The Thirteen Books of the Elements: Volume 1 Free Download

Total Page:16

File Type:pdf, Size:1020Kb

The Thirteen Books of the Elements: Volume 1 Free Download THE THIRTEEN BOOKS OF THE ELEMENTS: VOLUME 1 FREE DOWNLOAD Euclid,Sir Thomas L. Heath | 443 pages | 01 Jun 1956 | Dover Publications Inc. | 9780486600888 | English | New York, United States The Thirteen Books of the Elements, Vol. 1 Perhaps no book other than the Bible can boast so many editions, and certainly no mathematical work has had an influence comparable with that of Euclid's Elements ". Ordinary Differential Equations M. One of the most notable influences of Euclid on modern mathematics is the discussion of the parallel postulate. If you are looking for a math text there must surely be something more modern with a more concise commentary available. General Inquiries. Elements is the oldest extant large-scale deductive treatment of mathematics. Circles of Apollonius Apollonian circles Apollonian gasket Circumscribed circle Commensurability Diophantine equation Doctrine of proportionality Golden ratio Greek numerals Incircle and excircles of a triangle Method of exhaustion Parallel postulate Platonic solid Lune of Hippocrates Quadratrix of Hippias Regular polygon Straightedge and compass construction Triangle center. Fill in the form below. Morton D. It is in fact possible to create a valid geometry without the fifth postulate entirely, or with different versions of the fifth postulate elliptic geometry. Add to Wish List. Dover Publications. Book of Abstract Algebra Charles C. Do Carmo. The Mathematical Intelligencer. In all probability, it is, next to the Biblethe most widely spread book in the civilization of the Western world. Playfair's axiom. Experience an online class. Still, it is amazing to see the math they did with what they had. Download as PDF Printable version. For example, in the first construction of Book 1, Euclid used a premise that was neither postulated nor proved: that two circles with centers at the distance of their radius will intersect in two points. George Gamow. The ability of the ancient Greeks to perform complex mathematical calculations using only logic, a compass and a straight edge is profoundly humbling. We're featuring millions of their reader ratings on our book The Thirteen Books of the Elements: Volume 1 to help you find your new favourite book. For example, he proves the The Thirteen Books of the Elements: Volume 1 theorem by first inscribing a square on the sides of a right triangle, but only after constructing a square on a given line one proposition earlier. Euclid's Elements has been referred to as the most successful [a] [b] and influential [c] textbook ever written. We use cookies to improve this site Cookies are used to provide, analyse and improve our services; provide chat tools; and show you relevant content on advertising. It also appears that, for him to use a figure in one of his proofs, he needs to construct it in an earlier proposition. Euclid's axiomatic approach and constructive methods were widely influential. Create an Account. Your Rating Rating 1 star 2 stars 3 stars 4 stars 5 stars. The Thirteen Books of the Elements: Volume 1 13 books cover an enormous swath of math, The Thirteen Books of the Elements: Volume 1 planar geometry to trignometry to irrational numbers and root finding to 3D geometry. If you are fluent in Latin, Greek, French, German and English, have a background in ancient greek literature, Renaissance and 19th century mathematical theory, and love geometric proofs then this is the book for you. It is difficult to argue with the fact that Euclid stands as one of the founding figures of mathematics. Heiberg and Sir Thomas Little Heath in their editions of the text. The book continues Euclid's comparison of regular solids inscribed in spheres, with the chief result being that the ratio of the surfaces of the dodecahedron and icosahedron inscribed in the same sphere is the same as the ratio of their volumes, the ratio being. A collection of all 13 Euclid's books of The Elements, with an introduction and commentary throughout the book. Bestselling Series. Quick Links Amazon. At times the footnotes threaten to overwhelm the text and for every page of Euclid there must be at least 3 pages of commentary. New York, NY : Springer. Full Name person. Considering these pages were written more than two thousand years ago I stand in awe. Popular Features. For example, there was no notion of an angle greater than two right angles, [17] the number 1 was sometimes treated separately from other positive integers, and as multiplication was treated geometrically he did not use the product of more than The Thirteen Books of the Elements: Volume 1 different numbers. Geometry emerged as an indispensable The Thirteen Books of the Elements: Volume 1 of the standard education of the English gentleman in the eighteenth century; by