Energy Levels in Nanowires and Nanorods with a Finite Potential Well

Total Page:16

File Type:pdf, Size:1020Kb

Energy Levels in Nanowires and Nanorods with a Finite Potential Well Hindawi Advances in Condensed Matter Physics Volume 2020, Article ID 4945080, 12 pages https://doi.org/10.1155/2020/4945080 Research Article Energy Levels in Nanowires and Nanorods with a Finite Potential Well G. Gulyamov ,1 A. G. Gulyamov ,2 A. B. Davlatov ,2 and Kh. N. Juraev 2 1Namangan Engineering Construction Institute, 12 Islam Karimov Street, Namangan 160103, Uzbekistan 2Physical-Technical Institute, Uzbek Academy of Sciences, Chingiz Aytmatov Street, 2 “B”, Tashkent 100084, Uzbekistan Correspondence should be addressed to Kh. N. Juraev; [email protected] Received 19 July 2020; Revised 15 October 2020; Accepted 19 October 2020; Published 7 November 2020 Academic Editor: Kamakhya Prasad Ghatak Copyright © 2020 G. Gulyamov et al. )is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. )e energy of electrons and holes in cylindrical quantum wires with a finite potential well was calculated by two methods. An analytical expression is approximately determined that allows one to calculate the energy of electrons and holes at the first discrete level in a cylindrical quantum wire. )e electron energy was calculated by two methods for cylindrical layers of different radius. In the calculations, the nonparabolicity of the electron energy spectrum is taken into account. )e dependence of the effective masses of electrons and holes on the radius of a quantum wires is determined. An analysis is made of the dependence of the energy of electrons and holes on the internal and external radii, and it is determined that the energy of electrons and holes in cylindrical layers with a constant thickness weakly depends on the internal radius. )e results were obtained for the InP/ InAs heterostructures. 1. Introduction wires with a rectangular cross-sectional shape was theo- retically investigated. )e authors of [11, 12] also theoret- In recent years, a lot of work has been done on calculating ically studied the energy spectrum of an electron with a the energy of electrons and holes in quantum wells based on nonparabolic dispersion law in quantum wires, but with a InP/InAs/InP heterostructures, due to the fact that today, for hexagonal and triangular cross-sectional shape. )e influ- the creation of new-generation devices, it largely depends on ence of electronic, polaron, and coulomb interactions on semiconductor nanostructures. energy states in quantum nanowires was studied [13–16]. In [1, 2], various technologies for growing quantum )e I-V characteristic of nanowires was considered taking wires were presented, and nanowires of various sizes were into account the tunneling of electrons in quantum states obtained. In [3], core-shell nanowires were experimentally [17, 18]. )e effect of temperature on the energy levels obtained, and it was shown that the cross-sectional area is in [19, 20] and optical absorption [21] of quantum dots are the shape of a hexagon. Optical properties of InAs/InP-based studied. )e energy levels of InAs/InP quantum dots have quantum wires were studied by photoluminesce spectros- been studied [22]. In [23–28], to determine the energy copy [4]. )e optical properties of core-multishell nanowires spectrum and wave function of an electron in quantum wires based on InP/InAs/InP were experimentally studied in with a rectangular cross-sectional shape, solutions of the [5–8]. )e relaxation time of electron spin in semiconductor Schrodinger¨ equation were obtained using various mathe- quantum wires has been experimentally investigated. matical methods. )e effect of an electric field on the energy In type III-V semiconductors and in heterostructures spectrum of a rectangular quantum wire is investigated [29]. based on them, electron dispersion is strongly nonparabolic; )e authors of [30–33] obtained analytical solutions of the Kane model was used to study the spectrum of charge the Schrodinger¨ equation for cylindrical quantum wires with carriers of these materials [9]. In [10], the energy spectrum of a finite potential and a parabolic dispersion law. )e solution an electron with a nonparabolic dispersion law in quantum of the Schrodinger¨ equation is obtained by the finite 2 Advances in Condensed Matter Physics difference method (shooting method) for rectangular [34] and cylindrical [35, 36] quantum wires. In this paper, two methods are used to calculate the energy of electrons and holes for a cylindrical quantum wire and a quantum nanorod with a finite potential well. In this InP case, the nonparabolicity of the dispersion of electrons and holes is taken into account. )e relationship between the InAs R effective mass of charge carriers and the radius of a quantum wire is determined. 