Role of the Small Regulatory Rnas Lpr10 and Lpr17 in the Regulation of the Stress Response in Legionella Pneumophila Joseph Saou

Total Page:16

File Type:pdf, Size:1020Kb

Role of the Small Regulatory Rnas Lpr10 and Lpr17 in the Regulation of the Stress Response in Legionella Pneumophila Joseph Saou Role of the Small Regulatory RNAs Lpr10 and Lpr17 in the Regulation of the Stress Response in Legionella pneumophila Joseph Saoud Department of Natural Resource Sciences Faculty of Agriculture and Environmental Sciences McGill University December 2020 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Doctor of Philosophy © Joseph Saoud 2020 Table of Contents Abstract .......................................................................................................................................... 7 Résumé ........................................................................................................................................... 9 Acknowledgements ..................................................................................................................... 12 Contribution to knowledge......................................................................................................... 18 Contribution of authors .............................................................................................................. 20 Contribution of Authors Chapter 3....................................................................................... 20 Contribution of Authors Chapter 4....................................................................................... 20 Contribution of Authors Chapter 5....................................................................................... 20 List of Abbreviations .................................................................................................................. 22 Chapter 1: Introduction ............................................................................................................. 25 Chapter 2: Literature Review .................................................................................................... 28 2.1 Introduction ................................................................................................................. 28 2.2 Legionella’s General Characteristics ........................................................................ 31 2.3 Life Cycle ..................................................................................................................... 33 2.4 Host Cell Infection ...................................................................................................... 34 2.4.1 Attachment and Entry ........................................................................................... 35 2.4.2 Establishment of the LCV ..................................................................................... 36 2.4.3 Replication ............................................................................................................ 36 2.4.4 Egress .................................................................................................................... 37 2.5 Immune Response: ...................................................................................................... 37 2.5.1 Cytokine Production ............................................................................................. 38 2.5.2 Detection ............................................................................................................... 38 2.5.3 Oxidative Burst ..................................................................................................... 41 2.6 Secretion Systems in Legionella ................................................................................. 42 2.6.1 Type I Secretion System (T1SS): Lss ................................................................... 42 2.6.2 Type II Secretion System (T2SS): Lsh ................................................................. 43 2.6.3 Type IVa Secretion System (TIVaSS): Lvh ......................................................... 44 2.6.4 Type IVb Secretion System (TIVbSS): Icm/Dot .................................................. 44 2.7 Major Regulators of Legionella ................................................................................. 48 2.7.1 Sigma Factors........................................................................................................ 49 2.7.2 Quorum Sensing.................................................................................................... 52 2.7.3 Stringent Response................................................................................................ 53 2.7.4 Two-Component Systems (TCS) .......................................................................... 54 2.8 Small Regulatory RNAs (sRNA)................................................................................ 58 2.8.1 Base-Pairing sRNAs ............................................................................................. 58 2.8.2 Protein-Binding sRNAs ........................................................................................ 59 2 2.8.3 RNA Chaperones .................................................................................................. 59 2.8.4 sRNAs in Other Bacteria ...................................................................................... 61 2.8.5 sRNAS in Legionella pneumophila ...................................................................... 67 2.9 Regulation by sRNAs .................................................................................................. 70 2.9.1 Negative Regulation by sRNAs ............................................................................ 71 2.9.2 Positive Regulation by sRNAs.............................................................................. 74 2.10 Thermal Stress Response ........................................................................................... 76 2.10.1 RpoH Regulon ...................................................................................................... 77 2.10.2 RpoE Regulon ....................................................................................................... 78 2.11 Protein Misfolding ...................................................................................................... 78 2.11.1 Protein Aggregation .............................................................................................. 79 2.11.2 Chaperones ............................................................................................................ 