Platonic and Archimedean Solids PDF Book

Total Page:16

File Type:pdf, Size:1020Kb

Platonic and Archimedean Solids PDF Book PLATONIC AND ARCHIMEDEAN SOLIDS PDF, EPUB, EBOOK Daud Sutton | 64 pages | 25 Oct 2005 | Wooden Books | 9781904263395 | English | Powys, United Kingdom Platonic and Archimedean Solids PDF Book Wooden Books 1 - 10 of 67 books. The volume is computed as F times the volume of the pyramid whose base is a regular p -gon and whose height is the inradius r. Readers also enjoyed. As shown in the above table, there are exactly 13 Archimedean solids Walsh , Ball and Coxeter The Catalan Solids. In the early 20th century, Ernst Haeckel described Haeckel, a number of species of Radiolaria , some of whose skeletons are shaped like various regular polyhedra. In a similar manner, one can consider regular tessellations of the hyperbolic plane. What was it called? New York: Cambridge University Press, pp. Every polyhedron has an associated symmetry group , which is the set of all transformations Euclidean isometries which leave the polyhedron invariant. Read more Webb, R. Mark Lacy rated it it was ok Jan 24, Oxford, England: Pergamon Press, In geometry , an Archimedean solid is one of the 13 solids first enumerated by Archimedes. Just a moment while we sign you in to your Goodreads account. Among the Platonic solids, either the dodecahedron or the icosahedron may be seen as the best approximation to the sphere. In Proposition 18 he argues that there are no further convex regular polyhedra. Mathematical Recreations. Screw you, d The following table lists the various radii of the Platonic solids together with their surface area and volume. Likewise, the cantitruncation can be viewed as the truncation of the rectification. The 3-dimensional analog of a plane angle is a solid angle. Structure in Nature Is a Strategy for Design. Rorres, C. Mathematical Recreations and Essays, 13th ed. Kepler, J. The order of the symmetry group is the number of symmetries of the polyhedron. For the intermediate material phase called liquid crystals , the existence of such symmetries was first proposed in by H. The Archimedean solids and their duals the Catalan solids are less well known than the Platonic solids. Betsy rated it really liked it May 22, Friend Reviews. One often distinguishes between the full symmetry group , which includes reflections , and the proper symmetry group , which includes only rotations. For all five Platonic solids, we have [7]. Pugh , p. Pugh, A. The dihedral angle is the interior angle between any two face planes. Published April 1st by Walker Books first published August 1st This nomenclature is also used for the forms of certain chemical compounds. Stott, A. Ye are many and they are few! Rating details. Two additional solids the small rhombicosidodecahedron and small rhombicuboctahedron can be obtained by expansion of a Platonic solid , and two further solids the great rhombicosidodecahedron and great rhombicuboctahedron can be obtained by expansion of one of the previous 9 Archimedean solids Stott ; Ball and Coxeter , pp. Among them are five of the eight convex deltahedra , which have identical, regular faces all equilateral triangles but are not uniform. Let the cyclic sequence represent the degrees of the faces surrounding a vertex i. Of the fifth Platonic solid, the dodecahedron, Plato obscurely remarked, " By contrast, a highly nonspherical solid, the hexahedron cube represents "earth". Platonic and Archimedean Solids Writer Convex polyhedra. Wythoff's kaleidoscope construction is a method for constructing polyhedra directly from their symmetry groups. Truncated tetrahedron , cuboctahedron and truncated icosidodecahedron. Assignment to the elements in Kepler's Mysterium Cosmographicum. Apollonius's theorem. New York: Cambridge University Press, pp. The three polyhedral groups are:. Terms of Use. A beautiful little book! Daud Sutton elegantly explores the eighteen forms-from the cube to the octahedron and icosidodecahedron-that are the universal building blocks of three- dimensional space, and shows the fascinating relationships between them. Other Editions 6. In Mysterium Cosmographicum , published in , Kepler proposed a model of the Solar System in which the five solids were set inside one another and separated by a series of inscribed and circumscribed spheres. Welcome back. Jan 16, Chris rated it really liked it. Original Title. A purely topological proof can be made using only combinatorial information about the solids. Stradbroke, England: Tarquin Pub. Completing all orientations leads to the compound of five cubes. Enlarge cover. Let the cyclic sequence represent the degrees of the faces surrounding a vertex i. Pugh, A. The following table lists the various radii of the Platonic solids together with their surface area and volume. Mohamed Mohsen rated it it was amazing Jul 02, Such tesselations would be degenerate in true 3D space as polyhedra. Platonic and Archimedean Solids Reviews Please improve this article by removing excessive or inappropriate external links, and converting useful links where appropriate into footnote references. Really cool book if you are