Quantum Properties of Spherical Semiconductor Quantum Dots Baptiste Billaud, T.T
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Accomplishments in Nanotechnology
U.S. Department of Commerce Carlos M. Gutierrez, Secretaiy Technology Administration Robert Cresanti, Under Secretaiy of Commerce for Technology National Institute ofStandards and Technolog}' William Jeffrey, Director Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment used are necessarily the best available for the purpose. National Institute of Standards and Technology Special Publication 1052 Natl. Inst. Stand. Technol. Spec. Publ. 1052, 186 pages (August 2006) CODEN: NSPUE2 NIST Special Publication 1052 Accomplishments in Nanoteciinology Compiled and Edited by: Michael T. Postek, Assistant to the Director for Nanotechnology, Manufacturing Engineering Laboratory Joseph Kopanski, Program Office and David Wollman, Electronics and Electrical Engineering Laboratory U. S. Department of Commerce Technology Administration National Institute of Standards and Technology Gaithersburg, MD 20899 August 2006 National Institute of Standards and Teclinology • Technology Administration • U.S. Department of Commerce Acknowledgments Thanks go to the NIST technical staff for providing the information outlined on this report. Each of the investigators is identified with their contribution. Contact information can be obtained by going to: http ://www. nist.gov Acknowledged as well, -
Federico Capasso “Physics by Design: Engineering Our Way out of the Thz Gap” Peter H
6 IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, VOL. 3, NO. 1, JANUARY 2013 Terahertz Pioneer: Federico Capasso “Physics by Design: Engineering Our Way Out of the THz Gap” Peter H. Siegel, Fellow, IEEE EDERICO CAPASSO1credits his father, an economist F and business man, for nourishing his early interest in science, and his mother for making sure he stuck it out, despite some tough moments. However, he confesses his real attraction to science came from a well read children’s book—Our Friend the Atom [1], which he received at the age of 7, and recalls fondly to this day. I read it myself, but it did not do me nearly as much good as it seems to have done for Federico! Capasso grew up in Rome, Italy, and appropriately studied Latin and Greek in his pre-university days. He recalls that his father wisely insisted that he and his sister become fluent in English at an early age, noting that this would be a more im- portant opportunity builder in later years. In the 1950s and early 1960s, Capasso remembers that for his family of friends at least, physics was the king of sciences in Italy. There was a strong push into nuclear energy, and Italy had a revered first son in En- rico Fermi. When Capasso enrolled at University of Rome in FREDERICO CAPASSO 1969, it was with the intent of becoming a nuclear physicist. The first two years were extremely difficult. University of exams, lack of grade inflation and rigorous course load, had Rome had very high standards—there were at least three faculty Capasso rethinking his career choice after two years. -
Photon Propagation in a One-Dimensional Optomechanical Lattice
PHYSICAL REVIEW A 89, 033854 (2014) Photon propagation in a one-dimensional optomechanical lattice Wei Chen and Aashish A. Clerk* Department of Physics, McGill University, Montreal, Canada H3A 2T8 (Received 13 January 2014; published 27 March 2014) We consider a one-dimensional optomechanical lattice where each site is strongly driven by a control laser to enhance the basic optomechanical interaction. We then study the propagation of photons injected by an additional probe laser beam; this is the lattice generalization of the well-known optomechanically induced transparency (OMIT) effect in a single optomechanical cavity. We find an interesting interplay between OMIT-type physics and geometric, Fabry-Perot-type resonances. In particular, phononlike polaritons can give rise to high-amplitude transmission resonances which are much narrower than the scale set by internal photon losses. We also find that the local photon density of states in the lattice exhibits OMIT-style interference features. It is thus far richer than would be expected by just looking