80 2.11.3 Toxicity of Protein Aggregates ............................................................................. 82 2.12 Tail-Specific Proteases ................................................................................................ 83 2.12.1 Tsp in Pseudomonas aeruginosa .......................................................................... 83 2.12.2 Tsp in Staphylococcus aureus ............................................................................... 84 2.12.3 Tsp in Chlamydia trachomatis .............................................................................. 84 2.12.4 Tsp in Salmonella ................................................................................................. 85 2.12.5 Tsps and Outer Membrane Proteins ...................................................................... 85 Connecting Text Chapter 3 ........................................................................................................ 87 The small regulatory RNA Lpr10 regulates the expression of RpoS in Legionella pneumophila ................................................................................................................................. 88 3.1 ABSTRACT ................................................................................................................. 89 3.2 INTRODUCTION: ..................................................................................................... 90 3.3 RESULTS .................................................................................................................... 95 3.3.1 Lpr10 is expressed in PE phase ............................................................................ 95 3.3.2 rpoS and several other genes are upregulated in the Lpr10 mutant ...................... 98 3.3.3 Deletion of Lpr10 improves survival in water .................................................... 101 3.3.4 Lpr10 pairs to the 5’ region of rpoS mRNA ....................................................... 103 3.3.5 A putative third and fourth rpoS TSS are located upstream of Lpr10 binding site .. ............................................................................................................................. 106 3.4 DISCUSSION ............................................................................................................ 110 3.5 EXPERIMENTAL PROCEDURES ....................................................................... 116 3.5.1 Bacterial strains and media ................................................................................. 116 3.5.2 Survival in water ................................................................................................. 117 3.5.3 Deletion of lpr10 and complementation of the mutant ....................................... 118 3.5.4 RNA extraction ................................................................................................... 122 3.5.5 Northern Blotting ................................................................................................ 122 3.5.6 5’ RACE.............................................................................................................
Recommended publications
  • Legionella Shows a Diverse Secondary Metabolism Dependent on a Broad Spectrum Sfp-Type Phosphopantetheinyl Transferase
    Legionella shows a diverse secondary metabolism dependent on a broad spectrum Sfp-type phosphopantetheinyl transferase Nicholas J. Tobias1, Tilman Ahrendt1, Ursula Schell2, Melissa Miltenberger1, Hubert Hilbi2,3 and Helge B. Bode1,4 1 Fachbereich Biowissenschaften, Merck Stiftungsprofessur fu¨r Molekulare Biotechnologie, Goethe Universita¨t, Frankfurt am Main, Germany 2 Max von Pettenkofer Institute, Ludwig-Maximilians-Universita¨tMu¨nchen, Munich, Germany 3 Institute of Medical Microbiology, University of Zu¨rich, Zu¨rich, Switzerland 4 Buchmann Institute for Molecular Life Sciences, Goethe Universita¨t, Frankfurt am Main, Germany ABSTRACT Several members of the genus Legionella cause Legionnaires’ disease, a potentially debilitating form of pneumonia. Studies frequently focus on the abundant number of virulence factors present in this genus. However, what is often overlooked is the role of secondary metabolites from Legionella. Following whole genome sequencing, we assembled and annotated the Legionella parisiensis DSM 19216 genome. Together with 14 other members of the Legionella, we performed comparative genomics and analysed the secondary metabolite potential of each strain. We found that Legionella contains a huge variety of biosynthetic gene clusters (BGCs) that are potentially making a significant number of novel natural products with undefined function. Surprisingly, only a single Sfp-like phosphopantetheinyl transferase is found in all Legionella strains analyzed that might be responsible for the activation of all carrier proteins in primary (fatty acid biosynthesis) and secondary metabolism (polyketide and non-ribosomal peptide synthesis). Using conserved active site motifs, we predict Submitted 29 June 2016 some novel compounds that are probably involved in cell-cell communication, Accepted 25 October 2016 Published 24 November 2016 differing to known communication systems.
    [Show full text]
  • The Risk to Human Health from Free-Living Amoebae Interaction with Legionella in Drinking and Recycled Water Systems
    THE RISK TO HUMAN HEALTH FROM FREE-LIVING AMOEBAE INTERACTION WITH LEGIONELLA IN DRINKING AND RECYCLED WATER SYSTEMS Dissertation submitted by JACQUELINE MARIE THOMAS BACHELOR OF SCIENCE (HONOURS) AND BACHELOR OF ARTS, UNSW In partial fulfillment of the requirements for the award of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL ENGINEERING SCHOOL OF CIVIL AND ENVIRONMENTAL ENGINEERING FACULTY OF ENGINEERING MAY 2012 SUPERVISORS Professor Nicholas Ashbolt Office of Research and Development United States Environmental Protection Agency Cincinnati, Ohio USA and School of Civil and Environmental Engineering Faculty of Engineering The University of New South Wales Sydney, Australia Professor Richard Stuetz School of Civil and Environmental Engineering Faculty of Engineering The University of New South Wales Sydney, Australia Doctor Torsten Thomas School of Biotechnology and Biomolecular Sciences Faculty of Science The University of New South Wales Sydney, Australia ORIGINALITY STATEMENT '1 hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom 1 have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.' Signed ~ ............................