into geometry. Polyhedra: A Visual Approach. Air is made of the octahedron; its minuscule components are so smooth that one can barely feel it. The nondiagonal numbers say how many of the column's element occur in or at the row's element. For Platonic solids centered at the origin, simple Cartesian coordinates of the vertices are given below. Mohamed Mohsen rated it it was amazing Jul 02, Convex regular polyhedra with the same number of faces at each vertex. The dual of every Platonic solid is another Platonic solid, so that we can arrange the five solids into dual pairs. Enlarge cover. Then the definition of an Archimedean solid requires that the sequence must be the same for each vertex to within rotation and reflection. See Coxeter for a derivation of these facts. They bar the door to the entrance of Truth. Cambridge, England: Cambridge University Press, pp. Geometry of space frames is often based on platonic solids. The overall size is fixed by taking the edge length, a , to be equal to 2. Assignment to the elements in Kepler's Mysterium Cosmographicum. It is sometimes stated e. The thing you cannot get a pigeon hole for is the finger point showing the way to discovery. The 3-dimensional analog of a plane angle is a solid angle. They are called the cuboctahedron , great rhombicosidodecahedron , great rhombicuboctahedron , icosidodecahedron , small rhombicosidodecahedron , small rhombicuboctahedron , snub cube , snub dodecahedron , truncated cube , truncated dodecahedron , truncated icosahedron soccer ball , truncated octahedron , and truncated tetrahedron. In the end, Kepler's original idea had to be abandoned, but out of his research came his three laws of orbital dynamics , the first of which was that the orbits of planets are ellipses rather than circles, changing the course of physics and astronomy. Nigel Wallace rated it it was amazing Dec 10, Base in the Platonic Solids. Viral structures are built of repeated identical protein subunits and the icosahedron is the easiest shape to assemble using these subunits. Indeed, every combinatorial property of one Platonic solid can be interpreted as another combinatorial property of the dual. However, neither the regular icosahedron nor the regular dodecahedron are amongst them. The diagonal numbers say how many of each element occur in the whole polyhedron. Screw you, d Platonic and Archimedean Solids Read Online More filters. December Learn how and when to remove this template message. The sorted numbers of edges are 18, 24, 36, 36, 48, 60, 60, 72, 90, 90, , , OEIS A , numbers of faces are 8, 14, 14, 14, 26, 26, 32, 32, 32, 38, 62, 62, 92 OEIS A , and numbers of vertices are 12, 12, 24, 24, 24, 24, 30, 48, 60, 60, 60, 60, OEIS A The overall size is fixed by taking the edge length, a , to be equal to 2. The dual of every Platonic solid is another Platonic solid, so that we can arrange the five solids into dual pairs. The Platonic Solids. Many viruses , such as the herpes virus, have the shape of a regular icosahedron. However, truncation alone is not capable of producing these solids, but must be combined with distorting to turn the resulting rectangles into squares Ball and Coxeter , pp. Circogonia icosahedra, a species of radiolaria , shaped like a regular icosahedron. The last of these five solids is the tetrahedron which is a dual of itself when turned degrees. Berlin, p. Kleinert and K. Shapes, Space, and Symmetry. This is easily seen by examining the construction of the dual polyhedron. These clumsy little solids cause dirt to crumble and break when picked up in stark difference to the smooth flow of water. London: Penguin, pp. May 14, Angus rated it it was amazing. The usual way of enumerating the semiregular polyhedra is to eliminate solutions of conditions 1 and 2 using several classes of arguments and then prove that the solutions left are, in fact, semiregular Kepler , pp. For the intermediate material phase called liquid crystals , the existence of such symmetries was first proposed in by H. Pearce, P. Friend Reviews. Together with the bipyramids and trapezohedra , these are the face-uniform solids with regular vertices. Let the cyclic sequence represent the degrees of the faces surrounding a vertex i. Angle bisector theorem Exterior angle theorem Euclidean algorithm Euclid's theorem Geometric mean theorem Greek geometric algebra Hinge theorem Inscribed angle theorem Intercept theorem Pons asinorum Pythagorean theorem Thales's theorem Theorem of the gnomon. New York: Cambridge University Press, Convex uniform polyhedra first enumerated by Archimedes. They are called the cuboctahedron , great rhombicosidodecahedron , great rhombicuboctahedron , icosidodecahedron , small rhombicosidodecahedron , small rhombicuboctahedron , snub cube , snub dodecahedron , truncated cube , truncated dodecahedron , truncated icosahedron soccer ball , truncated octahedron , and truncated tetrahedron. Polyhedra and Their Graphs. And there are thirteen of them. There was intuitive justification for these associations: the heat of fire feels sharp and stabbing like little tetrahedra. The numerical values of the solid angles are given in steradians.