at the band structure of the dissipation-free coherent system. DOI: 10.1103/PhysRevA.89.033854 PACS number(s): 42.50.Wk, 42.65.Sf, 42.25.Bs I. INTRODUCTION when, similar to a standard OMIT experiment, the entire system is driven by a large-amplitude control laser (detuned The rapidly growing field of quantum optomechanics in such a manner to avoid any instability). We work in involves studying the coupling of mechanical motion to light, the standard regime where the single-photon optomechanical with the prototypical structure being an optomechanical cavity: coupling is negligible, and only the drive-enhanced many- Photons in a single mode of an electromagnetic cavity interact photon coupling plays a role. -
2-D Microcavities: Theory and Experiments ∗
2-d Microcavities: Theory and Experiments ∗ Jens U. N¨ockel Department of Physics University of Oregon, Eugene, OR 97403-1274 darkwing.uoregon.edu/~noeckel Richard K. Chang Department of Applied Physics Yale University, New Haven, CT 06520 http://www.eng.yale.edu/rkclab/home.htm 2nd February 2008 An overview is provided over the physics of dielectric microcavities with non-paraxial mode structure; examples are microdroplets and edge-emitting semiconductor microlasers. Particular attention is given to cavities in which two spatial degrees of freedom are coupled via the boundary geometry. This generally necessitates numerical computations to obtain the electromagnetic cavity fields, and hence intuitive understanding becomes difficult. How- ever, as in paraxial optics, the ray picture shows explanatory and predictive strength that can guide the design of microcavities. To understand the ray- wave connection in such asymmetric resonant cavities, methods from chaotic dynamics are required. arXiv:physics/0406134v1 [physics.optics] 26 Jun 2004 ∗Contribution for Cavity-Enhanced Spectroscopies, edited by Roger D. van Zee and John P. Looney (a volume of Experimental Methods in the Physical Sciences), Academic Press, San Diego, 2002 1 Contents 1 Introduction 3 2 Dielectric microcavities as high-quality resonators 4 3 Whispering-gallery modes 7 4 Scattering resonances and quasibound states 8 5 Cavity ring-down and light emission 11 6 Wigner delay time and the density of states 12 7 Lifetime versus linewidth in experiments 15 8 How many modes does a cavity support? 16 9 Cavities without chaos 18 10 Chaotic cavities 21 11 Phase space representation with Poincar´esections 22 12 Uncertainty principle 23 13 Husimi projection 24 14 Constructive interference with chaotic rays 27 15 Chaotic whispering-gallery modes 28 16 Dynamical eclipsing 30 17 Conclusions 31 2 1 Introduction Maxwell’s equations of electrodynamics exemplify how the beauty of a theory is captured in the formal simplicity of its fundamental equations. -
Electronic Supplementary Information: Low Ensemble Disorder in Quantum Well Tube Nanowires
Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2015 Electronic Supplementary Information: Low Ensemble Disorder in Quantum Well Tube Nanowires Christopher L. Davies,∗a Patrick Parkinson,b Nian Jiang,c Jessica L. Boland,a Sonia Conesa-Boj,a H. Hoe Tan,c Chennupati Jagadish,c Laura M. Herz,a and Michael B. Johnston.a‡ (a) 3.950 nm (b) GaAs-QW 2.026 nm 2.181 nm 4.0 nm 3.962 nm 50 nm 20 nm GaAs-core Fig. S1 TEM image of top of B50 sample Fig. S2 TEM image of bottom of B50 sample S1 TEM Figure S1(a) corresponds to a low magnification bright field TEM image of a representative cross-section of the sample B50. The thickness of the GaAs QW has been measured in different regions. S2 1D Finite Square Well Model The variations in thickness are found to be around 4 nm and 2 For a semiconductor the Fermi-Dirac distribution for electrons in nm in the edges and in the facets, respectively, confirming the the conduction band and holes in the valence band is given by, disorder in the GaAs QW. In the HR-TEM image performed in 1 one of the edges of the nanowire cross section, figure S1(b), the f = ; (1) e,h exp((E − Ec,v) ) + 1 variation in the QW thickness (marked by white dashed lines) f b between the edge and the facets is clearly visible. c,v where b = 1=kBT, T is the electron temperature and Ef is the Figures S2 and S3 are additional TEM images of sample B50 Fermi energies of the electrons and holes. -
