving Systems of Linear Equations and Matrix Op- erations 1 1.1 Warmup Problems . .1 1.2 Solving Linear Systems . .3 1.2.1 Geometric Interpretation of a Solution Set . .9 1.3 Vector and Matrix Equations . 11 1.4 Solution Sets of Linear Systems . 15 1.5 Applications . 18 1.6 Matrix operations . 20 1.6.1 Special Types of Matrices . 21 1.6.2 Matrix Multiplication . 22 2 Vector Spaces 25 2.1 Subspaces . 28 2.2 Span . 29 2.3 Linear Independence . 31 2.4 Linear Transformations . 33 2.5 Applications . 38 3 Connecting Ideas 40 3.1 Basis and Dimension . 40 3.1.1 rank and nullity . 41 3.1.2 Coordinate Vectors relative to a basis . 42 3.2 Invertible Matrices . 44 3.2.1 Elementary Matrices . 44 ii CONTENTS iii 3.2.2 Computing Inverses . 45 3.2.3 Invertible Matrix Theorem . 46 3.3 Invertible Linear Transformations . 47 3.4 LU factorization of matrices . 48 3.5 Determinants . 49 3.5.1 Computing Determinants . 49 3.5.2 Properties of Determinants . 51 3.6 Eigenvalues and Eigenvectors . 52 3.6.1 Diagonalizability . 55 3.6.2 Eigenvalues and Eigenvectors of Linear Transfor- mations . 56 4 Inner Product Spaces 58 4.1 Inner Products . 58 4.2 Orthogonal Complements . 59 4.3 QR Decompositions . 59 Nicholas Long Introduction In this course you will learn about linear algebra by solving a carefully designed sequence of problems. It is important that you understand every problem and proof. -
Notes, Since the Quadratic Form Associated with an Inner Product (Kuk2 = Hu, Ui) Must Be Positive Def- Inite
Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 3: Wednesday, Feb 8 Spaces and bases 1 n I have two favorite vector spaces : R and the space Pd of polynomials of degree at most d. For Rn, we have a canonical basis: n R = spanfe1; e2; : : : ; eng; where ek is the kth column of the identity matrix. This basis is frequently convenient both for analysis and for computation. For Pd, an obvious- seeming choice of basis is the power basis: 2 d Pd = spanf1; x; x ; : : : ; x g: But this obvious-looking choice turns out to often be terrible for computation. Why? The short version is that powers of x aren't all that strongly linearly dependent, but we need to develop some more concepts before that short description will make much sense. The range space of a matrix or a linear map A is just the set of vectors y that can be written in the form y = Ax. If A is full (column) rank, then the columns of A are linearly independent, and they form a basis for the range space. Otherwise, A is rank-deficient, and there is a non-trivial null space consisting of vectors x such that Ax = 0. Rank deficiency is a delicate property2. For example, consider the matrix 1 1 A = : 1 1 This matrix is rank deficient, but the matrix 1 + δ 1 A^ = : 1 1 is not rank deficient for any δ 6= 0. Technically, the columns of A^ form a basis for R2, but we should be disturbed by the fact that A^ is so close to a singular matrix. -
A New Description of Space and Time Using Clifford Multivectors
A new description of space and time using Clifford multivectors James M. Chappell† , Nicolangelo Iannella† , Azhar Iqbal† , Mark Chappell‡ , Derek Abbott† †School of Electrical and Electronic Engineering, University of Adelaide, South Australia 5005, Australia ‡Griffith Institute, Griffith University, Queensland 4122, Australia Abstract Following the development of the special theory of relativity in 1905, Minkowski pro- posed a unified space and time structure consisting of three space dimensions and one time dimension, with relativistic effects then being natural consequences of this space- time geometry. In this paper, we illustrate how Clifford’s geometric algebra that utilizes multivectors to represent spacetime, provides an elegant mathematical framework for the study of relativistic phenomena. We show, with several examples, how the application of geometric algebra leads to the correct relativistic