Assessment Report: Climate Change and Its Impact on Ecosystems, Population and Economy of the Russian Portion of the Altai-Sayan Ecoregion

Total Page:16

File Type:pdf, Size:1020Kb

Assessment Report: Climate Change and Its Impact on Ecosystems, Population and Economy of the Russian Portion of the Altai-Sayan Ecoregion UNDP/GEF/ICI Project BIodivErsIty CoNsErvatIoN in thE RussIaN PortIoN oF thE altaI-sayaN ECoregioN Assessment Report: Climate change and its impact on ecosystems, population and economy of the Russian portion of the Altai-Sayan Ecoregion WWF russia Moscow • 2011 Authors: T. A. Blyakharchuk, D.Sc. (Biology), Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch CONTENTS of the Russian Academy of Sciences (RAS) (Sub-section 5.1) I. V. Gerasimchuk, Ph.D. (Economics), Cyprus International Institute of Management (Section 6) 5 G. V. Gruza, D.Sc. (Physics and Mathematics), Prof., Institute of Global Climate and Ecology under RAS and the Introduction Russian Federal Service for Hydrometeorology and Environmental Monitoring (Roshydromet) (Section 2) I. E. Kamennova, WWF Russia (Section 4) 1. overview of the altai-sayan Ecoregion 12 A. O. Kokorin, Ph.D. (Physics and Mathematics), WWF Russia (Section 4) Ye. I. Parfenova, Ph.D. (Biology), Institute of Forest, RAS Siberian Branch (Subsections 3.1 & 5.1) 2. Climate Change in the russian Portion of the altai-sayan Ecoregion E. Ya. Rankova, D.Sc. (Physics and Mathematics), RAS&Roshydromet Institute of Global Climate and Ecology (E.ya. rankova and G.v. Gruza) 14 (Section 2) 2.1. Climate, Climate Change and Climatic variability (Fundamental Definitions) 14 V. A. Semenov, D.Sc. (Geography), Prof., All Russian Research Institute of Hydrometeorological Information – World Data Center under Roshydromet (Subsections 3.2 & 5.2) 2.2. Climate Change observed During recent Decades 15 N. M. Tchebakova, D.Sc. (Biology), Institute of Forest, RAS Siberian Branch (Subsections 3.1 & 5.1) 2.2.1. Present climate of the ecoregion 15 Chief Editor: A. O. Kokorin 2.2.2. Recent climate change according to climate records 24 Reviewers: V. P. Galakhov, A. S. Ginzburg, L. M. Grigoryev, N. B. Yermakov, V. M. Katsov, A. F. Mandych, 2.3. Climate Change Estimates 30 A. A. Minin and L. V. Progunova 3. Climate Change Influence on Ecosystems and Water resources Kokorin, A. O. (ed.). 2011. Assessment Report: Climate change and its impact on ecosystems, of the altai-sayan Ecoregion 34 population and economy of the Russian portion of the Altai-Sayan Ecoregion. Moscow: WWF 3.1. Ecosystems and species (N.M. tchebakova, ye.I. Parfenova and t.a. Blyakharchuk) 34 Russia. 152 pp. 3.1.1. Ground evidence and predictions of climate-caused vegetation changes 35 Report contains extensive information on an array of thematic issues: current and predicted climate change, 3.1.2. Potential changes of vegetation cover, mountain forest, and extent of major tree species prognosis for change in plant communities and water resources, and impact of climate change on population, under current and modeled climatic changes 38 economy and services provided by natural ecosystems in the Altai-Sayan Ecoregion (ASE). It is not easy to identify the human-induced changes in global climate and their regional peculiarities against the backgrounds of 3.1.3. Vegetation migration and adaptation mechanisms 41 natural climate variability and local impacts. This report will serve as a guide of future action aimed at studying 3.1.4. Major tree species extent changes 42 climate change impacts and planning adaptation measures when the adverse impacts of climate change reveal themselves and/or when sufficient data is collected and reliable regional models are developed to allow climate 3.1.5. Forest stand height increment in changing climate 44 change prediction. 3.1.6. Vegetation phytomass (carbon storage) change predicted under climate warming 44 Volunteer Editors of English text: Heather Clark and Sara Venkatachalam 3.2. Water resources (v.a. semenov) 47 3.2.1. General information about water bodies in the Russian portion of the Altai-Sayan Ecoregion Cover photographs: Yelena Lebedeva / WWF Russia and research materials 47 Layout: A. Yu. Filippov, O. V. Shuleshko 3.2.2. Average annual river flow 51 3.2.3. Climate dependent variations of current glaciation 51 This publication has been prepared by WWF Russia under the project Promote adaptation of natural ecosystems to climate change in the specially protected nature areas in the Russian portion of the Altai-Sayan Ecoregion. 3.2.4. Climate-dependent variations of river regimes and renewable water resources 55 Project Leaders: Dr. Daria L. Lugovaya and Dr. Elena G. Kulikova. 3.2.5. Variation of water quality of the rivers 64 The production of this publication has been supported by the UNDP/GEF/ICI Project on Biodiversity Conservation 3.2.6. Variations in lake water quality and ecological character 65 in the Russian Portion of the Altai-Sayan Ecoregion. 