the Victorian period it was also becoming an important part of the education of artisans, children at Board Schools, colonial subjects and, to a rather lesser degree, women. Rating Average: 4. Editor secondary author some editions confirmed Heath, Thomas L. Latin and Greek quotes of considerable length are left untranslated as an exercise for the The Thirteen Books of the Elements: Volume 1, and French and German receive similar treatment. Skip to the beginning of the images gallery. References to obscure mathematical theory and little known Greek manuscripts abound. Angle bisector theorem. Belongs to Series Elements Then the 'construction' or 'machinery' follows. Skip to the end of the images gallery. Vincent Millay wrote in her sonnet " Euclid alone has looked on Beauty bare ", "O blinding hour, O holy, terrible day, When first the shaft into his vision shone Of light anatomized! Copies of the Greek text still exist, some of which can be found in the Vatican Library and the Bodleian Library in Oxford. Not until the 20th century, by which time its content was universally taught through other school textbooks, did it cease to be considered something all educated people had read. New York: Dover Publications. I Agree This site uses cookies to deliver our services, improve performance, for analytics, and if not signed in for advertising. Calculus Morris Kline. Pythagoras c. However, Euclid's original proof of this proposition, is general, valid, and does not depend on the figure used as an example to illustrate one given configuration. Although known to, for instance, Cicerono record exists of the text having been translated into Latin prior to Boethius in the fifth or sixth century. Introduction to Topology Bert Mendelson. .
Recommended publications
  • Sink Or Float? Thought Problems in Math and Physics
    AMS / MAA DOLCIANI MATHEMATICAL EXPOSITIONS VOL AMS / MAA DOLCIANI MATHEMATICAL EXPOSITIONS VOL 33 33 Sink or Float? Sink or Float: Thought Problems in Math and Physics is a collection of prob- lems drawn from mathematics and the real world. Its multiple-choice format Sink or Float? forces the reader to become actively involved in deciding upon the answer. Thought Problems in Math and Physics The book’s aim is to show just how much can be learned by using everyday Thought Problems in Math and Physics common sense. The problems are all concrete and understandable by nearly anyone, meaning that not only will students become caught up in some of Keith Kendig the questions, but professional mathematicians, too, will easily get hooked. The more than 250 questions cover a wide swath of classical math and physics. Each problem s solution, with explanation, appears in the answer section at the end of the book. A notable feature is the generous sprinkling of boxes appearing throughout the text. These contain historical asides or A tub is filled Will a solid little-known facts. The problems themselves can easily turn into serious with lubricated aluminum or tin debate-starters, and the book will find a natural home in the classroom. ball bearings. cube sink... ... or float? Keith Kendig AMSMAA / PRESS 4-Color Process 395 page • 3/4” • 50lb stock • finish size: 7” x 10” i i \AAARoot" – 2009/1/21 – 13:22 – page i – #1 i i Sink or Float? Thought Problems in Math and Physics i i i i i i \AAARoot" – 2011/5/26 – 11:22 – page ii – #2 i i c 2008 by The
    [Show full text]
  • Some Curves and the Lengths of Their Arcs Amelia Carolina Sparavigna
    Some Curves and the Lengths of their Arcs Amelia Carolina Sparavigna To cite this version: Amelia Carolina Sparavigna. Some Curves and the Lengths of their Arcs. 2021. hal-03236909 HAL Id: hal-03236909 https://hal.archives-ouvertes.fr/hal-03236909 Preprint submitted on 26 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Some Curves and the Lengths of their Arcs Amelia Carolina Sparavigna Department of Applied Science and Technology Politecnico di Torino Here we consider some problems from the Finkel's solution book, concerning the length of curves. The curves are Cissoid of Diocles, Conchoid of Nicomedes, Lemniscate of Bernoulli, Versiera of Agnesi, Limaçon, Quadratrix, Spiral of Archimedes, Reciprocal or Hyperbolic spiral, the Lituus, Logarithmic spiral, Curve of Pursuit, a curve on the cone and the Loxodrome. The Versiera will be discussed in detail and the link of its name to the Versine function. Torino, 2 May 2021, DOI: 10.5281/zenodo.4732881 Here we consider some of the problems propose in the Finkel's solution book, having the full title: A mathematical solution book containing systematic solutions of many of the most difficult problems, Taken from the Leading Authors on Arithmetic and Algebra, Many Problems and Solutions from Geometry, Trigonometry and Calculus, Many Problems and Solutions from the Leading Mathematical Journals of the United States, and Many Original Problems and Solutions.
