<<

2•. QuantumQuantum W wellsell Sta andtes ( QsuperlatticesWS) and Quantum Size Effects Qualitative explanationQuantum… wells k zz •2D conducting system (x-y plane), size - y quantization in z,

k y Dd d ! λF x kx Metals: λ 0.5 nm • F ! Electronic structure •Semiconductors: λF 10 100 nm in parabolic subbands ! −

ikx x ik y y "(x, y, z) = !n (z)e e

2 2 2 2 ! n k x + k y E(n•,Filmk ,k ) = deposition + technology (e.g. molecular-beam ) ! x y 2D2 2 quantum wells with c-Si, GaAs 4

26

• Quantum wells and

•2D density of states (per unit area): (2m! m!)1/2 DOS (!) = g g x y 2D s v 2π 2 ! effective masses fo x and y motion gs spin degeneracy, 2, Si, GaAS

gv valley degeneracy (degeneracy of states at bottom of conduction band); 1 for GaAs (single valley); 2 or 4 for Si (indirect gap; depending on number of valleys involved) GaAS: ! ! ! 3D mx = my = ml = 0.067me

direct gap semiconductor

Si{100}: indirect gap semiconductor, more complicated m! 0.19 m transverse t ! e m! 0.92 m longitudinal l ! e

27 • Quantum wells and superlattices

•Calculate λF

Electron density (areal) na

! ! 1/2 (mxmy) !F na = DOS2D(!F )!F = gsgv 2π!2

2π 4πn 1/2 k = = a ⇒ F λ g g F ! s s " GaAS {100}: λF = 40 nm

Si {100}: λ = 35 110 nm (depending on n ) F − a

28

• Quantum wells and superlattices

•Square-well potential

Infinite , z > d, z < 0 • ∞ V (z) = 0 , 0 < z < d

1D

Ψz(0) = Ψz(d) = 0 nπ Ψ = A sin k z , k = z z z d

•Finite Maximum number of bound states: V0 2m! V d2 1/2 n = 1 + Int z| 0| d max 2π2 !" ! # $ 29 • Quantum wells and superlattices

•Electron energy:

2 2 ! 2 ! 2 ! = !n(z) + ! kx + ! ky 2mx 2my

- quantized kinetic energy for 2D free e motion energy levels ! ! mx, my effective masses for (x,y)

2 2 ! π 2 n = 1, 2, 3... !n(z) = ! 2 n 2mzd effective mass for motion in z direction ! (z) 50 meV (d=10 nm) • GaAs, 1 ! • ! n2 n ∝

30

2. States (QWS) and Quantum Size • QuantumEffects wells and superlattices Qualitative explanation…

kz n = 1, 2, 3... !n subbands

k y D kx

Electronic structure in parabolic subbands

ikx x ik y y "(x, y, z) = !n (z)e e

2 2 2 2 ! n k x + k y E(n,k ,k ) = + finite well x y 2D2 2 zero point4 energy • No allowed state until ! = !1(z)

infinite well • DOS constant until ! = ! 2 ( z ) subband starts to be populated infinite well

31 • Quantum wells and superlattices

Sandwitch thin layer GaAs (d 5 nm, ! 1.5 eV) • ! g ! between thick layers AlxGa1-xAs

(! 1.42 + 1.26x eV 2 eV for x 0.45) g ! ! !

•Similar unit-cell parameters! possible epitaxial growth one over the other. conduction •The of AlGaAs (large gap) bands straddles that of GaAs (smaller gap). valence

•Electrons in conduction band of GaAs layer confined in z direction, by forbidden energy gap of AlGaAs in both sides

holes

32

• Quantum wells and superlattices

•Triangular Si-SiO2 junction in MOS

Triangular wells - infinite

Triangular potential wells are quite common in real devices. Examples: Si MOSFETs; single-interface

GaAs/Al0.3Ga0.7As . Idealization: GaAS-n-AlGaAs , z < 0 ∞ V (z) = Ez , z > 0 Linear variation of confining electrostatic potential

Quantized energy levels 2 1/3 3 2/3 E 3 2/3 !n(z) ( π!e) (n + ) ; n = 0, 1, 2, ... ! 2 2m! 4 ! z " 33 • Quantum wells and superlattices

•Optical absorption: • Bulk ! absorption involves e- states at conduction band minimum and valence band maximum. bulk

• QW! quantized levels n2 ! square well n ∝ d2 2/3 !n E triangular well Lowest allowed∝ level, n=1 in square well and n=0 in absorption triangular well threshold

•GaAs, "F=10 nm

• The threshold energy for optical absorption increases ("100 meV) !sharp (bound e-h pair) peak

• GaAs, d=21 nm ! max. number bound states nmax=4 ! 4 peaks d=14 nm ! max. number bound states nmax=3 ! 3 peaks •Absorption profile: exciton peaks occurring at each discontinuity in DOS (peak when a new subband starts to be populated)