    [Show full text]
  • Host-Adaptation in Legionellales Is 2.4 Ga, Coincident with Eukaryogenesis
    bioRxiv preprint doi: https://doi.org/10.1101/852004; this version posted February 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Host-adaptation in Legionellales is 2.4 Ga, 2 coincident with eukaryogenesis 3 4 5 Eric Hugoson1,2, Tea Ammunét1 †, and Lionel Guy1* 6 7 1 Department of Medical Biochemistry and Microbiology, Science for Life Laboratories, 8 Uppsala University, Box 582, 75123 Uppsala, Sweden 9 2 Department of Microbial Population Biology, Max Planck Institute for Evolutionary 10 Biology, D-24306 Plön, Germany 11 † current address: Medical Bioinformatics Centre, Turku Bioscience, University of Turku, 12 Tykistökatu 6A, 20520 Turku, Finland 13 * corresponding author 14 1 bioRxiv preprint doi: https://doi.org/10.1101/852004; this version posted February 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 15 Abstract 16 Bacteria adapting to living in a host cell caused the most salient events in the evolution of 17 eukaryotes, namely the seminal fusion with an archaeon 1, and the emergence of both the 18 mitochondrion and the chloroplast 2. A bacterial clade that may hold the key to understanding 19 these events is the deep-branching gammaproteobacterial order Legionellales – containing 20 among others Coxiella and Legionella – of which all known members grow inside eukaryotic 21 cells 3.
    [Show full text]
  • The Leta/S Two-Component System Regulates Transcriptomic Changes
    www.nature.com/scientificreports OPEN The LetA/S two-component system regulates transcriptomic changes that are essential for Received: 1 September 2017 Accepted: 7 March 2018 the culturability of Legionella Published: xx xx xxxx pneumophila in water Nilmini Mendis , Peter McBride, Joseph Saoud, Thangadurai Mani & Sebastien P. Faucher Surviving the nutrient-poor aquatic environment for extended periods of time is important for the transmission of various water-borne pathogens, including Legionella pneumophila (Lp). Previous work concluded that the stringent response and the sigma factor RpoS are essential for the survival of Lp in water. In the present study, we investigated the role of the LetA/S two-component signal transduction system in the successful survival of Lp in water. In addition to cell size reduction in the post-exponential phase, LetS also contributes to cell size reduction when Lp is exposed to water. Importantly, absence of the sensor kinase results in a signifcantly lower survival as measured by CFUs in water at various temperatures and an increased sensitivity to heat shock. According to the transcriptomic analysis, LetA/S orchestrates a general transcriptomic downshift of major metabolic pathways upon exposure to water leading to better culturability, and likely survival, suggesting a potential link with the stringent response. However, the expression of the LetA/S regulated small regulatory RNAs, RsmY and RsmZ, is not changed in a relAspoT mutant, which indicates that the stringent response and the LetA/S response are two distinct regulatory systems contributing to the survival of Lp in water. Legionella pneumophila (Lp) is a bacterial contaminant of anthropogenic water distribution systems, where it rep- licates as an intracellular parasite of amoeba1–3.