4. Indicators of Climate Change Impact (a.o. Kokorin and I.E. Kamennova) 70 The United Nations Development Programme (UNDP) is the UN's global development network, an organization 4.1. summary of Key vulnerability Indicators and Corresponding adaptation action 70 advocating for change and connecting countries to knowledge, experience and resources to help people build a better life. 5. assessment of terrestrial Ecosystem and Water resource vulnerability The views expressed in this publication do not necessarily reflect the views of UNDP, UN bodies and agencies, to Climate Change 73 and the authors’ employer organizations. 5.1 Ecosystems and species (N.M. tchebakova, ye.I. Parfenova and t.a. Blyakharchuk) 73 This publication is non-commercial and distributed free of charge. 5.1.1. Tundra-to-forest and forest-to-steppe change “hot spots” under future climate scenarios for the end of the 21st century 73 5.1.2. Negative influence of predicted climate changes on rare and endangered plant species © UNDP 2011 and communities 73 © WWF 2011 5.2. Water resources (v.a. semenov) 90 5.2.1. Comparative rating of water body types by their vulnerability to climate change INTRODUCTION and impact on local population and economy 90 5.2.2. Predicted changes in water resources and hydrological regime of rivers 91 5.2.3. Water-related dangerous events caused by climate change and their impact on the local population and economy 92 There is growing concern about the increasing anthropogenic effect on the earth’s climate system and 6. adaptation actions: observed and Forecasted Climate Change Impacts its impact on nature and human beings. The world community must take action to both investigate on Population, Economy and Ecosystem services (I.v. Gerasimchuk) 94 the problem and try to solve it. In recent years fundamental international (IPCC, 2007) and Russian (Assessment Report, 2008) works have been published, with detailed analyses of the reasons for and 6.1. social and Economic Choice of Climate Change adaptation Measures in the russian Context 94 scale of human impact on climate system as well as currently-observed effects and future forecasts. In late 2009, the Russian President signed the Climate Doctrine, and in April 2011, the government 6.2. Population and Economy of the altai-sayan Ecoregion under Climate Change 100 adopted its implementation plan. Analog and mathematical modeling of the earth’s climatic system is 6.2.1. Problems and prospects of adapting the ASE population to climate change 100 one of the eight key research trends in the complex plan for scientific research on weather and climate. 6.2.2. Problems and prospects of adapting the ASE economy to climate change 102 Development and deployment of atmospheric and ocean general circulation models is one of the top priorities for Russian science: it is the basis for the long-term climate forecast needed to make sound 6.3. Ecosystem services in the altai-sayan Ecoregion under Climate Change 104 economic decisions about adaptations to current and predicted weather and climate impact and the 6.3.1. Importance of ecosystem services for social and economic development mitigation of anthropogenic influence on climate (Climate Change, 2011). of the Altai-Sayan Ecoregion 104 An analysis of climate change and its impact on the ecosystems, population and economy of the Altai- 6.3.2. Individual climate change impacts on ecosystem services in the Altai-Sayan Ecoregion 109 Sayan Ecoregion (ASE) is therefore timely. 6.3.2.3. Regulation of forest and steppe wildfires 112 The studies were undertaken as projects of the United Nations Development Programme and the 6.3.2.4. Provisioning of hunting, fishing and gathering products 115 Ministry of Natural Resources and Environment of the Russian Federation, funded by the International Climate Initiative of the German Government. Germany is deeply concerned about climate change, 6.3.2.5. Provisioning of land and conditions for living and farming 116 caused mainly by the atmospheric emission of СО2 and other greenhouse gases primarily as a result of 6.3.2.7. Mitigation and protection from floods, earth flows, avalanches and mudflows 121 the use of fossil fuels such as coal, gas and oil products. Man-made global climate change is often difficult 6.3.2.8. Cultural and amenities ecosystem services 122 to isolate from natural climatic variability and local human impact. However we must begin the process, 6.3.2.9. Maintaining natural habitats for biodiversity 125 and this report should be considered as a step in that direction in the ASE. Many studies have already been conducted in the ecoregion about the problems of climate change. Despite the large quantity of 6.4. opportunities and Measures for Climate Change adaptation in the altai-sayan Ecoregion 128 fundamental research on climate change and its impact on the region, there are relatively few action- 6.4.1. The nexus between the ASE economic development plans and the required oriented studies focused on specially protected nature areas in the context of climate change. Among them climate change adaptation measures 128 we note the participation of the Katunsky Biosphere Reserve in the UNESCO/MAB – GLOCHAMOST 6.4.2.
