Sink Or Float? Thought Problems in Math and Physics

Total Page:16

File Type:pdf, Size:1020Kb

Sink Or Float? Thought Problems in Math and Physics AMS / MAA DOLCIANI MATHEMATICAL EXPOSITIONS VOL AMS / MAA DOLCIANI MATHEMATICAL EXPOSITIONS VOL 33 33 Sink or Float? Sink or Float: Thought Problems in Math and Physics is a collection of prob- lems drawn from mathematics and the real world. Its multiple-choice format Sink or Float? forces the reader to become actively involved in deciding upon the answer. Thought Problems in Math and Physics The book’s aim is to show just how much can be learned by using everyday Thought Problems in Math and Physics common sense. The problems are all concrete and understandable by nearly anyone, meaning that not only will students become caught up in some of Keith Kendig the questions, but professional mathematicians, too, will easily get hooked. The more than 250 questions cover a wide swath of classical math and physics. Each problem s solution, with explanation, appears in the answer section at the end of the book. A notable feature is the generous sprinkling of boxes appearing throughout the text. These contain historical asides or A tub is filled Will a solid little-known facts. The problems themselves can easily turn into serious with lubricated aluminum or tin debate-starters, and the book will find a natural home in the classroom. ball bearings. cube sink... ... or float? Keith Kendig AMSMAA / PRESS 4-Color Process 395 page • 3/4” • 50lb stock • finish size: 7” x 10” i i \AAARoot" – 2009/1/21 – 13:22 – page i – #1 i i Sink or Float? Thought Problems in Math and Physics i i i i i i \AAARoot" – 2011/5/26 – 11:22 – page ii – #2 i i c 2008 by The Mathematical Association of America (Incorporated) Library of Congress Catalog Card Number 2008929711 Print ISBN 978-0-88385-339-9 Electronic ISBN 978-1-61444-207-3 Printed in the United States of America Current Printing (last digit): 10 9 8 7 6 5 4 3 2 1 i i i i i i \AAARoot" – 2009/1/21 – 13:22 – page iii – #3 i i 10.1090/dol/033 The Dolciani Mathematical Expositions NUMBER THIRTY-THREE Sink or Float? Thought Problems in Math and Physics Keith Kendig Cleveland State University ® Published and Distributed by The Mathematical Association of America i i i i i i \AAARoot" – 2009/1/21 – 13:22 – page iv – #4 i i DOLCIANI MATHEMATICAL EXPOSITIONS Committee on Publications James Daniel, Chair Dolciani Mathematical Expositions Editorial Board Underwood Dudley, Editor Jeremy S. Case Tevian Dray Robert L. Devaney Jerrold W. Grossman Virginia E. Knight Mark A. Peterson Jonathan Rogness Joe Alyn Stickles James S. Tanton i i i i i i \AAARoot" – 2009/1/21 – 13:22 – page v – #5 i i The DOLCIANI MATHEMATICAL EXPOSITIONS series of the Mathematical Association of America was established through a generous gift to the Association from Mary P. Dolciani, Professor of Mathematics at Hunter College of the City University of New York. In making the gift, Professor Dolciani, herself an exceptionally talented and successful expositor of mathematics, had the purpose of furthering the ideal of excellence in mathematical exposition. The Association, for its part, was delighted to accept the gracious gesture initiating the revolving fund for this series from one who has served the Association with distinction, both as a member of the Committee on Publications and as a member of the Board of Governors. It was with genuine pleasure that the Board chose to name the series in her honor. The books in the series are selected for their lucid expository style and stimulating mathematical content. Typically, they contain an ample supply of exercises, many with accompanying solutions. They are intended to be sufficiently elementary for the undergraduate and even the mathematically inclined high-school student to understand and enjoy, but also to be interesting and sometimes challenging to the more advanced mathematician. 