    [Show full text]
  • Electronic Laboratory Reporting Use Case January 2011
    ILLINOIS HEALTH INFORMATION EXCHANGE Electronic Laboratory Reporting Use Case Electronic Laboratory Reporting and Health Information Exchange Illinois Health Information Exchange Public Health Work Group January 2011 Electronic Laboratory Reporting Use Case January 2011 Table of Contents 1.0 Executive Summary……………………………………………………………………….3 2.0 Introduction…………………………………………………………………...……………..5 3.0 Scope……………………………………..………………………………………………………5 4.0 Use Case Stakeholders…………………………………………………………….….....6 5.0 Issues and Obstacles……………………………………………………………………...8 6.0 Use Case Pre-Conditions .………………….…………………………………………...8 7.0 Use Case Post-Conditions.……………………………………………………………...9 8.0 Detailed Scenarios/Technical Specifications.………………………………10 9.0 Validation and Certification………………………………………………………...12 Appendix ………………………………………………………………………………………….....13 Page 2 Electronic Laboratory Reporting Use Case January 2011 1.0 Executive Summary This Use Case is a product of the Public Health Work Group (PHWG) of the Illinois Health Information Exchange (HIE) Advisory Committee. The Illinois HIE Advisory Committee was constituted as the diverse public healthcare stakeholder body providing input and recommendations on the creation of the Illinois Health Information Exchange Authority (“the Authority”) as the Illinois vehicle for designing and implementing electronic health information exchange in Illinois. The establishment of the Authority marks the formal transition of the work of the HIE Advisory Committee and the Work Groups into alignment with the provisions of Illinois
    [Show full text]
  • University of Nova Gorica Graduate School
    UNIVERSITY OF NOVA GORICA GRADUATE SCHOOL THE STUDY OF OPTIMAL TECHNOLOGICAL PROCEDURES OF INTERNAL PLUMBING SYSTEM DISINFECTION FACILITIES IN USE BY THE SENSITIVE HUMAN POPULATIONS MASTER´S THESIS Janez Škarja Mentor: Assis. Prof. Darko Drev Nova Gorica, 2016 UNIVERZA V NOVI GORICI FAKULTETA ZA PODIPLOMSKI ŠTUDIJ RAZISKAVA OPTIMALNIH TEHNOLOŠKIH POSTOPKOV DEZINFEKCIJE INTERNIH VODOVODNIH OMREŽIJ OBJEKTOV, KI JIH UPORABLJA OBČUTLJIVEJŠA POPULACIJA LJUDI MAGISTRSKO DELO Janez Škarja Mentor: doc.dr. Darko Drev Nova Gorica, 2016 SUMMARY In a developed world, water is used in a variety of installations and devices for the improvement of life standard. It is important for these elements to be suitably managed and maintained, otherwise they can present a risk to people's health. Although potable water from a public plumbing system coming via the water supply into an internal plumbing system normally is compliant with the regulations, the quality of water in an internal plumbing system often changes – water gets contaminated. There are several types of microorganisms that can grow in water. While most of them present no threat, there are some that can induce health issues in people. Internal plumbing systems with heated water and the possibility of aerosol releasing present a special concern in this matter. They carry a great potential for the growth and proliferation of bacteria from the genus Legionella that cause Legionnaires' disease and Pontiac Fever. Even the fact that Legionella infection has for several years been mentioned in the accident insurance conditions of insurance companies in relation to receiving the insurance fee as compensation for bed day, shows the extent and foremost the seriousness of the disease (5–15% mortality rate).
    [Show full text]
  • Pseudomonas Fluorescens
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central The Gac-Rsm and SadB Signal Transduction Pathways Converge on AlgU to Downregulate Motility in Pseudomonas fluorescens Francisco Martı´nez-Granero, Ana Navazo, Emma Barahona, Miguel Redondo-Nieto, Rafael Rivilla, Marta Martı´n* Departamento de Biologı´a, Universidad Auto´noma de Madrid, Madrid, Spain Abstract Flagella mediated motility in Pseudomonas fluorescens F113 is tightly regulated. We have previously shown that motility is repressed by the GacA/GacS system and by SadB through downregulation of the fleQ gene, encoding the master regulator of the synthesis of flagellar components, including the flagellin FliC. Here we show that both regulatory pathways converge in the regulation of transcription and possibly translation of the algU gene, which encodes a sigma factor. AlgU is required for multiple functions, including the expression of the amrZ gene which encodes a transcriptional repressor of fleQ. Gac regulation of algU occurs during exponential growth and is exerted through the RNA binding proteins RsmA and RsmE but not RsmI. RNA immunoprecipitation assays have shown that the RsmA protein binds to a polycistronic mRNA encoding algU, mucA, mucB and mucD, resulting in lower levels of algU. We propose a model for repression of the synthesis of the flagellar apparatus linking extracellular and intracellular signalling with the levels of AlgU and a new physiological role for the Gac system in the downregulation of flagella biosynthesis during exponential growth. Citation: Martı´nez-Granero F, Navazo A, Barahona E, Redondo-Nieto M, Rivilla R, et al.