    [Show full text]
  • Why Mathematical Proof?
    Why Mathematical Proof? Dana S. Scott, FBA, FNAS University Professor Emeritus Carnegie Mellon University Visiting Scholar University of California, Berkeley NOTICE! The author has plagiarized text and graphics from innumerable publications and sites, and he has failed to record attributions! But, as this lecture is intended as an entertainment and is not intended for publication, he regards such copying, therefore, as “fair use”. Keep this quiet, and do please forgive him. A Timeline for Geometry Some Greek Geometers Thales of Miletus (ca. 624 – 548 BC). Pythagoras of Samos (ca. 580 – 500 BC). Plato (428 – 347 BC). Archytas (428 – 347 BC). Theaetetus (ca. 417 – 369 BC). Eudoxus of Cnidus (ca. 408 – 347 BC). Aristotle (384 – 322 BC). Euclid (ca. 325 – ca. 265 BC). Archimedes of Syracuse (ca. 287 – ca. 212 BC). Apollonius of Perga (ca. 262 – ca. 190 BC). Claudius Ptolemaeus (Ptolemy)(ca. 90 AD – ca. 168 AD). Diophantus of Alexandria (ca. 200 – 298 AD). Pappus of Alexandria (ca. 290 – ca. 350 AD). Proclus Lycaeus (412 – 485 AD). There is no Royal Road to Geometry Euclid of Alexandria ca. 325 — ca. 265 BC Euclid taught at Alexandria in the time of Ptolemy I Soter, who reigned over Egypt from 323 to 285 BC. He authored the most successful textbook ever produced — and put his sources into obscurity! Moreover, he made us struggle with proofs ever since. Why Has Euclidean Geometry Been So Successful? • Our naive feeling for space is Euclidean. • Its methods have been very useful. • Euclid also shows us a mysterious connection between (visual) intuition and proof. The Pythagorean Theorem Euclid's Elements: Proposition 47 of Book 1 The Pythagorean Theorem Generalized If it holds for one Three triple, Similar it holds Figures for all.
    [Show full text]
  • THE INVENTION of ATOMIST ICONOGRAPHY 1. Introductory
    THE INVENTION OF ATOMIST ICONOGRAPHY Christoph Lüthy Center for Medieval and Renaissance Natural Philosophy University of Nijmegen1 1. Introductory Puzzlement For centuries now, particles of matter have invariably been depicted as globules. These glob- ules, representing very different entities of distant orders of magnitudes, have in turn be used as pictorial building blocks for a host of more complex structures such as atomic nuclei, mole- cules, crystals, gases, material surfaces, electrical currents or the double helixes of DNA. May- be it is because of the unsurpassable simplicity of the spherical form that the ubiquity of this type of representation appears to us so deceitfully self-explanatory. But in truth, the spherical shape of these various units of matter deserves nothing if not raised eyebrows. Fig. 1a: Giordano Bruno: De triplici minimo et mensura, Frankfurt, 1591. 1 Research for this contribution was made possible by a fellowship at the Max-Planck-Institut für Wissenschafts- geschichte (Berlin) and by the Netherlands Organization for Scientific Research (NWO), grant 200-22-295. This article is based on a 1997 lecture. Christoph Lüthy Fig. 1b: Robert Hooke, Micrographia, London, 1665. Fig. 1c: Christian Huygens: Traité de la lumière, Leyden, 1690. Fig. 1d: William Wollaston: Philosophical Transactions of the Royal Society, 1813. Fig. 1: How many theories can be illustrated by a single image? How is it to be explained that the same type of illustrations should have survived unperturbed the most profound conceptual changes in matter theory? One needn’t agree with the Kuhnian notion that revolutionary breaks dissect the conceptual evolution of science into incommensu- rable segments to feel that there is something puzzling about pictures that are capable of illus- 2 THE INVENTION OF ATOMIST ICONOGRAPHY trating diverging “world views” over a four-hundred year period.2 For the matter theories illustrated by the nearly identical images of fig.