0 2. An Analytical Method for Calculating the ρ Electron Energy in a Cylindrical Quantum WirewithaFiniteHeightofthePotentialWell Figure 1 shows the geometric and potential diagram of a cylindrical quantum wire with a finite potential well. )e potential energy of an electron of a cylindrical quantum wire with a finite depth has the form: 0; 0 ≤ ρ ≤ R; U(r) � U(ρ) �( (1) W; ρ > R: )e Schrodinger¨ equation in a cylindrical coordinate system is as follows: Z2 1 z ρ z 1 z2 z2 − + + !f(r) z m( ) z 2 2 2 2 ρ ρ ρ ρ ρ zϕ zz (2) + U(r)f(r) � Ef(r): We seek a solution to this equation in the following form: U f(r) � eikzzeilϕψ(ρ); (3) ΔEc Here, the parameters kx and l are independent of co- ordinates. )erefore, equation (2) will be solved for the radial wave function. )us, equation (2) in region 0 ≤ ρ ≤ R 0 ρ for the radial wave function ψ(ρ) takes the following form: 2 2 z ψ(ρ) 1 zψ(ρ) 2 l 0 ρ + + kA − ! !ψ(ρ) � 0; 0 ≤ ρ ≤ R; zρ2 ρ zρ ρ2 (4) ΔE where V ξ � kAρ; s���������� (5) Figure 2m 1: Geometric and potential diagram of a cylindrical k � A E − k2: quantum wire with a finite potential well. A Z2 z In this case, equation (4) takes the following form: z2ψ(ρ) zψ(ρ) ξ2 + ξ +�ξ2 − l2 �ψ(ρ) � 0: (6) Equation (2) for the radial wave function ψ(ρ) in region 2 zξ zξ ρ > R takes the following form: )e general solution to this equation is in the form of a 2 2z ψ zψ 2 2 linear combination of the Bessel function Jl(ξ) and the ζ + ζ +� − ζ − M �ψ � 0; ρ > R; (8) 2 z Neumann function Nl(ξ) of the l-th order [37]: zζ ζ ψ1(ρ) � A1JlkAρ � + B1NlkAρ �; 0 ≤ ρ ≤ R: (7) where Advances in Condensed Matter Physics 3 350 ζ � cBρ; s���������������� (9) 300 2mB 2 cB � 2 (W − E) + kz: Z 250 )e solution of equation (8) gives a linear combination 200 of the imaginary argument Il(ζ) of the Bessel function and (meV) the Macdonald function Kl(ζ) of the l-th order [37]: E 150 ψ (ρ) � A2KlcBρ � + B2IlcBρ �; ρ > R: (10) 2 100 )erefore, ψ(ρ) for a radial wave function is appropriate for the following: 50 A1JlkAρ � + B1NlkAρ �; 0 ≤ ρ ≤ R; 56789101112131415 ψ(ρ) �( (11) R (nm) A2KlcBρ � + B2IlcBρ �; ρ > R: Transcendental equation, nonparabolic-e1 If we take into account that the wave function inside the Transcendental equation, parabolic-e1 cylinder is finite and equal to zero at an infinite distance Approximate, nonparabolic-e1 from the center of the cylinder, expression (11) takes the Approximate, parabolic-e1 following form: Shooting equation, nonparabolic-e1 Shooting equation, parabolic-e1 A1JlkAρ �; 0 ≤ ρ ≤ R; ψ(ρ) �( (12) Figure A K c ρ �; ρ > R: 2: )e dependence of energy on the radius of a cylindrical 2 l B nanowire for electrons and holes with the parabolic and non- parabolic dispersion law. Here, A1 and A2 are constant values. We select relation A1/A2 in such a way that the following boundary conditions are satisfied: Solving the transcendental equation (14), we can ψ1(ρ)|ρ�R � ψ2(ρ)|ρ�R; determine the electron energy in a cylindrical quantum (13) wire. 1 dψ1(ρ) 1 dψ2(ρ) When the argument is too small under condition jρ�R � !jρ�R: mA dρ mB dρ l � 0, expanding the imaginary argument of the Bessel function Il(ζ) and MacDonald Kl(ζ) in a row, we get the From (12) and (13), we obtain the following transcen- first terms and an analytical formula for calculating the dental equation: energy: J′k R �K c R � m l A l B � A: (14) JlkAR �K′lcBR � mB q���������� q���������� q���������� 2 2 2 2 �m W Z �RK � �m W Z � R� + K � �m W Z � R� 4Z 2 B / 0 2 B / 2 1 2 B / E0;1 � q���������� q���������� q���������� : (15) 2 2 2 2 mAR �2mBW/Z �RK0� �2mBW/Z � R� + 4K1� �2mBW/Z � R� If we take into account (5) and (9), expression (15) gives the potential energy of an electron in a cylindrical quantum very close results to the exact results of equation (14) when nanorod with a finite depth be given by the following calculating the energy of electrons and holes in cylindrical expression: nanowires with larger radii (Figures 2–4). 