    [Show full text]
  • Functional Analyses of the Rsmy and Rsmz Small Noncoding Regulatory Rnas in Pseudomonas Aeruginosa
    Functional Analyses of the RsmY and RsmZ Small Noncoding Regulatory RNAs in Pseudomonas aeruginosa Kayley H. Janssen,a Manisha R. Diaz,a Matthew Golden,a Justin W. Graham,b Wes Sanders,c Matthew C. Wolfgang,b,c Timothy L. Yahra aDepartment of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA bMarsico Lung Institute, Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA cDepartment of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA ABSTRACT Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen with distinct acute and chronic virulence phenotypes. Whereas acute virulence is typically associated with expression of a type III secretion system (T3SS), chronic vir- ulence is characterized by biofilm formation. Many of the phenotypes associated with acute and chronic virulence are inversely regulated by RsmA and RsmF. RsmA and RsmF are both members of the CsrA family of RNA-binding proteins and regu- late protein synthesis at the posttranscriptional level. RsmA activity is controlled by two small noncoding regulatory RNAs (RsmY and RsmZ). Bioinformatic analyses sug- gest that RsmY and RsmZ each have 3 or 4 putative RsmA binding sites. Each pre- dicted binding site contains a GGA sequence presented in the loop portion of a stem-loop structure. RsmY and RsmZ regulate RsmA, and possibly RsmF, by seques- tering these proteins from target mRNAs. In this study, we used selective 2=-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) chem- istry to determine the secondary structures of RsmY and RsmZ and functional assays to characterize the contribution of each GGA site to RsmY/RsmZ activity.
    [Show full text]
  • Susceptibility and Resistance Data
    toku-e logo For a complete list of references, please visit antibiotics.toku-e.com Levofloxacin Microorganism Genus, Species, and Strain (if shown) Concentration Range (μg/ml)Susceptibility and Aeromonas spp. 0.0625 Minimum Inhibitory Alcaligenes faecalis 0.39 - 25 Bacillus circulans Concentration0.25 - 8 (MIC) Data Bacillus subtilis (ATCC 6051) 6.25 Issue date 01/06/2020 Bacteroides capillosus ≤0.06 - >8 Bacteroides distasonis 0.5 - 128 Bacteroides eggerthii 4 Bacteroides fragilis 0.5 - 128 Bacteroides merdae 0.25 - >32 Bacteroides ovatus 0.25 - 256 Bacteroides thetaiotaomicron 1 - 256 Bacteroides uniformis 4 - 128 Bacteroides ureolyticus ≤0.06 - >8 Bacteroides vulgatus 1 - 256 Bifidobacterium adolescentis 0.25 - >32 Bifidobacterium bifidum 8 Bifidobacterium breve 0.25 - 8 Bifidobacterium longum 0.25 - 8 Bifidobacterium pseudolongum 8 Bifidobacterium sp. 0.25 - >32 Bilophila wadsworthia 0.25 - 16 Brevibacterium spp. 0.12 - 8 Brucella melitensis 0.5 Burkholderia cepacia 0.25 - 512 Campylobacter coli 0.015 - 128 Campylobacter concisus ≤0.06 - >8 Campylobacter gracilis ≤0.06 - >8 Campylobacter jejuni 0.015 - 128 Campylobacter mucosalis ≤0.06 - >8 Campylobacter rectus ≤0.06 - >8 Campylobacter showae ≤0.06 - >8 Campylobacter spp. 0.25 Campylobacter sputorum ≤0.06 - >8 Capnocytophaga ochracea ≤0.06 - >8 Capnocytophaga spp. 0.006 - 2 Chlamydia pneumonia 0.125 - 1 Chlamydia psittaci 0.5 Chlamydia trachomatis 0.12 - 1 Chlamydophila pneumonia 0.5 Citrobacter diversus 0.015 - 0.125 Citrobacter freundii ≤0.00625 - >64 Citrobacter koseri 0.015 -
    [Show full text]
  • Aquascreen® Legionella Species Qpcr Detection Kit
    AquaScreen® Legionella species qPCR Detection Kit INSTRUCTIONS FOR USE FOR USE IN RESEARCH AND QUALITY CONTROL Symbols Lot No. Cat. No. Expiry date Storage temperature Number of reactions Manufacturer INDICATION The AquaScreen® Legionella species qPCR Detection kit is specifically designed for the quantitative detection of several Legionella species in water samples prepared with the AquaScreen® FastExt- ract kit. Its design complies with the requirements of AFNOR T90-471 and ISO/TS 12869:2012. Legionella are ubiquitous bacteria in surface water and moist soil, where they parasitize protozoa. The optimal growth temperature lies between +15 and +45 °C, whereas these gram-negative bacteria are dormant below 20 °C and do not survive above 60 °C. Importantly, Legionella are well-known as opportunistic intracellular human pathogens causing Legionnaires’ disease and Pontiac fever. The transmission occurs through inhalation of contami- nated aerosols generated by an infected source (e.g. human-made water systems like shower- heads, sink faucets, heaters, cooling towers, and many more). In order to efficiently prevent Legionella outbreaks, water safety control measures need syste- matic application but also reliable validation by fast Legionella testing. TEST PRINCIPLE The AquaScreen® Legionella species Kit uses qPCR for quantitative detection of legionella in wa- ter samples. In contrast to more time-consuming culture-based methods, AquaScreen® assays need less than six hours including sample preparation and qPCR to reliably detect Legionella. Moreover, the AquaScreen® qPCR assay has proven excellent performance in terms of specificity and sensitivity: other bacterial genera remain undetected whereas linear quantification is obtai- ned up to 1 x 106 particles per sample, therefore requiring no material dilution.