Quantum Electromagnetics: a New Look, Part I∗
Quantum Electromagnetics: A New Look, Part I∗ W. C. Chew,y A. Y. Liu,y C. Salazar-Lazaro,y and W. E. I. Shaz September 20, 2016 at 16 : 04 Abstract Quantization of the electromagnetic field has been a fascinating and important subject since its inception. This subject topic will be discussed in its simplest terms so that it can be easily understood by a larger community of researchers. A new way of motivating Hamiltonian mechanics is presented together with a novel way of deriving the quantum equations of motion for electromagnetics. All equations of motion here are derived using the generalized Lorenz gauge with vector and scalar potential formulation. It is well known that the vector potential manifests itself in the Aharonov-Bohm effect. By advocating this formulation, it is expected that more quantum effects can be easily incorporated in electromagnetic calculations. Using similar approach, the quantization of electromagnetic fields in reciprocal, anisotropic, inhomogeneous media is presented. Finally, the Green's function technique is described when the quantum system is linear time invariant. These quantum equations of motion for Maxwell's equations portend well for a better understanding of quantum effects in many technologies. 1 Introduction Electromagnetic theory as completed by James Clerk Maxwell in 1865 [1] is just over 150 years old now. Putatively, the equations were difficult to understand [2]; distillation and cleaning of the equations were done by Oliver Heaviside and Heinrich Hertz [3]; experimental confirmations of these equations were not done until some 20 years later in 1888 by Hertz [4]. As is the case with the emergence of new knowledge, it is often confusing at times, and inaccessible to many. -
Comparison of Multi-Cavity Arrays for On-Chip Wdm Applications
COMPARISON OF MULTI-CAVITY ARRAYS FOR ON-CHIP WDM APPLICATIONS A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY HAVVA ERDİNÇ IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN ELECTRICAL AND ELECTRONICS ENGINEERING JUNE 2019 Approval of the thesis: COMPARISON OF MULTI-CAVITY ARRAYS FOR ON-CHIP WDM APPLICATIONS submitted by HAVVA ERDİNÇ in partial fulfillment of the requirements for the degree of Master of Science in Electrical and Electronics Engineering Department, Middle East Technical University by, Prof. Dr. Halil Kalıpçılar Dean, Graduate School of Natural and Applied Sciences Prof. Dr. İlkay Ulusoy Head of Department, Electrical and Electronics Eng. Assist. Prof. Dr. Serdar Kocaman Supervisor, Electrical and Electronics Eng., METU Examining Committee Members: Prof. Dr. Gönül Turhan Sayan Electrical and Electronics Engineering Dept., METU Assist. Prof. Dr. Serdar Kocaman Electrical and Electronics Eng., METU Assist. Prof. Dr. Emre Yüce Physics Dept., METU Assist. Prof. Dr. Demet Asil Alptekin Chemistry Dept., METU Prof. Dr. Barış Akaoğlu Physics Dept., Ankara University Date: 12.06.2019 I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Surname: Havva Erdinç Signature: iv ABSTRACT COMPARISON OF MULTI-CAVITY ARRAYS FOR ON-CHIP WDM APPLICATIONS Erdinç, Havva Master of Science, Electrical and Electronics Engineering Supervisor: Assist. Prof. Dr. Serdar Kocaman June 2019, 86 pages Researches about the interaction of single atoms with electromagnetic field create the foundation of cavity quantum electrodynamics (CQED) technology. -
Solar Cycle-Modulated Deformation of the Earth–Ionosphere Cavity
ORIGINAL RESEARCH published: 26 August 2021 doi: 10.3389/feart.2021.689127 Solar Cycle-Modulated Deformation of the Earth–Ionosphere Cavity Tamás Bozóki 1,2*, Gabriella Sátori 1, Earle Williams 3, Irina Mironova 4, Péter Steinbach 5,6, Emma C. Bland 7, Alexander Koloskov 8,9, Yuri M. Yampolski 8, Oleg V. Budanov 8, Mariusz Neska 10, Ashwini K. Sinha 11, Rahul Rawat 11, Mitsuteru Sato 12, Ciaran D. Beggan 13, Sergio Toledo-Redondo 14, Yakun Liu 3 and Robert Boldi 15 1Institute of Earth Physics and Space Science (ELKH EPSS), Sopron, Hungary, 2Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary, 3Parsons Laboratory, Massachusetts Institute of Technology, Cambridge, MA, United