Recommended publications
  • Ob' River Discharge from TOPEX/Poseidon Satellite Altimetry
    Ob’ river discharge from TOPEX/Poseidon satellite altimetry (1992–2002) A. Kouraev, E. A. Zakharova, O. Samain, N. Mognard-Campbell, A. Cazenave To cite this version: A. Kouraev, E. A. Zakharova, O. Samain, N. Mognard-Campbell, A. Cazenave. Ob’ river discharge from TOPEX/Poseidon satellite altimetry (1992–2002). Remote Sensing of Environment, Elsevier, 2004, 93 (1-2), pp.238-245. 10.1016/j.rse.2004.07.007. hal-00280276 HAL Id: hal-00280276 https://hal.archives-ouvertes.fr/hal-00280276 Submitted on 6 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Ob’ river discharge from TOPEX/Poseidon satellite altimetry (1992–2002) Alexei V. Kouraeva,b,*, Elena A. Zakharovab, Olivier Samainc, Nelly M. Mognarda, Anny Cazenavea aLaboratoire d’Etudes en Ge´ophysique et Oce´anographie Spatiales (LEGOS), Toulouse, France bState Oceanography Institute, St. Petersburg Branch, St. Petersburg, Russia cMe´te´o-France, CNRM, Toulouse, France The paper discusses an application of the TOPEX/Poseidon (T/P) altimetry data to estimate the discharge of one of the largest Arctic rivers—the Ob’ river. We first discuss the methodology to select and retrieve the altimeter water levels during the various phases of the hydrological regime.
    [Show full text]
  • Chronicles of Nature Calendar, a Long-Term and Large-Scale Multitaxon Database on Phenology
    www.nature.com/scientificdata OPEN Chronicles of nature calendar, DATA DESCRIPTOR a long-term and large-scale multitaxon database on phenology Otso Ovaskainen et al.# We present an extensive, large-scale, long-term and multitaxon database on phenological and climatic variation, involving 506,186 observation dates acquired in 471 localities in Russian Federation, Ukraine, Uzbekistan, Belarus and Kyrgyzstan. The data cover the period 1890–2018, with 96% of the data being from 1960 onwards. The database is rich in plants, birds and climatic events, but also includes insects, amphibians, reptiles and fungi. The database includes multiple events per species, such as the onset days of leaf unfolding and leaf fall for plants, and the days for frst spring and last autumn occurrences for birds. The data were acquired using standardized methods by permanent staf of national parks and nature reserves (87% of the data) and members of a phenological observation network (13% of the data). The database is valuable for exploring how species respond in their phenology to climate change. Large-scale analyses of spatial variation in phenological response can help to better predict the consequences of species and community responses to climate change. Background & Summary Phenological dynamics have been recognised as one of the most reliable bio-indicators of species responses to ongoing warming conditions1. Together with other adaptive mechanisms (e.g. changes in the spatial distribution and physiological adaptations), phenological change is a key mechanism by which plants and animals adapt to a changing world2,3. Many studies have documented that in the northern hemisphere, spring events have become earlier whereas autumn events are occurring later than before, mostly due to rising temperatures4–6.