    [Show full text]
  • On the Chiral Archimedean Solids Dedicated to Prof
    Beitr¨agezur Algebra und Geometrie Contributions to Algebra and Geometry Volume 43 (2002), No. 1, 121-133. On the Chiral Archimedean Solids Dedicated to Prof. Dr. O. Kr¨otenheerdt Bernulf Weissbach Horst Martini Institut f¨urAlgebra und Geometrie, Otto-von-Guericke-Universit¨atMagdeburg Universit¨atsplatz2, D-39106 Magdeburg Fakult¨atf¨urMathematik, Technische Universit¨atChemnitz D-09107 Chemnitz Abstract. We discuss a unified way to derive the convex semiregular polyhedra from the Platonic solids. Based on this we prove that, among the Archimedean solids, Cubus simus (i.e., the snub cube) and Dodecaedron simum (the snub do- decahedron) can be characterized by the following property: it is impossible to construct an edge from the given diameter of the circumsphere by ruler and com- pass. Keywords: Archimedean solids, enantiomorphism, Platonic solids, regular poly- hedra, ruler-and-compass constructions, semiregular polyhedra, snub cube, snub dodecahedron 1. Introduction Following Pappus of Alexandria, Archimedes was the first person who described those 13 semiregular convex polyhedra which are named after him: the Archimedean solids. Two representatives from this family have various remarkable properties, and therefore the Swiss pedagogicians A. Wyss and P. Adam called them “Sonderlinge” (eccentrics), cf. [25] and [1]. Other usual names are Cubus simus and Dodecaedron simum, due to J. Kepler [17], or snub cube and snub dodecahedron, respectively. Immediately one can see the following property (characterizing these two polyhedra among all Archimedean solids): their symmetry group contains only proper motions. There- fore these two polyhedra are the only Archimedean solids having no plane of symmetry and having no center of symmetry. So each of them occurs in two chiral (or enantiomorphic) forms, both having different orientation.
    [Show full text]
  • A Short History of Greek Mathematics
    Cambridge Library Co ll e C t i o n Books of enduring scholarly value Classics From the Renaissance to the nineteenth century, Latin and Greek were compulsory subjects in almost all European universities, and most early modern scholars published their research and conducted international correspondence in Latin. Latin had continued in use in Western Europe long after the fall of the Roman empire as the lingua franca of the educated classes and of law, diplomacy, religion and university teaching. The flight of Greek scholars to the West after the fall of Constantinople in 1453 gave impetus to the study of ancient Greek literature and the Greek New Testament. Eventually, just as nineteenth-century reforms of university curricula were beginning to erode this ascendancy, developments in textual criticism and linguistic analysis, and new ways of studying ancient societies, especially archaeology, led to renewed enthusiasm for the Classics. This collection offers works of criticism, interpretation and synthesis by the outstanding scholars of the nineteenth century. A Short History of Greek Mathematics James Gow’s Short History of Greek Mathematics (1884) provided the first full account of the subject available in English, and it today remains a clear and thorough guide to early arithmetic and geometry. Beginning with the origins of the numerical system and proceeding through the theorems of Pythagoras, Euclid, Archimedes and many others, the Short History offers in-depth analysis and useful translations of individual texts as well as a broad historical overview of the development of mathematics. Parts I and II concern Greek arithmetic, including the origin of alphabetic numerals and the nomenclature for operations; Part III constitutes a complete history of Greek geometry, from its earliest precursors in Egypt and Babylon through to the innovations of the Ionic, Sophistic, and Academic schools and their followers.
    [Show full text]
  • A Cultural History of Physics
    Károly Simonyi A Cultural History of Physics Translated by David Kramer Originally published in Hungarian as A fizika kultûrtörténete, Fourth Edition, Akadémiai Kiadó, Budapest, 1998, and published in German as Kulturgeschichte der Physik, Third Edition, Verlag Harri Deutsch, Frankfurt am Main, 2001. First Hungarian edition 1978. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2012 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper Version Date: 20111110 International Standard Book Number: 978-1-56881-329-5 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowl- edged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.