description of the physical phenomena being considered. This approach not only provides a compact mathematical representa- tion to tackle such phenomena, but also suggests some novel insights into the nature of time. Keywords: Geometric algebra, Clifford space, Spacetime, Multivectors, Algebraic framework 1. Introduction The physical world, based on early investigations, was deemed to possess three inde- pendent freedoms of translation, referred to as the three dimensions of space. This naive conclusion is also supported by more sophisticated analysis such as the existence of only five regular polyhedra and the inverse square force laws. If we lived in a world with four spatial dimensions, for example, we would be able to construct six regular solids, and in arXiv:1205.5195v2 [math-ph] 11 Oct 2012 five dimensions and above we would find only three [1]. -
Lecture 4: April 8, 2021 1 Orthogonality and Orthonormality
Mathematical Toolkit Spring 2021 Lecture 4: April 8, 2021 Lecturer: Avrim Blum (notes based on notes from Madhur Tulsiani) 1 Orthogonality and orthonormality Definition 1.1 Two vectors u, v in an inner product space are said to be orthogonal if hu, vi = 0. A set of vectors S ⊆ V is said to consist of mutually orthogonal vectors if hu, vi = 0 for all u 6= v, u, v 2 S. A set of S ⊆ V is said to be orthonormal if hu, vi = 0 for all u 6= v, u, v 2 S and kuk = 1 for all u 2 S. Proposition 1.2 A set S ⊆ V n f0V g consisting of mutually orthogonal vectors is linearly inde- pendent. Proposition 1.3 (Gram-Schmidt orthogonalization) Given a finite set fv1,..., vng of linearly independent vectors, there exists a set of orthonormal vectors fw1,..., wng such that Span (fw1,..., wng) = Span (fv1,..., vng) . Proof: By induction. The case with one vector is trivial. Given the statement for k vectors and orthonormal fw1,..., wkg such that Span (fw1,..., wkg) = Span (fv1,..., vkg) , define k u + u = v − hw , v i · w and w = k 1 . k+1 k+1 ∑ i k+1 i k+1 k k i=1 uk+1 We can now check that the set fw1,..., wk+1g satisfies the required conditions. Unit length is clear, so let’s check orthogonality: k uk+1, wj = vk+1, wj − ∑ hwi, vk+1i · wi, wj = vk+1, wj − wj, vk+1 = 0. i=1 Corollary 1.4 Every finite dimensional inner product space has an orthonormal basis. -
Orthogonality Handout
3.8 (SUPPLEMENT) | ORTHOGONALITY OF EIGENFUNCTIONS We now develop some properties of eigenfunctions, to be used in Chapter 9 for Fourier Series and Partial Differential Equations. 1. Definition of Orthogonality R b We say functions f(x) and g(x) are orthogonal on a < x < b if a f(x)g(x) dx = 0 . [Motivation: Let's approximate the integral with a Riemann sum, as follows. Take a large integer N, put h = (b − a)=N and partition the interval a < x < b by defining x1 = a + h; x2 = a + 2h; : : : ; xN = a + Nh = b. Then Z b f(x)g(x) dx ≈ f(x1)g(x1)h + ··· + f(xN )g(xN )h a = (uN · vN )h where uN = (f(x1); : : : ; f(xN )) and vN = (g(x1); : : : ; g(xN )) are vectors containing the values of f and g. The vectors uN and vN are said to be orthogonal (or perpendicular) if their dot product equals zero (uN ·vN = 0), and so when we let N ! 1 in the above formula it makes R b sense to say the functions f and g are orthogonal when the integral a f(x)g(x) dx equals zero.] R π 1 2 π Example. sin x and cos x are orthogonal on −π < x < π, since −π sin x cos x dx = 2 sin x −π = 0. 2. Integration Lemma Suppose functions Xn(x) and Xm(x) satisfy the differential equations 00 Xn + λnXn = 0; a < x < b; 00 Xm + λmXm = 0; a < x < b; for some numbers λn; λm. Then Z b 0 0 b (λn − λm) Xn(x)Xm(x) dx = [Xn(x)Xm(x) − Xn(x)Xm(x)]a: a Proof. -
Linear Algebra) 2