    [Show full text]
  • Selected Works of Chokan Valikhanov Selected Works of Chokan Valikhanov
    SELECTED WORKS OF CHOKAN VALIKHANOV CHOKAN OF WORKS SELECTED SELECTED WORKS OF CHOKAN VALIKHANOV Pioneering Ethnographer and Historian of the Great Steppe When Chokan Valikhanov died of tuberculosis in 1865, aged only 29, the Russian academician Nikolai Veselovsky described his short life as ‘a meteor flashing across the field of oriental studies’. Set against his remarkable output of official reports, articles and research into the history, culture and ethnology of Central Asia, and more important, his Kazakh people, it remains an entirely appropriate accolade. Born in 1835 into a wealthy and powerful Kazakh clan, he was one of the first ‘people of the steppe’ to receive a Russian education and military training. Soon after graduating from Siberian Cadet Corps at Omsk, he was taking part in reconnaissance missions deep into regions of Central Asia that had seldom been visited by outsiders. His famous mission to Kashgar in Chinese Turkestan, which began in June 1858 and lasted for more than a year, saw him in disguise as a Tashkent mer- chant, risking his life to gather vital information not just on current events, but also on the ethnic make-up, geography, flora and fauna of this unknown region. Journeys to Kuldzha, to Issyk-Kol and to other remote and unmapped places quickly established his reputation, even though he al- ways remained inorodets – an outsider to the Russian establishment. Nonetheless, he was elected to membership of the Imperial Russian Geographical Society and spent time in St Petersburg, where he was given a private audience by the Tsar. Wherever he went he made his mark, striking up strong and lasting friendships with the likes of the great Russian explorer and geographer Pyotr Petrovich Semyonov-Tian-Shansky and the writer Fyodor Dostoyevsky.
    [Show full text]
  • Seminum 2017 Tisk
    FRONT COVER: Campanula cochleariifolia Lam. SK-0-PLZEN-4260-98-20 (No. 75) Slovakia, Nízké Tatry Mts., Demänovská dolina, near hotel Repiská, calcareous rocks Photo: Jaroslav Vogeltanz INDEX SEMINUM 2017 PLZE Ň 2017 1 ZOOLOGICAL AND BOTANICAL GARDEN OF THE CITY PLZEN Pod Vinicemi 9, 301 00 Plzen Czech Republic Telephone: +420/378038301 Fax: +420/378038302 E-mail: [email protected] Area: 21,5 ha Geographical location: Latitude: 49 o 44’ N Longitude: 13 o23’ E Altitude: 330 m Annual average temperature: 7,4 oC Highest annual temperature: 40 o C Lowest annual temperature: - 27 oC Annual rainfall: 512 mm Director: Ing. Ji ří Trávní ček Curator of Botany: Ing. Tomáš Peš Seed collectors: Mgr. Václava Pešková, Radka Matulová, Petra Vonášková, Lenka Richterová, Hana Janouškovcová 2 Please notice: Complying with article 15 of the Convention on Biological Diversity (CBD, 1992), the Zoological and Botanical Garden of Plzen provides seeds and any other plant material only for botanical gardens and other scientific institutions using this materiál according to the CBD. We are part of the IPEN network (International Plant Exchange Network) and can exchange material with other IPEN-members without further bi-lateral agreements.For a list of gardens currently registered with IPEN and for additional information, please refer to the BGCI website. Non IPEN-members have to return the Agreement on the supply of living plant material for non-commercial purposes leaving the International Plant Exchange Network , which must be signed by authorized staff. The IPEN number given with the seed material consists of four elements: 1. The first two characters are the international iso 3166-1-alpha-2-code of the country of origin ("XX" for unknown origin) 2.