    [Show full text]
  • Instructions for Plato's Solids
    Includes 195 precision START HERE! Plato’s Solids The Platonic Solids are named Zometool components, Instructions according to the number of faces 50 foam dual pieces, (F) they possess. For example, and detailed instructions You can build the five Platonic Solids, by Dr. Robert Fathauer “octahedron” means “8-faces.” The or polyhedra, and their duals. number of Faces (F), Edges (E) and Vertices (V) for each solid are shown A polyhedron is a solid whose faces are Why are there only 5 perfect 3D shapes? This secret was below. An edge is a line where two polygons. Only fiveconvex regular polyhe- closely guarded by ancient Greeks, and is the mathematical faces meet, and a vertex is a point dra exist (i.e., each face is the same type basis of nearly all natural and human-built structures. where three or more faces meet. of regular polygon—a triangle, square or Build all five of Plato’s solids in relation to their duals, and see pentagon—and there are the same num- Each Platonic Solid has another how they represent the 5 elements: ber of faces around every corner.) Platonic Solid as its dual. The dual • the Tetrahedron (4-faces) = fire of the tetrahedron (“4-faces”) is again If you put a point in the center of each face • the Cube (6-faces) = earth a tetrahedron; the dual of the cube is • the Octahedron (8-faces) = water of a polyhedron, and connect those points the octahedron (“8-faces”), and vice • the Icosahedron (20-faces) = air to their nearest neighbors, you get its dual.
    [Show full text]
  • The Arabic Sources of Jordanus De Nemore
    The Arabic Sources of Jordanus de Nemore IMPORTANT NOTICE: Author: Prof. Menso Folkerts and Prof. Richard Lorch All rights, including copyright, in the content of this document are owned or controlled for these purposes by FSTC Limited. In Chief Editor: Prof. Mohamed El-Gomati accessing these web pages, you agree that you may only download the content for your own personal non-commercial Deputy Editor: Prof. Mohammed Abattouy use. You are not permitted to copy, broadcast, download, store (in any medium), transmit, show or play in public, adapt or Associate Editor: Dr. Salim Ayduz change in any way the content of this document for any other purpose whatsoever without the prior written permission of FSTC Release Date: July, 2007 Limited. Publication ID: 710 Material may not be copied, reproduced, republished, downloaded, posted, broadcast or transmitted in any way except for your own personal non-commercial home use. Any other use Copyright: © FSTC Limited, 2007 requires the prior written permission of FSTC Limited. You agree not to adapt, alter or create a derivative work from any of the material contained in this document or use it for any other purpose other than for your personal non-commercial use. FSTC Limited has taken all reasonable care to ensure that pages published in this document and on the MuslimHeritage.com Web Site were accurate at the time of publication or last modification. Web sites are by nature experimental or constantly changing. Hence information published may be for test purposes only, may be out of date, or may be the personal opinion of the author.
    [Show full text]
  • WHAT's the BIG DEAL ABOUT GLOBAL HIERARCHICAL TESSELLATION? Organizer: Geoffrey Dutton 150 Irving Street Watertown MA 02172 USA Email: [email protected]
    WHAT'S THE BIG DEAL ABOUT GLOBAL HIERARCHICAL TESSELLATION? Organizer: Geoffrey Dutton 150 Irving Street Watertown MA 02172 USA email: [email protected] This panel will present basic information about hierarchical tessellations (HT's) as geographic data models, and provide specific details about a few prototype systems that are either hierarchical tessellations, global tessellations, or both. Participants will advocate, criticize and discuss these models, allowing members of the audience to compare, contrast and better understand the mechanics, rationales and significance of this emerging class of nonstandard spatial data models in the context of GIS. The panel has 7 members, most of whom are engaged in research in HT data modeling, with one or more drawn from the ranks of informed critics of such activity. The panelists are: - Chairperson TEA - Zi-Tan Chen, ESRI, US - Nicholas Chrisman, U. of Washington, US - Gyorgy Fekete, NASA/Goddard, US - Michael Goodchild, U. of California, US - Hrvoje Lukatela, Calgary, Alberta, CN - Hanan Samet, U. of Maryland, US - Denis White, Oregon State U., US Some of the questions that these panelists might address include: - How can HT help spatial database management and analysis? - What are "Tessellar Arithmetics" and how can they help? - How does HT compare to raster and vector data models? - How do properties of triangles compare with squares'? - What properties do HT numbering schemes have? - How does HT handle data accuracy and precision? - Are there optimal polyhedral manifolds for HT? - Can HT be used to model time as well as space? - Is Orthographic the universal HT projection? Panelists were encouraged to provide abstracts of position papers for publication in the proceedings.