1. Mathematical Gems, Ross Honsberger 2. Mathematical Gems II, Ross Honsberger 3. Mathematical Morsels, Ross Honsberger 4. Mathematical Plums, Ross Honsberger (ed.) 5. Great Moments in Mathematics (Before 1650), Howard Eves 6. Maxima and Minima without Calculus, Ivan Niven 7. Great Moments in Mathematics (After 1650), Howard Eves 8. Map Coloring, Polyhedra, and the Four-Color Problem, David Barnette 9. Mathematical Gems III, Ross Honsberger 10. More Mathematical Morsels, Ross Honsberger 11. Old and New Unsolved Problems in Plane Geometry and Number Theory, Victor Klee and Stan Wagon 12. Problems for Mathematicians, Young and Old, Paul R. Halmos 13. Excursions in Calculus: An Interplay of the Continuous and the Discrete, Robert M. Young 14. The Wohascum County Problem Book, George T. Gilbert, Mark Krusemeyer, and Loren C. Larson 15. Lion Hunting and Other Mathematical Pursuits: A Collection of Mathematics, Verse, and Stories by Ralph P. Boas, Jr., edited by Gerald L. Alexanderson and Dale H. Mugler 16. Linear Algebra Problem Book, Paul R. Halmos 17. From Erdos" to Kiev: Problems of Olympiad Caliber, Ross Honsberger 18. Which Way Did the Bicycle Go? . and Other Intriguing Mathematical Mysteries, Joseph D. E. Konhauser, Dan Velleman, and Stan Wagon 19. In Polya's Footsteps: Miscellaneous Problems and Essays, Ross Honsberger 20. Diophantus and Diophantine Equations, I. G. Bashmakova (Updated by Joseph Silverman and translated by Abe Shenitzer) 21. Logic as Algebra, Paul Halmos and Steven Givant 22. Euler: The Master of Us All, William Dunham 23. The Beginnings and Evolution of Algebra, I. G. Bashmakova and G. S. Smirnova (Translated by Abe Shenitzer) 24. Mathematical Chestnuts from Around the World, Ross Honsberger i i i i i i \AAARoot" – 2009/1/21 – 13:22 – page vi – #6 i i 25. Counting on Frameworks: Mathematics to Aid the Design of Rigid Structures, Jack E. Graver 26. Mathematical Diamonds, Ross Honsberger 27. Proofs that Really Count: The Art of Combinatorial Proof, Arthur T. Benjamin and Jennifer J. Quinn 28. Mathematical Delights, Ross Honsberger 29. Conics, Keith Kendig 30. Hesiod's Anvil: falling and spinning through heaven and earth, Andrew J. Simoson 31. A Garden of Integrals, Frank E. Burk 32. A Guide to Complex Variables (MAA Guides #1), Steven G. Krantz 33. Sink or Float? Thought Problems in Math and Physics, Keith Kendig MAA Service Center P.O. Box 91112 Washington, DC 20090-1112 1-800-331-1MAA FAX: 1-301-206-9789 i i i i i i \AAARoot" – 2009/1/21 – 13:22 – page vii – #7 i i Preface In his book I Want to be a Mathematician, Paul Halmos reveals a secret: . it's examples, examples, examples that, for me, all mathematics is based on, and I always look for them. I look for them first when I begin to study, I keep looking for them, and I cherish them all. Sink or Float? is actually a collection of examples in the guise of problems. The problems are multiple-choice, challenging you to think through each one. You don't need fancy terminology or familiarity with a mathematical specialty to understand them. They are concrete, and most are understandable to anyone. The willingness and confidence to apply common sense to the real world can be very rewarding. It's one of the aims of this book to show that it works, that thinking can enlighten us and bring perspective to the world we live in. The range of problems to which common sense applies is almost limitless. The example is one of the most powerful tools for discovering new things and for sug- gesting how to solve problems. Examples come in different degrees of concreteness and often, the more concrete, the more informative. The following tale provides an example of —concreter can be better," and is the story of what started this book. It begins in the dentist's chair. After putting generous amounts of cotton in my mouth, my dentist commences his customary free-wheeling question and answer session. One time, things go like this: Dentist. I've been wondering for some time, what was it that convinced you to become a mathematician? Me. Waa-gaa ook ha! Dentist. I see. I was sort of OK with math up through trigonometry, but when it came to calculus, the teacher went fast, I got lost and never caught up. From then on, I can't say I've liked math. Me. Aagh hinc wah ad. Dentist. Yes. Is there anything that you could say to give me some sense of the attraction? Me. Eh he eee . vii i i i i i i \AAARoot" – 2009/1/21 – 13:22 – page viii – #8 i i viii Preface At last the cotton came out of my mouth, and so did this: Me. You asked for some sense of the attraction in math. Here's a concrete example: 10 10 is 100, right? Now, add 1 and subtract 1 to change 10 10 into 11 9. That's 99, 1 less that 100. Dentist (already sounding bored). Sure is. Me. OK, now try that on 8 8, which is 64. Adding 1 and subtracting 1 from 8 changes it to 9 7. That's 63, again one less than 64. Dentist. Funny coincidence, huh? Me. Well, try this on 5 5, which is 25. Adding and subtracting 1 gives 6 4 which is 24, one less–again! Dentist (whose expression has changed slightly). You're not telling me this always works? Me. Try one yourself! Dentist (possibly wanting to burst this little bubble). How about 11 11? Me. OK, do the math . Dentist. That would be 12 10. That's 120. Geez . 11 11 is 121, isn't it? Me. This always does work! Dentist. Well . not for really small numbers, I'll bet . Me. What do you mean? Dentist.
Recommended publications
  • THE INVENTION of ATOMIST ICONOGRAPHY 1. Introductory
    THE INVENTION OF ATOMIST ICONOGRAPHY Christoph Lüthy Center for Medieval and Renaissance Natural Philosophy University of Nijmegen1 1. Introductory Puzzlement For centuries now, particles of matter have invariably been depicted as globules. These glob- ules, representing very different entities of distant orders of magnitudes, have in turn be used as pictorial building blocks for a host of more complex structures such as atomic nuclei, mole- cules, crystals, gases, material surfaces, electrical currents or the double helixes of DNA. May- be it is because of the unsurpassable simplicity of the spherical form that the ubiquity of this type of representation appears to us so deceitfully self-explanatory. But in truth, the spherical shape of these various units of matter deserves nothing if not raised eyebrows. Fig. 1a: Giordano Bruno: De triplici minimo et mensura, Frankfurt, 1591. 1 Research for this contribution was made possible by a fellowship at the Max-Planck-Institut für Wissenschafts- geschichte (Berlin) and by the Netherlands Organization for Scientific Research (NWO), grant 200-22-295. This article is based on a 1997 lecture. Christoph Lüthy Fig. 1b: Robert Hooke, Micrographia, London, 1665. Fig. 1c: Christian Huygens: Traité de la lumière, Leyden, 1690. Fig. 1d: William Wollaston: Philosophical Transactions of the Royal Society, 1813. Fig. 1: How many theories can be illustrated by a single image? How is it to be explained that the same type of illustrations should have survived unperturbed the most profound conceptual changes in matter theory? One needn’t agree with the Kuhnian notion that revolutionary breaks dissect the conceptual evolution of science into incommensu- rable segments to feel that there is something puzzling about pictures that are capable of illus- 2 THE INVENTION OF ATOMIST ICONOGRAPHY trating diverging “world views” over a four-hundred year period.2 For the matter theories illustrated by the nearly identical images of fig.