Recommended publications
  • A Genetic Context for Understanding the Trigonometric Functions Danny Otero Xavier University, [email protected]
    Ursinus College Digital Commons @ Ursinus College Transforming Instruction in Undergraduate Pre-calculus and Trigonometry Mathematics via Primary Historical Sources (TRIUMPHS) Spring 3-2017 A Genetic Context for Understanding the Trigonometric Functions Danny Otero Xavier University, [email protected] Follow this and additional works at: https://digitalcommons.ursinus.edu/triumphs_precalc Part of the Curriculum and Instruction Commons, Educational Methods Commons, Higher Education Commons, and the Science and Mathematics Education Commons Click here to let us know how access to this document benefits oy u. Recommended Citation Otero, Danny, "A Genetic Context for Understanding the Trigonometric Functions" (2017). Pre-calculus and Trigonometry. 1. https://digitalcommons.ursinus.edu/triumphs_precalc/1 This Course Materials is brought to you for free and open access by the Transforming Instruction in Undergraduate Mathematics via Primary Historical Sources (TRIUMPHS) at Digital Commons @ Ursinus College. It has been accepted for inclusion in Pre-calculus and Trigonometry by an authorized administrator of Digital Commons @ Ursinus College. For more information, please contact [email protected]. A Genetic Context for Understanding the Trigonometric Functions Daniel E. Otero∗ July 22, 2019 Trigonometry is concerned with the measurements of angles about a central point (or of arcs of circles centered at that point) and quantities, geometrical and otherwise, that depend on the sizes of such angles (or the lengths of the corresponding arcs). It is one of those subjects that has become a standard part of the toolbox of every scientist and applied mathematician. It is the goal of this project to impart to students some of the story of where and how its central ideas first emerged, in an attempt to provide context for a modern study of this mathematical theory.
    [Show full text]
  • On the Archimedean Or Semiregular Polyhedra
    ON THE ARCHIMEDEAN OR SEMIREGULAR POLYHEDRA Mark B. Villarino Depto. de Matem´atica, Universidad de Costa Rica, 2060 San Jos´e, Costa Rica May 11, 2005 Abstract We prove that there are thirteen Archimedean/semiregular polyhedra by using Euler’s polyhedral formula. Contents 1 Introduction 2 1.1 RegularPolyhedra .............................. 2 1.2 Archimedean/semiregular polyhedra . ..... 2 2 Proof techniques 3 2.1 Euclid’s proof for regular polyhedra . ..... 3 2.2 Euler’s polyhedral formula for regular polyhedra . ......... 4 2.3 ProofsofArchimedes’theorem. .. 4 3 Three lemmas 5 3.1 Lemma1.................................... 5 3.2 Lemma2.................................... 6 3.3 Lemma3.................................... 7 4 Topological Proof of Archimedes’ theorem 8 arXiv:math/0505488v1 [math.GT] 24 May 2005 4.1 Case1: fivefacesmeetatavertex: r=5. .. 8 4.1.1 At least one face is a triangle: p1 =3................ 8 4.1.2 All faces have at least four sides: p1 > 4 .............. 9 4.2 Case2: fourfacesmeetatavertex: r=4 . .. 10 4.2.1 At least one face is a triangle: p1 =3................ 10 4.2.2 All faces have at least four sides: p1 > 4 .............. 11 4.3 Case3: threefacesmeetatavertes: r=3 . ... 11 4.3.1 At least one face is a triangle: p1 =3................ 11 4.3.2 All faces have at least four sides and one exactly four sides: p1 =4 6 p2 6 p3. 12 4.3.3 All faces have at least five sides and one exactly five sides: p1 =5 6 p2 6 p3 13 1 5 Summary of our results 13 6 Final remarks 14 1 Introduction 1.1 Regular Polyhedra A polyhedron may be intuitively conceived as a “solid figure” bounded by plane faces and straight line edges so arranged that every edge joins exactly two (no more, no less) vertices and is a common side of two faces.