States, 4Earth’s Physics Department, St. Petersburg State University, St. Petersburg, Russia, 5Department of Geophysics and Space Science, Eötvös Loránd University, Budapest, Hungary, 6ELKH-ELTE Research Group for Geology, Geophysics and 7 Edited by: Space Science, Budapest, Hungary, Department of Arctic Geophysics, University Centre in Svalbard, Longyearbyen, Norway, 8Institute of Radio Astronomy, National Academy of Sciences of Ukraine, Kharkiv, Ukraine, 9State Institution National Antarctic Konstantinos Kourtidis, Scientific Center of Ukraine, Kyiv, Ukraine, 10Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland, 11Indian Democritus University of Thrace, Institute of Geomagnetism, Navi Mumbai, India, 12Faculty of Science, Hokkaido University, Sapporo, Japan, 13British Geological Greece Survey, Edinburgh, United Kingdom, 14Department of Electromagnetism and Electronics, University of Murcia, Murcia, Spain, Reviewed by: 15College of Natural and Health Sciences, Zayed University, Dubai, United Arab Emirates Rosane Rodrigues Chaves, Federal University of Rio Grande do Norte, Brazil The Earth–ionosphere cavity resonator is occupied primarily by the electromagnetic Alexander Nickolaenko, radiation of lightning below 100 Hz. -
Coherently Amplifying Photon Production from Vacuum with a Dense Cloud of Accelerating Photodetectors ✉ Hui Wang 1 & Miles Blencowe 1
ARTICLE https://doi.org/10.1038/s42005-021-00622-3 OPEN Coherently amplifying photon production from vacuum with a dense cloud of accelerating photodetectors ✉ Hui Wang 1 & Miles Blencowe 1 An accelerating photodetector is predicted to see photons in the electromagnetic vacuum. However, the extreme accelerations required have prevented the direct experimental ver- ification of this quantum vacuum effect. In this work, we consider many accelerating pho- todetectors that are contained within an electromagnetic cavity. We show that the resulting photon production from the cavity vacuum can be collectively enhanced such as to be 1234567890():,; measurable. The combined cavity-photodetectors system maps onto a parametrically driven Dicke-type model; when the detector number exceeds a certain critical value, the vacuum photon production undergoes a phase transition from a normal phase to an enhanced superradiant-like, inverted lasing phase. Such a model may be realized as a mechanical membrane with a dense concentration of optically active defects undergoing gigahertz flexural motion within a superconducting microwave cavity. We provide estimates suggesting that recent related experimental devices are close to demonstrating this inverted, vacuum photon lasing phase. ✉ 1 Department of Physics and Astronomy, Dartmouth College, Hanover, NH, USA. email: [email protected] COMMUNICATIONS PHYSICS | (2021) 4:128 | https://doi.org/10.1038/s42005-021-00622-3 | www.nature.com/commsphys 1 ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00622-3 ne of the most striking consequences of the interplay Cavity wall Obetween relativity and the uncertainty principle is the predicted detection of real photons from the quantum fi TLS defects electromagnetic eld vacuum by non-inertial, accelerating pho- Cavity mode todetectors. -
Electromagnetic Cavity Resonances in Rotating Systems
University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Fall 1972 ELECTROMAGNETIC CAVITY RESONANCES IN ROTATING SYSTEMS BARBAROS CELIKKOL Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation CELIKKOL, BARBAROS, "ELECTROMAGNETIC CAVITY RESONANCES IN ROTATING SYSTEMS" (1972). Doctoral Dissertations. 966. https://scholars.unh.edu/dissertation/966 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. 72-9174 CELIKKOL, Barbaros, 1942- ELECTROMAGNET IC CAVITY RESONANCES IN ROTATING SYSTEMS. University of New Hampshire, Ph.D., 1972 Physics, optics University Microfilms. A XEROX Company, Ann Arbor, Michigan © 1971 BARBAROS CELIKKOL ALL RIGHTS RESERVED THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED ELECTROMAGNETIC CAVITY RESONANCES IN ROTATING SYSTEMS by BARBAROS CELIKKOL M. S., Stevens Institute of Technology, 1967 A THESIS Submitted to the University of New Hampshire In Partial Fulfillment of The Requirements for the Degree of Doctor of Philosophy Graduate School Department of Physics September, 1971 This thesis has been examined and approved. < John F. Dawson, Asst. Prof. of Physics Robert H. Lambert, Prof. of Physics Lyman IttSwer, Prof. of Physics Harvey Shepard, Asst. Prof. of Physics Asim Yildiz, Prof. of Mechanics Date PLEASE NOTE: Some Pages have indistinct print. Filmed as received. UNIVERSITY MICROFILMS ACKNOWLEDGMENTS The Author wishes to acknowledge with gratitude the guidance and direction given by Dr. Asim Yildiz, Professor of Mechanics during the writing of this thesis. -