3. The Analytical Method for Calculating the 8> W; 0 < ρ < R1; Electron Energy in a Cylindrical Quantum <> Nanorod with a Finite Height of the U(r) � U(ρ) �> 0;R1 ≤ ρ ≤ R2; (16) :> Potential Well W; R2 < ρ: Figure 5 shows the geometric and potential diagram of a )e Schrodinger¨ equation in a cylindrical coordinate cylindrical quantum nanorod with a finite potential well. Let system in this case is as follows: 4 Advances in Condensed Matter Physics R (nm) 5 6 7 8 9 101112131415 –2 –4 –6 –8 –10 –12 –14 (meV) –16 E –18 –20 –22 –24 –26 Transcendental equation, nonparabolic-hh1 Transcendental equation, parabolic-hh1 Approximate, nonparabolic-hh1 Approximate, parabolic-hh1 Shooting equation, nonparabolic-hh1 Shooting equation, parabolic-hh1 Figure 3: )e dependence of the energy of a heavy hole on the radius of a cylindrical quantum wire for the parabolic and nonparabolic dispersion law.
Recommended publications
  • Accomplishments in Nanotechnology
    U.S. Department of Commerce Carlos M. Gutierrez, Secretaiy Technology Administration Robert Cresanti, Under Secretaiy of Commerce for Technology National Institute ofStandards and Technolog}' William Jeffrey, Director Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment used are necessarily the best available for the purpose. National Institute of Standards and Technology Special Publication 1052 Natl. Inst. Stand. Technol. Spec. Publ. 1052, 186 pages (August 2006) CODEN: NSPUE2 NIST Special Publication 1052 Accomplishments in Nanoteciinology Compiled and Edited by: Michael T. Postek, Assistant to the Director for Nanotechnology, Manufacturing Engineering Laboratory Joseph Kopanski, Program Office and David Wollman, Electronics and Electrical Engineering Laboratory U. S. Department of Commerce Technology Administration National Institute of Standards and Technology Gaithersburg, MD 20899 August 2006 National Institute of Standards and Teclinology • Technology Administration • U.S. Department of Commerce Acknowledgments Thanks go to the NIST technical staff for providing the information outlined on this report. Each of the investigators is identified with their contribution. Contact information can be obtained by going to: http ://www. nist.gov Acknowledged as well,
    [Show full text]
  • Federico Capasso “Physics by Design: Engineering Our Way out of the Thz Gap” Peter H
    6 IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, VOL. 3, NO. 1, JANUARY 2013 Terahertz Pioneer: Federico Capasso “Physics by Design: Engineering Our Way Out of the THz Gap” Peter H. Siegel, Fellow, IEEE EDERICO CAPASSO1credits his father, an economist F and business man, for nourishing his early interest in science, and his mother for making sure he stuck it out, despite some tough moments. However, he confesses his real attraction to science came from a well read children’s book—Our Friend the Atom [1], which he received at the age of 7, and recalls fondly to this day. I read it myself, but it did not do me nearly as much good as it seems to have done for Federico! Capasso grew up in Rome, Italy, and appropriately studied Latin and Greek in his pre-university days. He recalls that his father wisely insisted that he and his sister become fluent in English at an early age, noting that this would be a more im- portant opportunity builder in later years. In the 1950s and early 1960s, Capasso remembers that for his family of friends at least, physics was the king of sciences in Italy. There was a strong push into nuclear energy, and Italy had a revered first son in En- rico Fermi. When Capasso enrolled at University of Rome in FREDERICO CAPASSO 1969, it was with the intent of becoming a nuclear physicist. The first two years were extremely difficult. University of exams, lack of grade inflation and rigorous course load, had Rome had very high standards—there were at least three faculty Capasso rethinking his career choice after two years.