    [Show full text]
  • If 1+1=2 Then the Pythagorean Theorem Holds, Or One More Proof of the Oldest Theorem of Mathematics
    !"#$%"&"!'()**#%"$'+&'%,#'`.#%/)'01"+/P'3$"4#/5"%6'+&'7/9)'0)/#2 Vol. 10 (XXVII) no. 1, 2013 ISSN-L 1841-9267 (Print), ISSN 2285-438X (Online), ISSN 2286-3184 (CD-ROM) If 1+1=2 then the Pythagorean theorem holds, or one more proof of the oldest theorem of mathematics Alexandru HORVATH´ ”Petru Maior” University of Tg. Mures¸, Romania e-mail: [email protected] ABSTRACT The Pythagorean theorem is one of the oldest theorems of mathematics. It gained dur- ing the time a central position and even today it continues to be a source of inspiration. In this note we try to give a proof which is based on a hopefully new approach. Our treatment will be as intuitive as it can be. Keywords: Pythagorean theorem, geometric transformation, Euclidean geometry MSC 2000: 51M04, 51M05, 51N20 One of the oldest theorems of mathematics – the T T Pythagorean theorem – states that the area of the square drawn on the hypotenuse (the side opposite the right angle) of a right angled triangle, is equal to the sum of the areas of the squares constructed on the other two sides, (the catheti). That is, 2 2 2 a + b = c , if we denote the length of the sides of the triangle by a, b, c respectively. Figure 1. The transformation Loomis ([3]) collected several hundreds of different proofs of this theorem, and classified them in categories. Maor ([4]) traces the evolution of the Pythagorean theorem and its impact on mathematics and on our culture in gen- Let us assume T is such a transformation having a as the eral.
    [Show full text]
  • Theorems and Postulates
    Theorems and Postulates JJJG Given AB and a number r between 0 and 180, there Postulate 1-A is exactly one JrayJJG with endpoint A , extending on Protractor Postulate either side of AB , such that the measure of the angle formed is r . ∠A is a right angle if mA∠ is 90. Definition of Right, Acute ∠A is an acute angle if mA∠ is less than 90. and Obtuse Angles ∠A is an obtuse angle if mA∠ is greater than 90 and less than 180. Postulate 1-B If R is in the interior of ∠PQS , then mPQRmRQSmPQS∠ +∠ =∠ . Angle Addition If mP∠+∠=∠QRmRQSmPQS, then R is in the interior of ∠PQS. Vertical angles are congruent. The sum of the measures of the angles in a linear pair is 180˚. The sum of the measures of complementary angles is 90˚. Two points on a line can be paired with real numbers so that, given Postulate 2-A any two points R and S on the line, R corresponds to zero, and S Ruler corresponds to a positive number. Point R could be paired with 0, and S could be paired with 10. R S -2 -1 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 9 10 Postulate 2-B If N is between M and P, then MN + NP = MP. Segment Addition Conversely, if MN + NP = MP, then N is between M and P. Theorem 2-A In a right triangle, the sum of the squares of the measures Pythagorean of the legs equals the square of the measure of the Theorem hypotenuse.
