Dissertation Committee Page

Total Page:16

File Type:pdf, Size:1020Kb

Dissertation Committee Page Department of Environmental Studies DISSERTATION COMMITTEE PAGE The undersigned have examined the dissertation entitled: ANALYSIS OF LAND USE/LAND COVER CHANGE IMPACTS UPON ECOSYSTEM SERVICES IN MONTANE TROPICAL FOREST OF RWANDA: FOREST CARBON ASSESSMENT AND REDD+ PREPAREDNESS Presented by McArd Joseph Mlotha Candidate for the degree of Doctor of Philosophy (Environmental Studies) Committee chair: Beth A. Kaplin, PhD Title/Affiliation: Professor, Antioch University New England, Department of Environmental Studies Committee member: Peter Palmiotto, DF Title/Affiliation: Core Faculty at Antioch University New England, Department of Environmental Studies Committee member: Naikoa Aguilar-Amuchastegui, PhD Title/Affiliation: Director Forest Carbon Science, Lead Forest Carbon MRV Team leader, Forests and Climate, World Wildlife Fund (WWF-US). Defense Date: 5th April 2018 *Signatures are on file with the Registrar’s Office at Antioch University New England © Copyright by McArd Joseph Mlotha, 2018, All rights reserved ANALYSIS OF LAND USE/LAND COVER CHANGE IMPACTS UPON ECOSYSTEM SERVICES IN MONTANE TROPICAL FOREST OF RWANDA: FOREST CARBON ASSESSMENT AND REDD+ PREPAREDNESS by McArd Joseph Mlotha MA GISDE. Clark University, Worcester, MA, 2004 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Environmental Studies) at Antioch University New England Keene, New Hampshire, USA 2018 DEDICATION This dissertation is dedicated to my beloved late parents, my late father, Laston Bywell Songiso Mlotha, and my late mother Cecilia Laston Mlotha (Nyamvula), whom I cherish as my role models, full of love and care. I am grateful for the great love and support, you taught me to work hard and persevere right from my childhood to this day, and I will miss you forever. I wish you were available to witness the fruits of your great work as parents. RIP Mum and Dad 4 ACKNOWLEDGMENTS The journey has been long with so many ups and downs, gains and losses, twists and turns; however, I met many nice people along this journey to whom I am indebted to acknowledge here for their encouragement, support and guidance to reach the PhD defense. I would never have been able to finish my dissertation without the guidance of my committee members, help from very kind and lovely friends, and support from my family and brethren in Christ. I am very thankful to my advisor Dr Beth Kaplin and chair of my committee for her caring and patience, for providing me with excellent guidance and for being very helpful and very supportive throughout this journey. You opened your house, which I call home far from home, and your family was so amazing and loving, Definitely, I will miss your husband James Jordan and your daughter Stella Jordan; they were very welcoming and encouraging in many ways. I would like to thank my advisor and member of my committee Dr Peter Palmiotto for his wonderful support and encouragements and for being very supportive throughout the difficult times. I would like to thank Dr Naikoa Aguilar-Amuchastegui of WWF-USA, a member of my committee, from whom I benefited due to his critical reviews to improve my dissertation and his support and patience throughout the dissertation process. To my colleagues and members of my cohort together with other students, faculty members and staff, I say thank you for making my stay in Keene and my life at Antioch University New England a pleasant and memorable time. Special thanks to Dr Nancy Rich, Dr Kirsten Martin, Dr Robin Martino, and Dr Tharcisse Ukizintambara, who were very encouraging and supportive and available for any question, including my curiosity over 5 cultural differences. Dr Tharcisse Ukizintambara helped with French-English translation for the readings which were only available in French. I am very grateful to Provost Melinda Treadwell and past University Presidents David Caruso and Stephen Jones for financial aid through Jonathan Daniels and Norman Wilson scholarships, without which it was not possible to pay for tuition fees some of the semesters. I would like to thank Idea Wild for the provision of field equipment and the Center for Tropical Ecology and Conservation (CTEC) at Antioch University New England in Keene for the field travel grant. There are many other friends who financially contributed towards my fieldwork and I am very thankful to all. In Rwanda, I thank Dr Michel Masozera, who was the Country Director of the Wildlife Conservation Society (WCS), for providing me with 2009 biodiversity data for Nyungwe National Park and with field staff, and for allowing me to use the WCS facilities. I thank