    [Show full text]
  • On the Chiral Archimedean Solids Dedicated to Prof
    Beitr¨agezur Algebra und Geometrie Contributions to Algebra and Geometry Volume 43 (2002), No. 1, 121-133. On the Chiral Archimedean Solids Dedicated to Prof. Dr. O. Kr¨otenheerdt Bernulf Weissbach Horst Martini Institut f¨urAlgebra und Geometrie, Otto-von-Guericke-Universit¨atMagdeburg Universit¨atsplatz2, D-39106 Magdeburg Fakult¨atf¨urMathematik, Technische Universit¨atChemnitz D-09107 Chemnitz Abstract. We discuss a unified way to derive the convex semiregular polyhedra from the Platonic solids. Based on this we prove that, among the Archimedean solids, Cubus simus (i.e., the snub cube) and Dodecaedron simum (the snub do- decahedron) can be characterized by the following property: it is impossible to construct an edge from the given diameter of the circumsphere by ruler and com- pass. Keywords: Archimedean solids, enantiomorphism, Platonic solids, regular poly- hedra, ruler-and-compass constructions, semiregular polyhedra, snub cube, snub dodecahedron 1. Introduction Following Pappus of Alexandria, Archimedes was the first person who described those 13 semiregular convex polyhedra which are named after him: the Archimedean solids. Two representatives from this family have various remarkable properties, and therefore the Swiss pedagogicians A. Wyss and P. Adam called them “Sonderlinge” (eccentrics), cf. [25] and [1]. Other usual names are Cubus simus and Dodecaedron simum, due to J. Kepler [17], or snub cube and snub dodecahedron, respectively. Immediately one can see the following property (characterizing these two polyhedra among all Archimedean solids): their symmetry group contains only proper motions. There- fore these two polyhedra are the only Archimedean solids having no plane of symmetry and having no center of symmetry. So each of them occurs in two chiral (or enantiomorphic) forms, both having different orientation.
    [Show full text]
  • A Cultural History of Physics
    Károly Simonyi A Cultural History of Physics Translated by David Kramer Originally published in Hungarian as A fizika kultûrtörténete, Fourth Edition, Akadémiai Kiadó, Budapest, 1998, and published in German as Kulturgeschichte der Physik, Third Edition, Verlag Harri Deutsch, Frankfurt am Main, 2001. First Hungarian edition 1978. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2012 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper Version Date: 20111110 International Standard Book Number: 978-1-56881-329-5 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowl- edged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.
    [Show full text]
  • Instructions for Plato's Solids
    Includes 195 precision START HERE! Plato’s Solids The Platonic Solids are named Zometool components, Instructions according to the number of faces 50 foam dual pieces, (F) they possess. For example, and detailed instructions You can build the five Platonic Solids, by Dr. Robert Fathauer “octahedron” means “8-faces.” The or polyhedra, and their duals. number of Faces (F), Edges (E) and Vertices (V) for each solid are shown A polyhedron is a solid whose faces are Why are there only 5 perfect 3D shapes? This secret was below. An edge is a line where two polygons. Only fiveconvex regular polyhe- closely guarded by ancient Greeks, and is the mathematical faces meet, and a vertex is a point dra exist (i.e., each face is the same type basis of nearly all natural and human-built structures. where three or more faces meet. of regular polygon—a triangle, square or Build all five of Plato’s solids in relation to their duals, and see pentagon—and there are the same num- Each Platonic Solid has another how they represent the 5 elements: ber of faces around every corner.) Platonic Solid as its dual. The dual • the Tetrahedron (4-faces) = fire of the tetrahedron (“4-faces”) is again If you put a point in the center of each face • the Cube (6-faces) = earth a tetrahedron; the dual of the cube is • the Octahedron (8-faces) = water of a polyhedron, and connect those points the octahedron (“8-faces”), and vice • the Icosahedron (20-faces) = air to their nearest neighbors, you get its dual.