Optical Pumping: a Possible Approach Towards a Sige Quantum Cascade Laser
Institut de Physique de l’ Universit´ede Neuchˆatel Optical Pumping: A Possible Approach towards a SiGe Quantum Cascade Laser E3 40 30 E2 E1 20 10 Lasing Signal (meV) 0 210 215 220 Energy (meV) THESE pr´esent´ee`ala Facult´edes Sciences de l’Universit´ede Neuchˆatel pour obtenir le grade de docteur `essciences par Maxi Scheinert Soutenue le 8 octobre 2007 En pr´esence du directeur de th`ese Prof. J´erˆome Faist et des rapporteurs Prof. Detlev Gr¨utzmacher , Prof. Peter Hamm, Prof. Philipp Aebi, Dr. Hans Sigg and Dr. Soichiro Tsujino Keywords • Semiconductor heterostructures • Intersubband Transitions • Quantum cascade laser • Si - SiGe • Optical pumping Mots-Cl´es • H´et´erostructures semiconductrices • Transitions intersousbande • Laser `acascade quantique • Si - SiGe • Pompage optique i Abstract Since the first Quantum Cascade Laser (QCL) was realized in 1994 in the AlInAs/InGaAs material system, it has attracted a wide interest as infrared light source. Main applications can be found in spectroscopy for gas-sensing, in the data transmission and telecommuni- cation as free space optical data link as well as for infrared monitoring. This type of light source differs in fundamental ways from semiconductor diode laser, because the radiative transition is based on intersubband transitions which take place between confined states in quantum wells. As the lasing transition is independent from the nature of the band gap, it opens the possibility to a tuneable, infrared light source based on silicon and silicon compatible materials such as germanium. As silicon is the material of choice for electronic components, a SiGe based QCL would allow to extend the functionality of silicon into optoelectronics. -
Mode Coupling and Cavity–Quantum-Dot Interactions in a Fiber
PHYSICAL REVIEW A 75, 023814 ͑2007͒ Mode coupling and cavity–quantum-dot interactions in a fiber-coupled microdisk cavity Kartik Srinivasan1,* and Oskar Painter2 1Center for the Physics of Information, California Institute of Technology, Pasadena, California 91125, USA 2Department of Applied Physics, California Institute of Technology, Pasadena, California 91125, USA ͑Received 13 September 2006; revised manuscript received 4 December 2006; published 23 February 2007͒ A quantum master equation model for the interaction between a two-level system and whispering-gallery modes ͑WGMs͒ of a microdisk cavity is presented, with specific attention paid to current experiments involv- ͑ ͒ ing a semiconductor quantum dot QD embedded in a fiber-coupled AlxGa1−xAs microdisk cavity. In standard single mode cavity QED, three important rates characterize the system: the QD-cavity coupling rate g, the cavity decay rate , and the QD dephasing rate ␥Ќ. A more accurate model of the microdisk cavity includes two additional features. The first is a second cavity mode that can couple to the QD, which for an ideal microdisk corresponds to a traveling wave WGM propagating counter to the first WGM. The second feature is a coupling between these two traveling wave WGMs, at a rate , due to backscattering caused by surface roughness that is present in fabricated devices. We consider the transmitted and reflected signals from the cavity for different parameter regimes of ͕g,,,␥Ќ͖. A result of this analysis is that even in the presence of negligible roughness-induced backscattering, a strongly coupled QD mediates coupling between the traveling ͱ wave WGMs, resulting in an enhanced effective coherent coupling rate g= 2g0 corresponding to that of a standing wave WGM with an electric field maximum at the position of the QD.