MATH 680 Computation Intensive Statistics December 3, 2018 Matrix Basics Contents 1 Rank (linear algebra) 2 1.1 Proofs that column rank = row rank . .2 1.2 Properties . .4 2 Kernel (linear algebra) 5 2.1 Properties . .6 2.2 Illustration . .9 3 Matrix Norm 12 3.1 Matrix norms induced by vector norms . 12 3.2 Entrywise matrix norms . 14 3.3 Schatten norms . 18 1 1 RANK (LINEAR ALGEBRA) 2 4 Projection 19 4.1 Properties and classification . 20 4.2 Orthogonal projections . 21 1 Rank (linear algebra) In linear algebra, the rank of a matrix A is the dimension of the vector space generated (or spanned) by its columns. This corresponds to the maximal number of linearly independent columns of A. This, in turn, is identical to the dimension of the space spanned by its rows. The column rank of A is the dimension of the column space of A, while the row rank of A is the dimension of the row space of A. A fundamental result in linear algebra is that the column rank and the row rank are always equal. 1.1 Proofs that column rank = row rank Let A be an m × n matrix with entries in the real numbers whose row rank is r. There- fore, the dimension of the row space of A is r. Let x1; x2; : : : ; xr be a basis of the row space of A. We claim that the vectors Ax1; Ax2; : : : ; Axr are linearly independent. To see why, consider a linear homogeneous relation involving these vectors with scalar coefficients c1; c2; : : : ; cr : 0 = c1Ax1 + c2Ax2 + ··· + crAxr = A(c1x1 + c2x2 + ··· + crxr) = Av; 1 RANK (LINEAR ALGEBRA) 3 where v = c1x1 + c2x2 + ··· + crxr: We make two observations: 1. -
Eigenvalues, Eigenvectors and the Similarity Transformation
Eigenvalues, Eigenvectors and the Similarity Transformation Eigenvalues and the associated eigenvectors are ‘special’ properties of square matrices. While the eigenvalues parameterize the dynamical properties of the system (timescales, resonance properties, amplification factors, etc) the eigenvectors define the vector coordinates of the normal modes of the system. Each eigenvector is associated with a particular eigenvalue. The general state of the system can be expressed as a linear combination of eigenvectors. The beauty of eigenvectors is that (for square symmetric matrices) they can be made orthogonal (decoupled from one another). The normal modes can be handled independently and an orthogonal expansion of the system is possible. The decoupling is also apparent in the ability of the eigenvectors to diagonalize the original matrix, A, with the eigenvalues lying on the diagonal of the new matrix, . In analogy to the inertia tensor in mechanics, the eigenvectors form the principle axes of the solid object and a similarity transformation rotates the coordinate system into alignment with the principle axes. Motion along the principle axes is decoupled. The matrix mechanics is closely related to the more general singular value decomposition. We will use the basis sets of orthogonal eigenvectors generated by SVD for orbit control problems. Here we develop eigenvector theory since it is more familiar to most readers. Square matrices have an eigenvalue/eigenvector equation with solutions that are the eigenvectors xand the associated eigenvalues : Ax = x The special property of an eigenvector is that it transforms into a scaled version of itself under the operation of A. Note that the eigenvector equation is non-linear in both the eigenvalue () and the eigenvector (x). -
A Guided Tour to the Plane-Based Geometric Algebra PGA
A Guided Tour to the Plane-Based Geometric Algebra PGA Leo Dorst University of Amsterdam Version 1.15{ July 6, 2020 Planes are the primitive elements for the constructions of objects and oper- ators in Euclidean geometry. Triangulated meshes are built from them, and reflections in multiple planes are a mathematically pure way to construct Euclidean motions. A geometric algebra based on planes is therefore a natural choice to unify objects and operators for Euclidean geometry. The usual claims of `com- pleteness' of the GA approach leads us to hope that it might contain, in a single framework, all representations ever designed for