    [Show full text]
  • Electronic Supplementary Information: Low Ensemble Disorder in Quantum Well Tube Nanowires
    Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2015 Electronic Supplementary Information: Low Ensemble Disorder in Quantum Well Tube Nanowires Christopher L. Davies,∗a Patrick Parkinson,b Nian Jiang,c Jessica L. Boland,a Sonia Conesa-Boj,a H. Hoe Tan,c Chennupati Jagadish,c Laura M. Herz,a and Michael B. Johnston.a‡ (a) 3.950 nm (b) GaAs-QW 2.026 nm 2.181 nm 4.0 nm 3.962 nm 50 nm 20 nm GaAs-core Fig. S1 TEM image of top of B50 sample Fig. S2 TEM image of bottom of B50 sample S1 TEM Figure S1(a) corresponds to a low magnification bright field TEM image of a representative cross-section of the sample B50. The thickness of the GaAs QW has been measured in different regions. S2 1D Finite Square Well Model The variations in thickness are found to be around 4 nm and 2 For a semiconductor the Fermi-Dirac distribution for electrons in nm in the edges and in the facets, respectively, confirming the the conduction band and holes in the valence band is given by, disorder in the GaAs QW. In the HR-TEM image performed in 1 one of the edges of the nanowire cross section, figure S1(b), the f = ; (1) e,h exp((E − Ec,v) ) + 1 variation in the QW thickness (marked by white dashed lines) f b between the edge and the facets is clearly visible. c,v where b = 1=kBT, T is the electron temperature and Ef is the Figures S2 and S3 are additional TEM images of sample B50 Fermi energies of the electrons and holes.
    [Show full text]
  • Optical Pumping: a Possible Approach Towards a Sige Quantum Cascade Laser
    Institut de Physique de l’ Universit´ede Neuchˆatel Optical Pumping: A Possible Approach towards a SiGe Quantum Cascade Laser E3 40 30 E2 E1 20 10 Lasing Signal (meV) 0 210 215 220 Energy (meV) THESE pr´esent´ee`ala Facult´edes Sciences de l’Universit´ede Neuchˆatel pour obtenir le grade de docteur `essciences par Maxi Scheinert Soutenue le 8 octobre 2007 En pr´esence du directeur de th`ese Prof. J´erˆome Faist et des rapporteurs Prof. Detlev Gr¨utzmacher , Prof. Peter Hamm, Prof. Philipp Aebi, Dr. Hans Sigg and Dr. Soichiro Tsujino Keywords • Semiconductor heterostructures • Intersubband Transitions • Quantum cascade laser • Si - SiGe • Optical pumping Mots-Cl´es • H´et´erostructures semiconductrices • Transitions intersousbande • Laser `acascade quantique • Si - SiGe • Pompage optique i Abstract Since the first Quantum Cascade Laser (QCL) was realized in 1994 in the AlInAs/InGaAs material system, it has attracted a wide interest as infrared light source. Main applications can be found in spectroscopy for gas-sensing, in the data transmission and telecommuni- cation as free space optical data link as well as for infrared monitoring. This type of light source differs in fundamental ways from semiconductor diode laser, because the radiative transition is based on intersubband transitions which take place between confined states in quantum wells. As the lasing transition is independent from the nature of the band gap, it opens the possibility to a tuneable, infrared light source based on silicon and silicon compatible materials such as germanium. As silicon is the material of choice for electronic components, a SiGe based QCL would allow to extend the functionality of silicon into optoelectronics.