Dr Gaspard Rwanyiziri, the Director of Centre for GIS and remote sensing research and training at the University of Rwanda, College of Sciences, for providing me with a working place. I thank my field team, Damieni Ntawurimeza, Mika Nsanzimana and Alberick Dushimimana led by Jean Baptiste Gakima, who was very motivated and supportive in the field as well as at campsite. I appreciate their zeal and willingness to work even in difficult conditions of too much rain and cutting through thick forest. I thank the Rwanda Development Board (RDB)-Kigali for permission to carry out research within Nyungwe National Park and I thank Louis Rugerinyange, the former Chief Warden, RDB Nyungwe National Park together with Park Rangers for support and permission to work or camp within the Ranger posts during field work. 6 Finally, I would also like to thank the Mlothas, especially my beloved Dorothy, Eleazer, Rejoice and Victory, for their patience, great love, and encouragement for this very long journey. I am very thankful and I missed you all. It has not been easy to miss many of your birthdays and Christmas times plus visits to the village. I thank you for your prayers and best wishes, may God bless you all. Thank you very much, everyone! 7 ABSTRACT Changes in forest cover, especially changes within tropical forests, affect global climate change, together with ecosystems and forest carbon. Forests play a key role in both carbon emission and carbon sequestration. Efforts to reduce emissions through reduced deforestation and degradation of forests have become a common discussion among scientists and politicians under the auspices of the United Nations Programme on Reducing Emissions from Deforestation and Forest Degradation (UN-REDD Programme). This dissertation research assessed the impacts of land use land cover change upon ecosystem services from a protected area focusing on forest carbon distribution and vegetation mapping using remote sensing and geographical information systems (GIS). I also assessed Rwanda’s preparedness in the United Nations global program, Reducing Emissions from Deforestation and forest Degradation, Measuring, Monitoring, Reporting, and Verifying (REDD+MMRV). I carried out research in Nyungwe National Park (NNP), one of four National Parks of Rwanda. NNP is a montane tropical forest located in the Albertine Rift, one of the most biodiverse places in central and east Africa. I used remote sensing and field data collection from December 2011 and July 2012 in the western part of the Park to assess distribution and quantities of aboveground (ABG) forest carbon using generalized allometric functions. Using Landsat data together with 2009 high resolution color orthophotos and groundtruthing, I analyzed land cover changes between 1986 and 2011 for NNP. The landuse land cover change analysis showed that between 1986 and 1995 there was a minor increase in forest cover from 53% to 58% while from 1995-2003 a substantial decrease in forest cover occurred. Between 2003 and 2011 was a period of recovery with forest cover increasing by 59%. Vegetation analysis based on a 2009 Park biodiversity survey yielded 13 vegetation communities based on dominant and co-dominant species. Macaranga kilimandscharica was 8 found to be dominant in three communities, representing 42% of the Park, and co-dominant in one community, representing 7% of the Park. While ~50% of the Park is secondary forest, the change in protection status has had a positive impact upon forest cover change within the Park. Assessment of REDD+-MMRV readiness revealed that Rwanda has higher capacity and readiness in remote sensing and GIS than in forest inventory and carbon pools inventory. Lack of data to support development of emission models is a major problem at the national level which needs to be addressed. Key words: Carbon, emission, land cover change, land use, orthophotos, protected areas, Reducing Emissions from Deforestation and forest Degradation, Measuring, Monitoring, Reporting, and Verifying (REDD+MMRV), tropical forest, vegetation communities. 9 TABLE OF CONTENTS DEDICATION ............................................................................................................................. 4 ACKNOWLEDGMENTS ............................................................................................................ 5 ABSTRACT ................................................................................................................................. 8 TABLE OF CONTENTS ........................................................................................................... 10 LIST OF FIGURES .................................................................................................................... 11 LIST OF TABLES ..................................................................................................................... 13 Chapter 1: Introduction