    [Show full text]
  • Generalization of Apollonius Circle Arxiv:2105.03673V1 [Math.MG] 8
    Generalization of Apollonius Circle Omer¨ Avcı∗ Omer¨ Talip Akalın † Faruk Avcı ‡ Halil Salih Orhan§ May 11, 2021 Abstract Apollonius of Perga, showed that for two given points A; B in the Euclidean plane and a positive real number k 6= 1, geometric locus of the points X that satisfies the equation jXAj = kjXBj is a circle. This circle is called Apollonius circle. In this paper we generalize the definition of the Apollonius circle for two given circles Γ1; Γ2 and we show that geometric locus of the points X with the ratio of the power with respect to the circles Γ1; Γ2 is constant, is also a circle. Using this we generalize the definition of Apollonius Circle, and generalize some results about Apollonius Circle. 1 Preliminaries Theorem 1.1 (Apollonius Theorem) For points A; B in the Euclidean plane, and a positive real number k 6= 1, the points X which satisfies the equation jXAj = kjBXj forms a circle. When k = 1, they form the line perpendicular to AB at the middle point of [AB] [1]. Definition 1.1 For three different points A; B; C in Euclidean plane such that A is not on arXiv:2105.03673v1 [math.MG] 8 May 2021 the perpendicular bisector of the segment [BC]. We will use the notation KA(B; C) for the circle which consists of points that holds the equation jXBj jABj = jXCj jACj and MA(B; C) for the center and rA(B; C) for the radius of that circle. During this article, we will call the notation KA(B; C), Apollonius Circle of point A to the points B; C.
    [Show full text]
  • Quadratrix of Hippias -- from Wolfram Mathworld
    12/3/13 Quadratrix of Hippias -- from Wolfram MathWorld Search MathWorld Algebra Applied Mathematics Geometry > Curves > Plane Curves > Polar Curves > Geometry > Geometric Construction > Calculus and Analysis Interactive Entries > Interactive Demonstrations > Discrete Mathematics THINGS TO TRY: Quadratrix of Hippias quadratrix of hippias Foundations of Mathematics 12-w heel graph Geometry d^4/dt^4(Ai(t)) History and Terminology Number Theory Probability and Statistics Recreational Mathematics Hippias Quadratrix Bruno Autin Topology Alphabetical Index Interactive Entries Random Entry New in MathWorld MathWorld Classroom About MathWorld The quadratrix was discovered by Hippias of Elias in 430 BC, and later studied by Dinostratus in 350 BC (MacTutor Contribute to MathWorld Archive). It can be used for angle trisection or, more generally, division of an angle into any integral number of equal Send a Message to the Team parts, and circle squaring. It has polar equation MathWorld Book (1) Wolfram Web Resources » 13,191 entries with corresponding parametric equation Last updated: Wed Nov 6 2013 (2) Created, developed, and nurtured by Eric Weisstein at Wolfram Research (3) and Cartesian equation (4) Using the parametric representation, the curvature and tangential angle are given by (5) (6) for . SEE ALSO: Angle trisection, Cochleoid REFERENCES: Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 223, 1987. Law rence, J. D. A Catalog of Special Plane Curves. New York: Dover, pp. 195 and 198, 1972. Loomis, E. S. "The Quadratrix." §2.1 in The Pythagorean Proposition: Its Demonstrations Analyzed and Classified and Bibliography of Sources for Data of the Four Kinds of "Proofs," 2nd ed.
    [Show full text]