    [Show full text]
  • Optical Physics of Quantum Wells
    Optical Physics of Quantum Wells David A. B. Miller Rm. 4B-401, AT&T Bell Laboratories Holmdel, NJ07733-3030 USA 1 Introduction Quantum wells are thin layered semiconductor structures in which we can observe and control many quantum mechanical effects. They derive most of their special properties from the quantum confinement of charge carriers (electrons and "holes") in thin layers (e.g 40 atomic layers thick) of one semiconductor "well" material sandwiched between other semiconductor "barrier" layers. They can be made to a high degree of precision by modern epitaxial crystal growth techniques. Many of the physical effects in quantum well structures can be seen at room temperature and can be exploited in real devices. From a scientific point of view, they are also an interesting "laboratory" in which we can explore various quantum mechanical effects, many of which cannot easily be investigated in the usual laboratory setting. For example, we can work with "excitons" as a close quantum mechanical analog for atoms, confining them in distances smaller than their natural size, and applying effectively gigantic electric fields to them, both classes of experiments that are difficult to perform on atoms themselves. We can also carefully tailor "coupled" quantum wells to show quantum mechanical beating phenomena that we can measure and control to a degree that is difficult with molecules. In this article, we will introduce quantum wells, and will concentrate on some of the physical effects that are seen in optical experiments. Quantum wells also have many interesting properties for electrical transport, though we will not discuss those here.
    [Show full text]
  • Schrödinger Equation: (Time Independent) Hψ = Eψ This Is a Differential Eigenvalue Equation
    Physics and Material Science of Semiconductor Nanostructures PHYS 570P Prof. Oana Malis Email: [email protected] Lecture 9 Review of quantum mechanics, statistical physics, and solid state Band structure of materials Semiconductor band structure Semiconductor nanostructures Ref. Davies Chapter 1 Quantum Mechanics (QM) • The Schrödinger Equation: (time independent) Hψ = Eψ This is a differential eigenvalue equation. H Hamiltonian operator for the system (energy operator) E Energy eigenvalue, ψ wavefunction Particles are QM waves! |ψ|2 probability density; ψ is a function of ALL coordinates of ALL particles in the problem! One Page Elementary Quantum Mechanics & Solid State Physics Review • Quantum Mechanics of a Free Electron: 2 – The energies are continuous: E = (k) /(2mo) (1d, 2d, or 3d) – The wavefunctions are traveling waves: ikx ikr ψk(x) = A e (1d) ψk(r) = A e (2d or 3d) • Solid State Physics: Quantum Mechanics of an Electron in a Periodic Potential in an infinite crystal : – The energy bands are (approximately) continuous: E= Enk – At the bottom of the conduction band or the top of the valence band, in the effective mass approximation, the bands can be written: 2 Enk (k) /(2m*) – The wavefunctions are Bloch Functions = traveling waves: ikr Ψnk(r) = e unk(r); unk(r) = unk(r+R) QM Review: The 1d (infinite) Potential Well (“particle in a box”) In all QM texts!! Consider the case of a particle in a 1-D potential well, with width L e infinite barriers V(x) = 0 for 0 x L V(x) = for x<0, x>L Schrödinger equation Inside the well
    [Show full text]
  • Stationary States in a Potential Well- H.C
    FUNDAMENTALS OF PHYSICS - Vol. II - Stationary States In A Potential Well- H.C. Rosu and J.L. Moran-Lopez STATIONARY STATES IN A POTENTIAL WELL H.C. Rosu and J.L. Moran-Lopez Instituto Potosino de Investigación Científica y Tecnológica, SLP, México Keywords: Stationary states, Bohr’s atomic model, Schrödinger equation, Rutherford’s planetary model, Frank-Hertz experiment, Infinite square well potential, Quantum harmonic oscillator, Wilson-Sommerfeld theory, Hydrogen atom Contents 1. Introduction 2. Stationary Orbits in Old Quantum Mechanics 2.1. Quantized Planetary Atomic Model 2.2. Bohr’s Hypotheses and Quantized Circular Orbits 2.3. From Quantized Circles to Elliptical Orbits 2.4. Experimental Proof of the Existence of Atomic Stationary States 3. Stationary States in Wave Mechanics 4. The Infinite Square Well: The Stationary States Most Resembling the Standing Waves on a String 3.1. The Schrödinger Equation 3.2. The Dynamical Phase 3.3. The Schrödinger Wave Stationarity 3.4. Stationary Schrödinger States and Classical Orbits 3.5. Stationary States as Sturm-Liouville Eigenfunctions 5. 1D Parabolic Well: The Stationary States of the Quantum Harmonic Oscillator 5.1. The Solution of the Schrödinger Equation 5.2. The Normalization Constant 5.3. Final Formulas for the HO Stationary States 5.4. The Algebraic Approach: Creation and Annihilation Operators 5.5. HO Spectrum Obtained from Wilson-Sommerfeld Quantization Condition 6. The 3D Coulomb Well: The Stationary States of the Hydrogen Atom 6.1. The Separation of Variables in Spherical Coordinates 6.2. The Angular Separation Constants as Quantum Numbers 6.3. Polar andUNESCO Azimuthal Solutions Set Together – EOLSS 6.4.