    [Show full text]
  • Melaspilea Galligena Sp. Nov. and Some Other Lichenicolous Fungi from Russia
    Folia Cryptog. Estonica, Fasc. 50: 89–99 (2013) http://dx.doi.org/10.12697/fce.2013.50.12 Melaspilea galligena sp. nov. and some other lichenicolous fungi from Russia Mikhail P. Zhurbenko1 & Ilya S. Zhdanov2 1Laboratory of the Systematics and Geography of Fungi, Komarov Botanical Institute, Russian Academy of Sciences, Professora Popova str., 2, St. Petersburg, 197376, Russia. E-mail: [email protected] 2Laboratory for Synecology, A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii Prospect, 33, Moscow, 119071, Russia. E-mail: [email protected] Abstract: Thirty species of lichenicolous fungi are reported, many being new to various regions of Russia. Melaspilea galligena sp. nov. growing on Pertusaria cf. cribellata is described from Russian Far East. A possibly new lichenicolous Toninia species (on Parmelina tiliacea) and a species of Arthonia (on Cladonia) with 1–2-septate ascospores resembling poorly known A. lepidophila are described, illustrated and discussed. Dactylospora suburceolata is reported new to Russia and Asia, growing on a new host species Mycobilimbia carneoalbida. Tremella cetrariicola is new to Siberia and Clypeococcum cetrariae is newly documented on Vulpicida. INTRODUCTION Taxonomic diversity and distribution of licheni- All specimens have been collected by Ilya S. Zh- colous fungi of Russia is still far from being danov and identified by Mikhail P. Zhurbenko. reasonably revealed. This is proved by results Biogeographic novelties are mainly referred to of identification by the first author of miscel- the current administrative subdivision of Rus- laneous specimens of these fungi collected by sia. Examined specimens are deposited in LE- the second author in various regions of Russia Fungi herbarium.
    [Show full text]
  • North and Central Asia FAO-Unesco Soil Tnap of the World 1 : 5 000 000 Volume VIII North and Central Asia FAO - Unesco Soil Map of the World
    FAO-Unesco S oilmap of the 'world 1:5 000 000 Volume VII North and Central Asia FAO-Unesco Soil tnap of the world 1 : 5 000 000 Volume VIII North and Central Asia FAO - Unesco Soil map of the world Volume I Legend Volume II North America Volume III Mexico and Central America Volume IV South America Volume V Europe Volume VI Africa Volume VII South Asia Volume VIIINorth and Central Asia Volume IX Southeast Asia Volume X Australasia FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION FAO-Unesco Soilmap of the world 1: 5 000 000 Volume VIII North and Central Asia Prepared by the Food and Agriculture Organization of the United Nations Unesco-Paris 1978 The designations employed and the presentation of material in this publication do not irnply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations or of the United Nations Educa- tional, Scientific and Cultural Organization con- cerning the legal status of any country, territory, city or area or of its authorities, or concerning the delirnitation of its frontiers or boundaries. Printed by Tipolitografia F. Failli, Rome, for the Food and Agriculture Organization of the United Nations and the United Nations Educational, Scientific and Cultural Organization Published in 1978 by the United Nations Educational, Scientific and Cultural Organization Place de Fontenoy, 75700 Paris C) FAO/Unesco 1978 ISBN 92-3-101345-9 Printed in Italy PREFACE The project for a joint FAO/Unesco Soil Map of vested with the responsibility of compiling the techni- the World was undertaken following a recommenda- cal information, correlating the studies and drafting tion of the International Society of Soil Science.
    [Show full text]
  • In Flora of Altai
    Ukrainian Journal of Ecology Ukrainian Journal of Ecology, 2018, 8(4), 362-369 ORIGINAL ARTICLE Genus Campanula L. (Campanulaceae Juss.) in flora of Altai A.I. Shmakov1, A.A. Kechaykin1, T.A. Sinitsyna1, D.N. Shaulo2, S.V. Smirnov1 1South-Siberian Botanical Garden, Altai State University, Lenina pr. 61, Barnaul, 656049, Russia, E-mails: [email protected], [email protected] 2Central Siberian Botanical Garden, Zolotodolinskaya st., 101, Novosibirsk, 630090, Russia. Received: 29.10.2018. Accepted: 03.12.2018 A taxonomic study of the genus Campanula L. in the flora of Altai is presented. Based on the data obtained, 14 Campanula species, belonging to 3 subgenera and 7 sections, grow in the territory of the Altai Mountain Country. The subgenus Campanula includes 4 sections and 8 species and is the most diverse in the flora of Altai. An original key is presented to determine the Campanula species in Altai. For each species, nomenclature, ecological and geographical data, as well as information about type material, are provided. New locations of Campanula species are indicated for separate botanical and geographical regions of Altai. Keywords: Altai; Campanula; distribution; diversity; ecology; species A taxonomic study of the genus Campanula L. in the flora of Altai is presented. Based on the data obtained, 14 Campanula species, belonging to 3 subgenera and 7 sections, grow in the territory of the Altai Mountain Country. The subgenus Campanula includes 4 sections and 8 species and is the most diverse in the flora of Altai. An original key is presented to determine the Campanula species in Altai. For each species, nomenclature, ecological and geographical data, as well as information about type material, are provided.