    [Show full text]
  • Rsmv a Small Non-Coding Regulatory RNA in Pseudomonas Aeruginosa 5 That Sequesters Rsma and Rsmf from Target Mrnas 6
    bioRxiv preprint doi: https://doi.org/10.1101/315341; this version posted May 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 2 3 4 RsmV a small non-coding regulatory RNA in Pseudomonas aeruginosa 5 that sequesters RsmA and RsmF from target mRNAs 6 7 Kayley H. Janssen1, Manisha R. Diaz1, Cindy J. Gode3, 8 Matthew C. Wolfgang2,3, and Timothy L. Yahr1* 9 10 11 1Department of Microbiology, University of Iowa 12 2Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, 13 Chapel Hill, NC 14 3Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at 15 Chapel Hill, Chapel Hill, NC 16 17 18 Running title: RsmV non-coding RNA 19 20 Keywords: Pseudomonas aeruginosa, RsmA, RsmF, RsmV, RsmW, RsmY, RsmZ 21 22 23 24 25 26 27 28 29 *Corresponding author 30 University of Iowa 31 Department of Microbiology 32 540B Eckstein Medical Research Building 33 Iowa City, IA 52242-1101 34 [email protected] 35 Tel: 319-335-9688 36 Fax: 319-335-8228 bioRxiv preprint doi: https://doi.org/10.1101/315341; this version posted May 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Isolation of Legionella Species from Drinking Water
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, OCt. 1984, p. 830-832 Vol. 48, No. 4 0099-2240/84/100830-03$02.00/0 Copyright © 1984, American Society for Microbiology Isolation of Legionella Species from Drinking Water S. C. HSU,* R. MARTIN, AND B. B. WENTWORTH Laboratory and Epidemiological Services Bureau, Lansing, Michigan 48909 Received 7 March 1984/Accepted 25 July 1984 Three different species of Legionella were recovered from samples of water taken from chlorinated public water supplies where no coliform bacteria were simultaneously detected. Five of 856 samples yielded Legionella isolates. Three isolates were identified as Legionella pneumophila serogroup 1, the fourth was identified as Legionella dumoffli, and the fifth was identified as Legionella jordanis. Studies to determine the survival of L. pneumophila Flint 1 serogroup 1 in tap water at various temperatures and in tap water with added sodium hypochlorite were done. These organisms were found to survive for 299 days in tap water at 24 and 5°C but not at 35°C. A concentration of at least 0.2 mg of residual chlorine per ml was required to eliminate at least 90% of L. pneumophila and Escherichia coli inocula in 2 h. Legionella species have been recognized as environmental gionella pneumophila serogroups 1 through 6, Legionella inhabitants, having been found not only in waters from bozemanii, Legionella micdadei, Legionella dumoffli, Le- cooling towers (5, 7, 8) and in plumbing systems of hospitals gionella gormanii, Legionellajordanis, and Legionella long- and hotels (3, 11) but also in natural water such as lakes, beachae serogroups 1 and 2. ponds, and streams (6, 10).
    [Show full text]