    [Show full text]
  • New Developments in Gaas-Based Quantum Cascade Lasers
    New Developments in GaAs-based Quantum Cascade Lasers Chris Neil Atkins PhD Thesis October 2013 Department of Physics and Astronomy Abstract This thesis presents a study of the design and optimisation of gallium-arsenide-based quantum cascade lasers (QCLs). Traditionally, the optical and electrical performance of these devices has been inferior in comparison to QCLs that are based on the InP material system, due mainly to the limitations imposed on performance by the intrinsic material properties of GaAs. In an attempt to improve the performance of GaAs QCLs, indium-gallium-phosphide and indium-aluminium-phosphide have been used as the waveguide cladding layers in several new QCL designs. These two materials combine low waveguide losses with a high confinement of the laser optical mode, and are easily integrated into typical GaAs QCL structures. Devices containing a double-phonon relaxation active region design have been combined with an InAlP waveguide, with the result being that the lowest threshold currents yet observed for a GaAs-based QCL have been observed - 2.1kA/cm2 and 4.0kA/cm2 at 240K and 300K respectively. Accompanying these low threshold currents however, were large operating voltages approaching 30V at room-temperature and 60V at 80K. These voltages were responsible for a high rate of device failure due to overheating. In an attempt to address this situation, two transitional layer (TL) designs were applied at the QCL GaAs/InAlP interfaces in order to aid electron flow at these points. The addition of the TLs resulted in a lowering of operating voltage by ~12V and 30V at 300K and 240K respectively, however threshold current density increased to 5.1kA/cm2 and 2.7kA/cm2 at the same temperatures.
    [Show full text]
  • Infinite (And Finite) Square Well Potentials Announcements: Homework Set #8 Is Posted This Afternoon and Due on Wednesday
    Infinite (and finite) square well potentials Announcements: Homework set #8 is posted this afternoon and due on Wednesday. Note I received an email from a student that problem 5c had a typo and should say exp(-iEt/ hbar). I corrected the homework set this morning. Second Midterm is Thursday, Nov. 7 – 7:30 – 9:00 pm in this room. http://www.colorado.edu/physics/phys2170/ Physics 2170 – Fall 2013 1 Some wave function rules ψ(x) and dψ(x)/dx must be continuous These requirements are used to match boundary conditions. |ψ(x)|2 must be properly normalized This is necessary to be able to interpret |ψ(x)|2 as the probability density This is required to be able to normalize ψ(x) http://www.colorado.edu/physics/phys2170/ Physics 2170 – Fall 2013 2 Infinite square well (particle in a box) solution After applying boundary conditions we found and which gives us an energy of Things to notice: Energies are quantized. Energy Minimum energy E1 is not zero. 16E1 n=4 Consistent with uncertainty principle. x is between 0 and a so Δx~a/2. Since ΔxΔp≥ħ/2, must be uncertainty 9E1 n=3 in p. But if E=0 then p=0 so Δp=0, violating the uncertainty principle. 4E1 n=2 When a is large, energy levels get E n=1 closer so energy becomes more like 1 V=0 a x continuum (like classical result). 0 http://www.colorado.edu/physics/phys2170/ Physics 2170 – Fall 2013 3 Finishing the infinite square well We need to normalize ψ(x).