Euclidean geometry - including normal vectors, directions as points at infinity, Pl¨ucker coordinates for lines, quaternions as 3D rotations around the origin, and dual quaternions for rigid body motions; and even spinors. This text provides a guided tour to this algebra of planes PGA. It indeed shows how all such computationally efficient methods are incorporated and related. We will see how the PGA elements naturally group into blocks of four coordinates in an implementation, and how this more complete under- standing of the embedding suggests some handy choices to avoid extraneous computations. In the unified PGA framework, one never switches between efficient representations for subtasks, and this obviously saves any time spent on data conversions. Relative to other treatments of PGA, this text is rather light on the mathematics. Where you see careful derivations, they involve the aspects of orientation and magnitude. These features have been neglected by authors focussing on the mathematical beauty of the projective nature of the algebra. -
Inner Product Spaces
CHAPTER 6 Woman teaching geometry, from a fourteenth-century edition of Euclid’s geometry book. Inner Product Spaces In making the definition of a vector space, we generalized the linear structure (addition and scalar multiplication) of R2 and R3. We ignored other important features, such as the notions of length and angle. These ideas are embedded in the concept we now investigate, inner products. Our standing assumptions are as follows: 6.1 Notation F, V F denotes R or C. V denotes a vector space over F. LEARNING OBJECTIVES FOR THIS CHAPTER Cauchy–Schwarz Inequality Gram–Schmidt Procedure linear functionals on inner product spaces calculating minimum distance to a subspace Linear Algebra Done Right, third edition, by Sheldon Axler 164 CHAPTER 6 Inner Product Spaces 6.A Inner Products and Norms Inner Products To motivate the concept of inner prod- 2 3 x1 , x 2 uct, think of vectors in R and R as x arrows with initial point at the origin. x R2 R3 H L The length of a vector in or is called the norm of x, denoted x . 2 k k Thus for x .x1; x2/ R , we have The length of this vector x is p D2 2 2 x x1 x2 . p 2 2 x1 x2 . k k D C 3 C Similarly, if x .x1; x2; x3/ R , p 2D 2 2 2 then x x1 x2 x3 . k k D C C Even though we cannot draw pictures in higher dimensions, the gener- n n alization to R is obvious: we define the norm of x .x1; : : : ; xn/ R D 2 by p 2 2 x x1 xn : k k D C C The norm is not linear on Rn. -
Math 480 Notes on Orthogonality the Word Orthogonal Is a Synonym for Perpendicular. Question 1: When Are Two Vectors V 1 and V2
Math 480 Notes on Orthogonality The word orthogonal is a synonym for perpendicular. n Question 1: When are two vectors ~v1 and ~v2 in R orthogonal to one another? The most basic answer is \if the angle between them is 90◦" but this is not very practical. How could you tell whether the vectors 0 1 1 0 1 1 @ 1 A and @ 3 A 1 1 are at 90◦ from one another? One way to think about this is as follows: ~v1 and ~v2 are orthogonal if and only if the triangle formed by ~v1, ~v2, and ~v1 − ~v2 (drawn with its tail at ~v2 and its head at ~v1) is a right triangle. The Pythagorean Theorem then tells us that this triangle is a right triangle if and only if 2 2 2 (1) jj~v1jj + jj~v2jj = jj~v1 − ~v2jj ; where jj − jj denotes the length of a vector. 0 x1 1 . The length of a vector ~x = @ . A is easy to measure: the Pythagorean Theorem (once again) xn tells us that q 2 2 jj~xjj = x1 + ··· + xn: This expression under the square root is simply the matrix product 0 x1 1 T . ~x ~x = (x1 ··· xn) @ . A : xn Definition. The inner product (also called the dot product) of two vectors ~x;~y 2 Rn, written h~x;~yi or ~x · ~y, is defined by n T X hx; yi = ~x ~y = xiyi: i=1 Since matrix multiplication is linear, inner products satisfy h~x;~y1 + ~y2i = h~x;~y1i + h~x;~y2i h~x1; a~yi = ah~x1; ~yi: (Similar formulas hold in the first coordinate, since h~x;~yi = h~y; ~xi.) Now we can write 2 2 jj~v1 − ~v2jj = h~v1 − ~v2;~v1 − ~v2i = h~v1;~v1i − 2h~v1;~v2i + h~v2;~v2i = jj~v1jj − 2h~v1;~v2i + jj~v2jj; so Equation (1) holds if and only if h~v1;~v2i = 0: n Answer to Question 1: Vectors ~v1 and ~v2 in R are orthogonal if and only if h~v1;~v2i = 0. -