    [Show full text]
  • Archimedean Solids
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-2008 Archimedean Solids Anna Anderson University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/mathmidexppap Part of the Science and Mathematics Education Commons Anderson, Anna, "Archimedean Solids" (2008). MAT Exam Expository Papers. 4. https://digitalcommons.unl.edu/mathmidexppap/4 This Article is brought to you for free and open access by the Math in the Middle Institute Partnership at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in MAT Exam Expository Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Archimedean Solids Anna Anderson In partial fulfillment of the requirements for the Master of Arts in Teaching with a Specialization in the Teaching of Middle Level Mathematics in the Department of Mathematics. Jim Lewis, Advisor July 2008 2 Archimedean Solids A polygon is a simple, closed, planar figure with sides formed by joining line segments, where each line segment intersects exactly two others. If all of the sides have the same length and all of the angles are congruent, the polygon is called regular. The sum of the angles of a regular polygon with n sides, where n is 3 or more, is 180° x (n – 2) degrees. If a regular polygon were connected with other regular polygons in three dimensional space, a polyhedron could be created. In geometry, a polyhedron is a three- dimensional solid which consists of a collection of polygons joined at their edges. The word polyhedron is derived from the Greek word poly (many) and the Indo-European term hedron (seat).
    [Show full text]
  • Read Book Advanced Euclidean Geometry Ebook
    ADVANCED EUCLIDEAN GEOMETRY PDF, EPUB, EBOOK Roger A. Johnson | 336 pages | 30 Nov 2007 | Dover Publications Inc. | 9780486462370 | English | New York, United States Advanced Euclidean Geometry PDF Book As P approaches nearer to A , r passes through all values from one to zero; as P passes through A , and moves toward B, r becomes zero and then passes through all negative values, becoming —1 at the mid-point of AB. Uh-oh, it looks like your Internet Explorer is out of date. In Elements Angle bisector theorem Exterior angle theorem Euclidean algorithm Euclid's theorem Geometric mean theorem Greek geometric algebra Hinge theorem Inscribed angle theorem Intercept theorem Pons asinorum Pythagorean theorem Thales's theorem Theorem of the gnomon. It might also be so named because of the geometrical figure's resemblance to a steep bridge that only a sure-footed donkey could cross. Calculus Real analysis Complex analysis Differential equations Functional analysis Harmonic analysis. This article needs attention from an expert in mathematics. Facebook Twitter. On any line there is one and only one point at infinity. This may be formulated and proved algebraically:. When we have occasion to deal with a geometric quantity that may be regarded as measurable in either of two directions, it is often convenient to regard measurements in one of these directions as positive, the other as negative. Logical questions thus become completely independent of empirical or psychological questions For example, proposition I. This volume serves as an extension of high school-level studies of geometry and algebra, and He was formerly professor of mathematics education and dean of the School of Education at The City College of the City University of New York, where he spent the previous 40 years.
    [Show full text]
  • The Stoics and the Practical: a Roman Reply to Aristotle
    DePaul University Via Sapientiae College of Liberal Arts & Social Sciences Theses and Dissertations College of Liberal Arts and Social Sciences 8-2013 The Stoics and the practical: a Roman reply to Aristotle Robin Weiss DePaul University, [email protected] Follow this and additional works at: https://via.library.depaul.edu/etd Recommended Citation Weiss, Robin, "The Stoics and the practical: a Roman reply to Aristotle" (2013). College of Liberal Arts & Social Sciences Theses and Dissertations. 