    [Show full text]
  • Siberia, the Wandering Northern Terrane, and Its Changing Geography Through the Palaeozoic ⁎ L
    Earth-Science Reviews 82 (2007) 29–74 www.elsevier.com/locate/earscirev Siberia, the wandering northern terrane, and its changing geography through the Palaeozoic ⁎ L. Robin M. Cocks a, , Trond H. Torsvik b,c,d a Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK b Center for Geodynamics, Geological Survey of Norway, Leiv Eirikssons vei 39, Trondheim, N-7401, Norway c Institute for Petroleum Technology and Applied Geophysics, Norwegian University of Science and Technology, N-7491 NTNU, Norway d School of Geosciences, Private Bag 3, University of the Witwatersrand, WITS, 2050, South Africa Received 27 March 2006; accepted 5 February 2007 Available online 15 February 2007 Abstract The old terrane of Siberia occupied a very substantial area in the centre of today's political Siberia and also adjacent areas of Mongolia, eastern Kazakhstan, and northwestern China. Siberia's location within the Early Neoproterozoic Rodinia Superterrane is contentious (since few if any reliable palaeomagnetic data exist between about 1.0 Ga and 540 Ma), but Siberia probably became independent during the breakup of Rodinia soon after 800 Ma and continued to be so until very near the end of the Palaeozoic, when it became an integral part of the Pangea Supercontinent. The boundaries of the cratonic core of the Siberian Terrane (including the Patom area) are briefly described, together with summaries of some of the geologically complex surrounding areas, and it is concluded that all of the Palaeozoic underlying the West Siberian
    [Show full text]
  • Catalogue of the Jumping Spiders of Northern Asia (Arachnida, Araneae, Salticidae)
    INSTITUTE FOR SYSTEMATICS AND ECOLOGY OF ANIMALS, SIBERIAN BRANCH OF THE RUSSIAN ACADEMY OF SCIENCES Catalogue of the jumping spiders of northern Asia (Arachnida, Araneae, Salticidae) by D.V. Logunov & Yu.M. Marusik KMK Scientific Press Ltd. 2000 D. V. Logunov & Y. M. Marusik. Catalogue of the jumping spiders of northern Asia (Arachnida, Araneae, Salticidae). Moscow: KMK Scientific Press Ltd. 2000. 299 pp. In English. Ä. Â. Ëîãóíîâ & Þ. Ì. Ìàðóñèê. Êàòàëîã ïàóêîâ-ñêàêóí÷èêîâ Ñåâåðíîé Àçèè (Arachnida, Araneae, Salticidae). Ìîñêâà: èçäàòåëüñòâî ÊÌÊ. 2000. 299 ñòð. Íà àíãëèéñêîì ÿçûêå. This is the first complete catalogue of the jumping spiders of northern Asia. It is based on both original data and published data dating from 1861 to October 2000. Northern Asia is defined as the territories of Siberia, the Russian Far East, Mongolia, northern provinces of China, and both Korea and Japan (Hokkaido only). The catalogue lists 216 valid species belonging to 41 genera. The following data are supplied for each species: a range character- istic, all available records from northern Asia with approximate coordinates (mapped), all misidentifications and doubtful records (not mapped), habitat preferences, references to available biological data, taxonomic notes on species where necessary, references to lists of regional fauna and to catalogues of general importance. 24 species are excluded from the list of the Northern Asian salticids. 5 species names are newly synonymized: Evarcha pseudolaetabunda Peng & Xie, 1994 with E. mongolica Danilov & Logunov, 1994; He- liophanus mongolicus Schenkel, 1953 with H. baicalensis Kulczyñski, 1895; Neon rostra- tus Seo, 1995 with N. minutus ¯abka, 1985; Salticus potanini Schenkel, 1963 with S.