    [Show full text]
  • WHAT's the BIG DEAL ABOUT GLOBAL HIERARCHICAL TESSELLATION? Organizer: Geoffrey Dutton 150 Irving Street Watertown MA 02172 USA Email: [email protected]
    WHAT'S THE BIG DEAL ABOUT GLOBAL HIERARCHICAL TESSELLATION? Organizer: Geoffrey Dutton 150 Irving Street Watertown MA 02172 USA email: [email protected] This panel will present basic information about hierarchical tessellations (HT's) as geographic data models, and provide specific details about a few prototype systems that are either hierarchical tessellations, global tessellations, or both. Participants will advocate, criticize and discuss these models, allowing members of the audience to compare, contrast and better understand the mechanics, rationales and significance of this emerging class of nonstandard spatial data models in the context of GIS. The panel has 7 members, most of whom are engaged in research in HT data modeling, with one or more drawn from the ranks of informed critics of such activity. The panelists are: - Chairperson TEA - Zi-Tan Chen, ESRI, US - Nicholas Chrisman, U. of Washington, US - Gyorgy Fekete, NASA/Goddard, US - Michael Goodchild, U. of California, US - Hrvoje Lukatela, Calgary, Alberta, CN - Hanan Samet, U. of Maryland, US - Denis White, Oregon State U., US Some of the questions that these panelists might address include: - How can HT help spatial database management and analysis? - What are "Tessellar Arithmetics" and how can they help? - How does HT compare to raster and vector data models? - How do properties of triangles compare with squares'? - What properties do HT numbering schemes have? - How does HT handle data accuracy and precision? - Are there optimal polyhedral manifolds for HT? - Can HT be used to model time as well as space? - Is Orthographic the universal HT projection? Panelists were encouraged to provide abstracts of position papers for publication in the proceedings.
    [Show full text]
  • Greek and Indian Cosmology: Review of Early History
    Greek and Indian Cosmology: Review of Early History Subhash Kak∗ October 29, 2018 1 Introduction Greek and Indian traditions have profoundly influenced modern science. Ge- ometry, physics, and biology of the Greeks; arithmetic, algebra, and grammar of the Indians; and astronomy, philosophy, and medicine of both have played a key role in the creation of knowledge. The interaction between the Indi- ans and the Greeks after the time of Alexander is well documented, but can we trace this interaction to periods much before Alexander’s time so as to untangle the earliest connections between the two, especially as it concerns scientific ideas? Since science is only one kind of cultural expression, our search must encompass other items in the larger matrix of cultural forms so as to obtain a context to study the relationships. There are some intriguing parallels between the two but there are also important differences. In the ancient world there existed much interaction through trade and evidence for this interaction has been traced back to the third millennium BC, therefore there was sure to have been a flow of ideas in different directions. The evidence of interaction comes from the trade routes between India arXiv:physics/0303001v1 [physics.hist-ph] 28 Feb 2003 and the West that were active during the Harappan era. Exchange of goods was doubtlessly accompanied by an exchange of ideas. Furthermore, some ∗Louisiana State University, Baton Rouge, LA 70803-5901, USA, Email: [email protected] 1 communities migrated to places away from their homeland. For example, an Indian settlement has been traced in Memphis in Egypt based on the Indic themes of its art.1 The Indic element had a significant presence in West Asia during the second millennium BC and later.2 Likewise, Greek histori- ans accompanying Alexander reported the presence of Greek communities in Afghanistan.3 In view of these facts, the earlier view of the rise in a vacuum of Greek science cannot be maintained.4 Indian science must have also benefited from outside influences.
    [Show full text]
  • 7 Dee's Decad of Shapes and Plato's Number.Pdf
    Dee’s Decad of Shapes and Plato’s Number i © 2010 by Jim Egan. All Rights reserved. ISBN_10: ISBN-13: LCCN: Published by Cosmopolite Press 153 Mill Street Newport, Rhode Island 02840 Visit johndeetower.com for more information. Printed in the United States of America ii Dee’s Decad of Shapes and Plato’s Number by Jim Egan Cosmopolite Press Newport, Rhode Island C S O S S E M R O P POLITE “Citizen of the World” (Cosmopolite, is a word coined by John Dee, from the Greek words cosmos meaning “world” and politês meaning ”citizen”) iii Dedication To Plato for his pursuit of “Truth, Goodness, and Beauty” and for writing a mathematical riddle for Dee and me to figure out. iv Table of Contents page 1 “Intertransformability” of the 5 Platonic Solids 15 The hidden geometric solids on the Title page of the Monas Hieroglyphica 65 Renewed enthusiasm for the Platonic and Archimedean solids in the Renaissance 87 Brief Biography of Plato 91 Plato’s Number(s) in Republic 8:546 101 An even closer look at Plato’s Number(s) in Republic 8:546 129 Plato shows his love of 360, 2520, and 12-ness in the Ideal City of “The Laws” 153 Dee plants more clues about Plato’s Number v vi “Intertransformability” of the 5 Platonic Solids Of all the polyhedra, only 5 have the stuff required to be considered “regular polyhedra” or Platonic solids: Rule 1. The faces must be all the same shape and be “regular” polygons (all the polygon’s angles must be identical).