Inner Product Spaces Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (March 2, 2007)
MAT067 University of California, Davis Winter 2007 Inner Product Spaces Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (March 2, 2007) The abstract definition of vector spaces only takes into account algebraic properties for the addition and scalar multiplication of vectors. For vectors in Rn, for example, we also have geometric intuition which involves the length of vectors or angles between vectors. In this section we discuss inner product spaces, which are vector spaces with an inner product defined on them, which allow us to introduce the notion of length (or norm) of vectors and concepts such as orthogonality. 1 Inner product In this section V is a finite-dimensional, nonzero vector space over F. Definition 1. An inner product on V is a map ·, · : V × V → F (u, v) →u, v with the following properties: 1. Linearity in first slot: u + v, w = u, w + v, w for all u, v, w ∈ V and au, v = au, v; 2. Positivity: v, v≥0 for all v ∈ V ; 3. Positive definiteness: v, v =0ifandonlyifv =0; 4. Conjugate symmetry: u, v = v, u for all u, v ∈ V . Remark 1. Recall that every real number x ∈ R equals its complex conjugate. Hence for real vector spaces the condition about conjugate symmetry becomes symmetry. Definition 2. An inner product space is a vector space over F together with an inner product ·, ·. Copyright c 2007 by the authors. These lecture notes may be reproduced in their entirety for non- commercial purposes. 2NORMS 2 Example 1. V = Fn n u =(u1,...,un),v =(v1,...,vn) ∈ F Then n u, v = uivi. -
A Feasible Method for Optimization with Orthogonality Constraints
A FEASIBLE METHOD FOR OPTIMIZATION WITH ORTHOGONALITY CONSTRAINTS ZAIWEN WEN y AND WOTAO YIN z November 7, 2010 > Abstract. Minimization with orthogonality constraints (e.g., X X = I) and/or spherical constraints (e.g., kxk2 = 1) has wide applications in polynomial optimization, combinatorial optimization, eigenvalue problems, sparse PCA, p-harmonic flows, 1-bit compressive sensing, matrix rank minimization, etc. These problems are difficult because the constraints are not only non-convex but numerically expensive to preserve during iterations. To deal with these difficulties, we propose to use a Crank-Nicolson-like update scheme to preserve the constraints and based on it, develop curvilinear search algorithms with lower per-iteration cost compared to those based on projections and geodesics. The efficiency of the proposed algorithms is demonstrated on a variety of test problems. In particular, for the maxcut problem, it exactly solves a decomposition formulation for the SDP relaxation. For polynomial optimization, nearest correlation matrix estimation and extreme eigenvalue problems, the proposed algorithms run very fast and return solutions no worse than those from their state-of-the-art algorithms. For the quadratic assignment problem, a gap 0.842% to the best known solution on the largest problem \tai256c" in QAPLIB can be reached in 5 minutes on a typical laptop. Key words. Orthogonality constraint, spherical constraint, Stiefel manifold, Cayley transformation, curvilinear search, polynomial optimization, maxcut SDP, nearest correlation matrix, eigenvalue and eigenvector, invariant subspace, quadratic assignment problem AMS subject classifications. 49Q99, 65K05, 90C22, 90C26, 90C27, 90C30 1. Introduction. Matrix orthogonality constraints play an important role in many applications of science and engineering.