    [Show full text]
  • Unshaped Bone Tools from Denisova Cave, Altai
    PALEOENVIRONMENT. THE STONE AGE DOI: 10.17746/1563-0110.2020.48.1.016-028 M.B. Kozlikin1, W. Rendu2, H. Plisson2, M. Baumann2 and M.V. Shunkov1 1Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, Pr. Akademika Lavrentieva 17, Novosibirsk, 630090, Russia E-mail: [email protected]; [email protected] 2Bordeaux University, UMR 5199, PACEA laboratory, Bat. B2, Allée Geoffroy St-Hilaire CS 50023, 33615 Pessac cedex, France E-mail: [email protected]; [email protected]; [email protected] Unshaped Bone Tools from Denisova Cave, Altai This study describes a part of the Paleolithic bone industry of Denisova Cave—the site that is key for understanding a complex interaction between various groups of early humans and the Middle to Upper Paleolithic transition. The Initial Upper Paleolithic layers of the cave yielded fossil remains of Denisovans, and the earliest ornaments and bone tools in North and Central Asia. The principal objective of this study is to analyze unshaped bone tools from the Late Middle and Initial Upper Paleolithic from the East Chamber of the cave. Among more than 10 thousand bone fragments, subdivided into three groups in terms of taphonomic, technical, and utilization traces, 51 specimens were selected for study. On the basis of location of use-wear traces that varied according to function, unshaped bone tools such as retouchers, awls, intermediate tools, and knives were revealed for the fi rst time in Denisova Cave. The results of the morphological and use-wear analysis suggest that those tools were used for processing organic materials such as leather, plant fi bers, and wood.
    [Show full text]
  • Subject of the Russian Federation)
    How to use the Atlas The Atlas has two map sections The Main Section shows the location of Russia’s intact forest landscapes. The Thematic Section shows their tree species composition in two different ways. The legend is placed at the beginning of each set of maps. If you are looking for an area near a town or village Go to the Index on page 153 and find the alphabetical list of settlements by English name. The Cyrillic name is also given along with the map page number and coordinates (latitude and longitude) where it can be found. Capitals of regions and districts (raiony) are listed along with many other settlements, but only in the vicinity of intact forest landscapes. The reader should not expect to see a city like Moscow listed. Villages that are insufficiently known or very small are not listed and appear on the map only as nameless dots. If you are looking for an administrative region Go to the Index on page 185 and find the list of administrative regions. The numbers refer to the map on the inside back cover. Having found the region on this map, the reader will know which index map to use to search further. If you are looking for the big picture Go to the overview map on page 35. This map shows all of Russia’s Intact Forest Landscapes, along with the borders and Roman numerals of the five index maps. If you are looking for a certain part of Russia Find the appropriate index map. These show the borders of the detailed maps for different parts of the country.
    [Show full text]
  • 1 Evolution, Domestication and Taxonomy
    1 Evolution, Domestication and Taxonomy R.M. Fritsch1 and N. Friesen2 1Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany; 2Botanischer Garten der Universität, D-49076 Osnabrück, Germany 1. The Genus Allium L. 5 1.1 General characteristics 5 1.2 Distribution, ecology and domestication 6 1.3 Phylogeny and classification 10 2. The Section Cepa (Mill.) Prokh. 14 2.1 Morphology, distribution and ecology 14 2.2 Cytological limitations 15 2.3 Grouping of the species 15 2.4 Enumeration of the species 16 3. Allium cepa L. 19 3.1 Description and variability 19 3.2 Infraspecific classification 20 3.3 Evolutionary lineages 21 3.4 History of domestication and cultivation 22 4. Other Economic Species 23 4.1 Garlic and garlic-like forms 23 4.2 Taxa of Asiatic origin 24 4.3 Chives and locally important onions from other areas 25 5. Conclusions 26 Acknowledgements 27 References 27 1. The Genus Allium L. controversy. In early classifications of the angiosperms (Melchior, 1964), they were 1.1 General characteristics placed in the Liliaceae. Later, they were more often included in the Amaryllidaceae, The taxonomic position of Allium and on the basis of inflorescence structure. related genera has long been a matter of Recently, molecular data have favoured a © CAB International 2002. Allium Crop Science: Recent Advances (eds H.D. Rabinowitch and L. Currah) 5 6 R.M. Fritsch and N. Friesen division into a larger number of small mono- • Ovary: trilocular, three septal nectaries of phyletic families. In the most recent and various shape, two or more curved competent taxonomic treatment of the (campylotropous) ovules per locule, monocotyledons, Allium and its close rela- sometimes diverse apical appendages tives were recognized as a distinct family, the (crests and horns); developing into a Alliaceae, close to the Amaryllidaceae.
    [Show full text]