34

• Quantum wells and superlattices

• Thinest QW !GaAs d=5nm

Fine structure: splitting in exciton peak

one bound state n=, in valence band split into two

35 • Quantum wells and superlattices

1 j=3/2 states split into two ! conf ∝ m!

heavy holes

light holes Bulk QW heavy!flat band The light is the heavy now

36

• Quantum wells and superlattices

Metals, example Pb islands

Building island heights Number of islands Covered area histograms

37

Courtesy: Rodolfo Miranda R. Otero, A. L. Vázquez de Parga and R. Miranda PRB 66, 115401 (2002) • Quantum wells and superlattices Superlattices • Molecular beam-epitaxy ! ordered arrays of heterostructures or homojunctions • d1 material (1) + d2 material (2) ! new period d= d1 + d2

Periodic array of QW’s

38

• Quantum wells and superlattices

• Periodic array of semiconductor QW’s.

•d1 : thickness of well

•d2 : thickness of barrier

• Two possibilities:

1- Isolated QW’s, d2 >> d1 # "F Multiple quantum wells (no tunnelling of electrons through barriers)

2- Interacting QW’s, d1 # d2

Superlattice (very different properties from bulk material)

39 • Quantum wells and superlattices

• Electronic structure of semiconductor superlattices

gaps at nπ k = d

energy-width

• Tight-binding model ! Bloch function, array N QW’s

1/2 iknd Enveloppe function of nth well centerd Ψ (z) = N − e ψ (z nd) k n − at z=nd, overlap with the two n neighbours. Equivalent to atomic orbitals ! or Wannier functions • Analogy with normal crystals ! energy of electron motion in !(k) = ! α 2β cos kd i − i − i i-th level of a self-energy overlap cos-like dependence, miniband 40 well, i=1,2,3... integral, >0 integral, >0

• Quantum wells and superlattices

41 • Quantum wells and superlattices

Density of states ! Nm 1 (! !i + α) g(!) = cos− − − 2π2 2β ! ! i " , ! ! + α < 2 β | − i i| | i|

Smearing corresponding to band width

42

• Quantum wells and superlattices

π Gaps at ∓ d nπ • Forbidden gaps at k = (d >> a) d v (k) ! smaller than BZ !no periodic extended state g along z

• Bloch oscillations: E d.c. electric field ! oscillatory electron velocity, a.c current in superlattice.

!(k) = !0 !1 cos kd ! group velocity of electron: − 1 ∂" "1 vg(k) = = sin kd ! ∂k !

43 • Quantum wells and superlattices

(previous page figure)

• Consider ! ( k ) = ! 0 ! 1 cos k d − 1 ∂" "1d ! group velocity of electron: vg(k) = = sin kd ! ∂k ! π Periodic, v = 0 at k = , Bragg scattering g | | d

! ˙ • Apply E !k = eE k = ko eEt/! ⇒ − ⇒ − ! Period for motion in reciprocal space between k = π/d ± 2π ! T = d eE Bloch oscillatrions observed if T < τ (scattering relaxation time) , not possible to observe in bulk crystals (d=a) ; but superlattice d 10 100a ! −

44

• Quantum wells and superlattices

• Stark ladder : applied E field prevents minibands !no Bloch oscillations (no overlap)

If eEd 4 β ! | i| miniband field induced width potential displacement

45 • Quantum wells and superlattices

• Effects on phonon propagation !acoustic phonons folded back at k = π /d ± (Phonon dispersion Brillouin new boundaries (d: new period superlattice) in a crystal) - Optical phonons ! confined to one or other layer of material: confined modes

• Doping superlattice !periodic array of homojunctions or p-n junctions (nipi structure) intrinsic layer - Band-edge modulations determined by doping level: between n and p $ dopant concentration ! $ Eo modulation energy (next page figure)

!eff = ! E ! “indirect” minimum gap in real space g g − 0

46

• Quantum wells and superlattices

E N , doping concentration Nipi structure o ∝ d spatial variation of n- and p- doping

spatial variation (in z) of conduction and valence bands

nipi semimetallic

47 • Quantum wells and superlattices

Nipi structure

• To estimate the modulation consider the homojunction as a capacitor: semiconductor !! dielectric constant ! C/A 0 ! d/2

Charge per unit area, Q/A = Nddn = Nadp widths of p-type and n-type regions (assume the same for - and + regions)

2 2 2 e Nddnd e Ndd C = Q/V E0 = (dn = dp = d/2) ⇒ " 2!!0 4!!0 electrostatic potential difference=E0/e

48

• Quantum wells and superlattices

Nipi structure

• Very high doping ! modulation very pronounced, nipi semimetal

Band modulation and ef f can be controlled varying charge • !g densities in n- and p- layers ! injection of excess e- or holes electrically or optically reduce E0 by neutralization of charge donors or acceptors.

e- -hole pairs after absorption of photons

eff Light intensity $ ! ! g $

49