    [Show full text]
  • Geometry in Design Geometrical Construction in 3D Forms by Prof
    D’source 1 Digital Learning Environment for Design - www.dsource.in Design Course Geometry in Design Geometrical Construction in 3D Forms by Prof. Ravi Mokashi Punekar and Prof. Avinash Shide DoD, IIT Guwahati Source: http://www.dsource.in/course/geometry-design 1. Introduction 2. Golden Ratio 3. Polygon - Classification - 2D 4. Concepts - 3 Dimensional 5. Family of 3 Dimensional 6. References 7. Contact Details D’source 2 Digital Learning Environment for Design - www.dsource.in Design Course Introduction Geometry in Design Geometrical Construction in 3D Forms Geometry is a science that deals with the study of inherent properties of form and space through examining and by understanding relationships of lines, surfaces and solids. These relationships are of several kinds and are seen in Prof. Ravi Mokashi Punekar and forms both natural and man-made. The relationships amongst pure geometric forms possess special properties Prof. Avinash Shide or a certain geometric order by virtue of the inherent configuration of elements that results in various forms DoD, IIT Guwahati of symmetry, proportional systems etc. These configurations have properties that hold irrespective of scale or medium used to express them and can also be arranged in a hierarchy from the totally regular to the amorphous where formal characteristics are lost. The objectives of this course are to study these inherent properties of form and space through understanding relationships of lines, surfaces and solids. This course will enable understanding basic geometric relationships, Source: both 2D and 3D, through a process of exploration and analysis. Concepts are supported with 3Dim visualization http://www.dsource.in/course/geometry-design/in- of models to understand the construction of the family of geometric forms and space interrelationships.
    [Show full text]
  • Physical Proof of Only Five Regular Solids
    A Physical Proof for Five and Only Five Regular Solids Robert McDermott Center for High Performance Computing University of Utah Salt Lake City, Utah, 84112, USA E-mail: [email protected] Abstract Physical models are invaluable aids for conveying concepts in geometry, particularly concepts about polyhedra. In this paper physical polygons, polygon corners, polygon flat regions, polygon cylinders, polygon nets and polyhedra are all used to show a physical proof that there are five, and only five regular solids. Students from grade school, high school, undergraduate and graduate levels have been presented with this physical proof, and all of them have taken away something worthwhile related to their existing level of knowledge. 1. Introduction The Regular or Platonic solids can serve as a substantive foundation for the study of three- dimensional space. The better a student understands Regular solids, the better that student is able to understand more sophisticated concepts about space. Additional understanding of these solids is achieved by adding the sense of touch to the sense of vision and students who are able to handle Platonic solids reinforce the knowledge gained through their vision. The size of the models is also important. A model that fills the hands of a student gains her or his attention more than a considerably smaller or a considerably larger model. Regular polygons are simple shapes with straight and equal length edges, as well as, equal angles between each adjacent pair of those edges. An equilateral triangle, a square, a regular pentagon, and a regular hexagon as seen in Figure 1, are four regular polygons that we see in our everyday lives.