    [Show full text]
  • Analysis of a Finite Quantum Well Imran Khan Dept
    Journal of Electrical Engineering The Institution of Engineers, Bangladesh Vol. EE 37, No. II, December, 2011 Analysis of a Finite Quantum Well Imran Khan Dept. of Electrical and Electronic Engineering Jessore Science & Technology University (JSTU) Jessore-7408, Bangladesh [email protected] Or [email protected] Abstract— In this paper one dimensional (1D) quantum A. Infinite Quantum Well (IQW) confinement in a Finite Quantum Well (FQW) is When the depth of the potential well is infinite it is called analyzed through a simulator using MATLAB. A infinite quantum well (IQW). An IQW can be defined particle behavior inside a FQW is discussed and (Fig.1) mathematically as- analyzed. The effect of various parameters such as well ⎧∞, x ≤ 0, boundary thickness, depth of the well and width of the ⎪ (1) well are discussed. The results are compared with the U (x) = ⎨0, 0 < x < L, ⎪ Infinite Quantum Well (IQW). Different types of ⎩∞, x ≥ L. potential structure’s behavior can be analyzed by using this simulator which is very useful before fabrication. Keywords—Finite quantum well, infinite quantum well, quantum confinement, quantum tunneling. I. INTRODUCTION ow a day, the buzzing word is the quantum N confinement. Quantum effect that is designed to trap carriers within a very small space is known as quantum confinement. For certain application or research we need to change the electrical or optical property of a material and the efficient way to do so is the quantum confinement. When the diameter of a particle is the same as the magnitude of the electron wave function only then the quantum effect is observed.
    [Show full text]
  • Photoluminescent Quantum-Dot Light Emitting Devices Controlled by Electric Field Induced Quenching Melissa Li
    Photoluminescent Quantum-Dot Light Emitting Devices Controlled by Electric Field Induced Quenching by Melissa Li B.S. in Physics and Electrical Engineering, Massachusetts Institute of Technology (2017) Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2019 ○c Massachusetts Institute of Technology 2019. All rights reserved. Author................................................................ Department of Electrical Engineering and Computer Science May 24, 2019 Certified by. Vladimir Bulović Professor Thesis Supervisor Accepted by . Katrina LaCurts Chair, Master of Engineering Thesis Committee 2 Photoluminescent Quantum-Dot Light Emitting Devices Controlled by Electric Field Induced Quenching by Melissa Li Submitted to the Department of Electrical Engineering and Computer Science on May 24, 2019, in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer Science Abstract Colloidal quantum dots (QDs) have been promising luminophores due to their bright, pure, and tunable colors. The ability to control the emission properties of QDs has far-reaching potential applications for a new generation of display and lighting technologies. The emission control of QDs in a QD light-emitting device (LED) is usually achieved by changing the injection current density. However, these devices face issues with lifetime and stability as well as low external quantum efficiency (EQE) at high biases. In this thesis, we demonstrate a unique approach in operating a QD device that avoids these limitations. The device is a photoluminescent LED (PL-LED) where the emission from the LED is from optical excitation.
    [Show full text]
  • PHY 481/581 Intro Nano- MSE: Applying Simple Quantum Mechanics to Nanoscience Problems, Part I
    PHY 481/581 Intro Nano- MSE: Applying simple Quantum Mechanics to nanoscience problems, part I http://creativecommons.org/licenses/by-nc-sa/2.5/1 Time dependent Schrödinger Equation in 3D, Many problems concern stationary states, i.e. things do not change over time, then we can use the much simpler tine independent Schrödinger Equation in 3D, e.g. The potential is infinitely high, equivalently, the well is infinitely deep Since potential energy V is zero inside the box 2 Since the Schrödinger equation is linear Now we need to Since we normalize 3 know k This sets the scale for the wave function, we need to have it at the right scale to calculate expectation values, this condition means that the particle definitely exist (with certainty, probability 100 %) in some region of space, in our case in between x = 0 and L There are infinitely many energy levels, their spacing depends on the size of the box, there is on E0 = 0 as this is forbidden by the 4 uncertainty principle Again, the potential is infinitely high, equivalently, the 3D well is infinitely deep Generalization to three dimensions is straightforward, kind of everything is there three times because of the three dimensions, not particularly good approximation for a quantum dot (since the potential energy outside of the box is assumed to infinite, which does not happen in physics, also the real quantum dot may have some shape with some crystallite faces, while we are just assuming a rectangular box or cube Particle in a cube, there will be degenerate energy levels, i.e.
    [Show full text]