143. https://via.library.depaul.edu/etd/143 This Thesis is brought to you for free and open access by the College of Liberal Arts and Social Sciences at Via Sapientiae. It has been accepted for inclusion in College of Liberal Arts & Social Sciences Theses and Dissertations by an authorized administrator of Via Sapientiae. For more information, please contact [email protected]. THE STOICS AND THE PRACTICAL: A ROMAN REPLY TO ARISTOTLE A Thesis Presented in Partial Fulfillment of the Degree of Doctor of Philosophy August, 2013 BY Robin Weiss Department of Philosophy College of Liberal Arts and Social Sciences DePaul University Chicago, IL - TABLE OF CONTENTS - Introduction……………………..............................................................................................................p.i Chapter One: Practical Knowledge and its Others Technê and Natural Philosophy…………………………….....……..……………………………….....p. 1 Virtue and technical expertise conflated – subsequently distinguished in Plato – ethical knowledge contrasted with that of nature in
    [Show full text]
  • How Platonic and Archimedean Solids Define Natural Equilibria of Forces for Tensegrity
    How Platonic and Archimedean Solids Define Natural Equilibria of Forces for Tensegrity Martin Friedrich Eichenauer The Platonic and Archimedean solids are a well-known vehicle to describe Research Assistant certain phenomena of our surrounding world. It can be stated that they Technical University Dresden define natural equilibria of forces, which can be clarified particularly Faculty of Mathematics Institute of Geometry through the packing of spheres. [1][2] To solve the problem of the densest Germany packing, both geometrical and mechanical approach can be exploited. The mechanical approach works on the principle of minimal potential energy Daniel Lordick whereas the geometrical approach searches for the minimal distances of Professor centers of mass. The vertices of the solids are given by the centers of the Technical University Dresden spheres. Faculty of Geometry Institute of Geometry If we expand this idea by a contrary force, which pushes outwards, we Germany obtain the principle of tensegrity. We can show that we can build up regular and half-regular polyhedra by the interaction of physical forces. Every platonic and Archimedean solid can be converted into a tensegrity structure. Following this, a vast variety of shapes defined by multiple solids can also be obtained. Keywords: Platonic Solids, Archimedean Solids, Tensegrity, Force Density Method, Packing of Spheres, Modularization 1. PLATONIC AND ARCHIMEDEAN SOLIDS called “kissing number” problem. The kissing number problem is asking for the maximum possible number of Platonic and Archimedean solids have systematically congruent spheres, which touch another sphere of the been described in the antiquity. They denominate all same size without overlapping. In three dimensions the convex polyhedra with regular faces and uniform vertices kissing number is 12.
    [Show full text]
  • Geometry: Neutral MATH 3120, Spring 2016 Many Theorems of Geometry Are True Regardless of Which Parallel Postulate Is Used
    Geometry: Neutral MATH 3120, Spring 2016 Many theorems of geometry are true regardless of which parallel postulate is used. A neutral geom- etry is one in which no parallel postulate exists, and the theorems of a netural geometry are true for Euclidean and (most) non-Euclidean geomteries. Spherical geometry is a special case of Non-Euclidean geometries where the great circles on the sphere are lines. This leads to spherical trigonometry where triangles have angle measure sums greater than 180◦. While this is a non-Euclidean geometry, spherical geometry develops along a separate path where the axioms and theorems of neutral geometry do not typically apply. The axioms and theorems of netural geometry apply to Euclidean and hyperbolic geometries. The theorems below can be proven using the SMSG axioms 1 through 15. In the SMSG axiom list, Axiom 16 is the Euclidean parallel postulate. A neutral geometry assumes only the first 15 axioms of the SMSG set. Notes on notation: The SMSG axioms refer to the length or measure of line segments and the measure of angles. Thus, we will use the notation AB to describe a line segment and AB to denote its length −−! −! or measure. We refer to the angle formed by AB and AC as \BAC (with vertex A) and denote its measure as m\BAC. 1 Lines and Angles Definitions: Congruence • Segments and Angles. Two segments (or angles) are congruent if and only if their measures are equal. • Polygons. Two polygons are congruent if and only if there exists a one-to-one correspondence between their vertices such that all their corresponding sides (line sgements) and all their corre- sponding angles are congruent.