    [Show full text]
  • Cartographic and Geometric Components of a Global Sampling
    Cartographic and Geometric Components of a Global Sampling Design for Environmental Monitoring Denis White, A. Jon Kimerling, and W. Scott Overton ABSTRACT. A comprehensive environmental monitoring program based on a sound statistical design is necessary to provide estimates of the status of, and changes or trends in, the condition of ecological resources. A sampling design based upon a systematic grid can adequately assess the condition of many types of resources and retain flexibility for addressing new issues as they arise. The randomization of this grid requires that it be regular and retain equal-area cells when projected on the surface of the earth. After review of existing approaches to constructing regular subdivisions of the earth's surface, we propose the development of the sampling grid on the Lambert azimuthal equal~areamap projection of the earth's surface to the face of a truncated icosahedron fit to the globe. This geometric model has less deviation in area when subdivided as a spherical tessellation than any of the spherical Platonic solids, and less distortion in shape over the extent of a face when used for a projection surface by the Lambert azimuthal projection. A hexagon face of the truncated icosahedron covers the entire conterminous United States, and can be decomposed into a triangular grid at an appropriate density for sampling. The geometry of the triangular grid provides for varying the density, and points on the grid can be addressed in several ways. KEYWORDS: global sampling design, sampling grid, map projections, polyhedral tessellation, truncated icosahedron, hierarchical grid geometry. Introduction and other parts of North America, and possibly the entire globe.
    [Show full text]
  • The Platonic Solids and Fundamental Tests of Quantum Mechanics
    The Platonic solids and fundamental tests of quantum mechanics Armin Tavakoli and Nicolas Gisin Département de Physique Appliquée, Université de Genève, CH-1211 Genève, Switzerland The Platonic solids is the name tra- history of these solids and then use them to de- ditionally given to the five regular con- rive simple Bell inequalities tailored to be max- vex polyhedra, namely the tetrahedron, imally violated for measurement settings point- the octahedron, the cube, the icosahedron ing towards the vertices of the Platonic solids. and the dodecahedron. Perhaps strongly In this way, we connect beautiful mathematics boosted by the towering historical influ- with foundational quantum physics. However, ence of their namesake, these beautiful these Platonic Bell inequalities do not distinguish solids have, in well over two millennia, themselves with regard to experimental friendli- transcended traditional boundaries and ness: quantum theory predicts that their viola- entered the stage in a range of disciplines. tions are less robust to noise than the much sim- Examples include natural philosophy and pler Clauser-Horne-Shimony-Holt (CHSH) Bell mathematics from classical antiquity, sci- inequality [1]. In fact, Platonic Bell inequali- entific modeling during the days of the Eu- ties require more measurement settings - as many ropean scientific revolution and visual arts as the number of vertices of the platonic solid - ranging from the renaissance to moder- than the CHSH Bell inequality, which requires nity. Motivated by mathematical beauty only the absolute minimum of two settings per and a rich history, we consider the Platonic side. We also construct Bell inequalities tailored solids in the context of modern quantum to another class of elegant polyhedra, namely the mechanics.
    [Show full text]
  • A New Coordinate System for Constructing Spherical Grid Systems
    applied sciences Article A New Coordinate System for Constructing Spherical Grid Systems Kin Lei 1,*, Dongxu Qi 1,2 and Xiaolin Tian 1 1 Faculty of Information Technology, Macau University of Science and Technology, Macao 999078 , China; [email protected] (D.Q.); [email protected] (X.T.) 2 College of Sciences, North China University of Technology, Beijing 100144, China * Correspondence: [email protected] or [email protected] Received: 18 December 2019; Accepted: 13 January 2020; Published: 16 January 2020 Abstract: In astronomy, physics, climate modeling, geoscience, planetary science, and many other disciplines, the mass of data often comes from spherical sampling. Therefore, establishing an efficient and distortion-free representation of spherical data is essential. This paper introduces a novel spherical (global) coordinate system that is free of singularity. Contrary to classical coordinates, such as Cartesian or spherical polar systems, the proposed coordinate system is naturally defined on the spherical surface. The basic idea of this coordinate system originated from the classical planar barycentric coordinates that describe the positions of points on a plane concerning the vertices of a given planar triangle; analogously, spherical area coordinates (SACs) describe the positions of points on a sphere concerning the vertices of a given spherical triangle. In particular, the global coordinate system is obtained by decomposing the globe into several identical triangular regions, constructing local coordinates for each region, and then combining them. Once the SACs have been established, the coordinate isolines form a new class of global grid systems. This kind of grid system has some useful properties: the grid cells exhaustively cover the globe without overlapping and have the same shape, and the grid system has a congruent hierarchical structure and simple relationship with traditional coordinates.
    [Show full text]