    [Show full text]
  • Sink Or Float? Thought Problems in Math and Physics
    AMS / MAA DOLCIANI MATHEMATICAL EXPOSITIONS VOL AMS / MAA DOLCIANI MATHEMATICAL EXPOSITIONS VOL 33 33 Sink or Float? Sink or Float: Thought Problems in Math and Physics is a collection of prob- lems drawn from mathematics and the real world. Its multiple-choice format Sink or Float? forces the reader to become actively involved in deciding upon the answer. Thought Problems in Math and Physics The book’s aim is to show just how much can be learned by using everyday Thought Problems in Math and Physics common sense. The problems are all concrete and understandable by nearly anyone, meaning that not only will students become caught up in some of Keith Kendig the questions, but professional mathematicians, too, will easily get hooked. The more than 250 questions cover a wide swath of classical math and physics. Each problem s solution, with explanation, appears in the answer section at the end of the book. A notable feature is the generous sprinkling of boxes appearing throughout the text. These contain historical asides or A tub is filled Will a solid little-known facts. The problems themselves can easily turn into serious with lubricated aluminum or tin debate-starters, and the book will find a natural home in the classroom. ball bearings. cube sink... ... or float? Keith Kendig AMSMAA / PRESS 4-Color Process 395 page • 3/4” • 50lb stock • finish size: 7” x 10” i i \AAARoot" – 2009/1/21 – 13:22 – page i – #1 i i Sink or Float? Thought Problems in Math and Physics i i i i i i \AAARoot" – 2011/5/26 – 11:22 – page ii – #2 i i c 2008 by The
    [Show full text]
  • 9 · the Growth of an Empirical Cartography in Hellenistic Greece
    9 · The Growth of an Empirical Cartography in Hellenistic Greece PREPARED BY THE EDITORS FROM MATERIALS SUPPLIED BY GERMAINE AUJAe There is no complete break between the development of That such a change should occur is due both to po­ cartography in classical and in Hellenistic Greece. In litical and military factors and to cultural developments contrast to many periods in the ancient and medieval within Greek society as a whole. With respect to the world, we are able to reconstruct throughout the Greek latter, we can see how Greek cartography started to be period-and indeed into the Roman-a continuum in influenced by a new infrastructure for learning that had cartographic thought and practice. Certainly the a profound effect on the growth of formalized know­ achievements of the third century B.C. in Alexandria had ledge in general. Of particular importance for the history been prepared for and made possible by the scientific of the map was the growth of Alexandria as a major progress of the fourth century. Eudoxus, as we have seen, center of learning, far surpassing in this respect the had already formulated the geocentric hypothesis in Macedonian court at Pella. It was at Alexandria that mathematical models; and he had also translated his Euclid's famous school of geometry flourished in the concepts into celestial globes that may be regarded as reign of Ptolemy II Philadelphus (285-246 B.C.). And it anticipating the sphairopoiia. 1 By the beginning of the was at Alexandria that this Ptolemy, son of Ptolemy I Hellenistic period there had been developed not only the Soter, a companion of Alexander, had founded the li­ various celestial globes, but also systems of concentric brary, soon to become famous throughout the Mediter­ spheres, together with maps of the inhabited world that ranean world.
    [Show full text]
  • THE INVENTION of ATOMIST ICONOGRAPHY 1. Introductory
    THE INVENTION OF ATOMIST ICONOGRAPHY Christoph Lüthy Center for Medieval and Renaissance Natural Philosophy University of Nijmegen1 1. Introductory Puzzlement For centuries now, particles of matter have invariably been depicted as globules. These glob- ules, representing very different entities of distant orders of magnitudes, have in turn be used as pictorial building blocks for a host of more complex structures such as atomic nuclei, mole- cules, crystals, gases, material surfaces, electrical currents or the double helixes of DNA. May- be it is because of the unsurpassable simplicity of the spherical form that the ubiquity of this type of representation appears to us so deceitfully self-explanatory. But in truth, the spherical shape of these various units of matter deserves nothing if not raised eyebrows. Fig. 1a: Giordano Bruno: De triplici minimo et mensura, Frankfurt, 1591. 1 Research for this contribution was made possible by a fellowship at the Max-Planck-Institut für Wissenschafts- geschichte (Berlin) and by the Netherlands Organization for Scientific Research (NWO), grant 200-22-295. This article is based on a 1997 lecture. Christoph Lüthy Fig. 1b: Robert Hooke, Micrographia, London, 1665. Fig. 1c: Christian Huygens: Traité de la lumière, Leyden, 1690. Fig. 1d: William Wollaston: Philosophical Transactions of the Royal Society, 1813. Fig. 1: How many theories can be illustrated by a single image? How is it to be explained that the same type of illustrations should have survived unperturbed the most profound conceptual changes in matter theory? One needn’t agree with the Kuhnian notion that revolutionary breaks dissect the conceptual evolution of science into incommensu- rable segments to feel that there is something puzzling about pictures that are capable of illus- 2 THE INVENTION OF ATOMIST ICONOGRAPHY trating diverging “world views” over a four-hundred year period.2 For the matter theories illustrated by the nearly identical images of fig.
    [Show full text]