Recommended publications
  • Method to Estimate Dry-Kiln Schedules and Species Groupings: Tropical and Temperate Hardwoods
    United States Department of Agriculture Method to Estimate Forest Service Forest Dry-Kiln Schedules Products Laboratory Research and Species Groupings Paper FPL–RP–548 Tropical and Temperate Hardwoods William T. Simpson Abstract Contents Dry-kiln schedules have been developed for many wood Page species. However, one problem is that many, especially tropical species, have no recommended schedule. Another Introduction................................................................1 problem in drying tropical species is the lack of a way to Estimation of Kiln Schedules.........................................1 group them when it is impractical to fill a kiln with a single Background .............................................................1 species. This report investigates the possibility of estimating kiln schedules and grouping species for drying using basic Related Research...................................................1 specific gravity as the primary variable for prediction and grouping. In this study, kiln schedules were estimated by Current Kiln Schedules ..........................................1 establishing least squares relationships between schedule Method of Schedule Estimation...................................2 parameters and basic specific gravity. These relationships were then applied to estimate schedules for 3,237 species Estimation of Initial Conditions ..............................2 from Africa, Asia and Oceana, and Latin America. Nine drying groups were established, based on intervals of specific Estimation
    [Show full text]
  • Doctorat De L'université De Toulouse
    En vue de l’obt ention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par : Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) Discipline ou spécialité : Ecologie, Biodiversité et Evolution Présentée et soutenue par : Joeri STRIJK le : 12 / 02 / 2010 Titre : Species diversification and differentiation in the Madagascar and Indian Ocean Islands Biodiversity Hotspot JURY Jérôme CHAVE, Directeur de Recherches CNRS Toulouse Emmanuel DOUZERY, Professeur à l'Université de Montpellier II Porter LOWRY II, Curator Missouri Botanical Garden Frédéric MEDAIL, Professeur à l'Université Paul Cezanne Aix-Marseille Christophe THEBAUD, Professeur à l'Université Paul Sabatier Ecole doctorale : Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingénieries (SEVAB) Unité de recherche : UMR 5174 CNRS-UPS Evolution & Diversité Biologique Directeur(s) de Thèse : Christophe THEBAUD Rapporteurs : Emmanuel DOUZERY, Professeur à l'Université de Montpellier II Porter LOWRY II, Curator Missouri Botanical Garden Contents. CONTENTS CHAPTER 1. General Introduction 2 PART I: ASTERACEAE CHAPTER 2. Multiple evolutionary radiations and phenotypic convergence in polyphyletic Indian Ocean Daisy Trees (Psiadia, Asteraceae) (in preparation for BMC Evolutionary Biology) 14 CHAPTER 3. Taxonomic rearrangements within Indian Ocean Daisy Trees (Psiadia, Asteraceae) and the resurrection of Frappieria (in preparation for Taxon) 34 PART II: MYRSINACEAE CHAPTER 4. Phylogenetics of the Mascarene endemic genus Badula relative to its Madagascan ally Oncostemum (Myrsinaceae) (accepted in Botanical Journal of the Linnean Society) 43 CHAPTER 5. Timing and tempo of evolutionary diversification in Myrsinaceae: Badula and Oncostemum in the Indian Ocean Island Biodiversity Hotspot (in preparation for BMC Evolutionary Biology) 54 PART III: MONIMIACEAE CHAPTER 6. Biogeography of the Monimiaceae (Laurales): a role for East Gondwana and long distance dispersal, but not West Gondwana (accepted in Journal of Biogeography) 72 CHAPTER 7 General Discussion 86 REFERENCES 91 i Contents.
    [Show full text]
  • Avian Fruit Ingestion Differentially Facilitates Seed Germination of Four Fleshy-Fruited Plant Species of an Afrotropical Forest
    Plant Ecology and Evolution 144 (1): 96–100, 2011 doi:10.5091/plecevo.2011.503 SHORT COMMUNICATION Avian fruit ingestion differentially facilitates seed germination of four fleshy-fruited plant species of an Afrotropical forest Valérie Lehouck1,2,*, Toon Spanhove1,2,3 & Luc Lens1 1Terrestrial Ecology Unit, Ghent University, K.L. Ledeganckstraat 35, BE-9000 Ghent, Belgium 2Ornithology Section, Zoology Department, National Museums of Kenya, P.O. Box 40658, 00100, Nairobi, Kenya 3Institute for Nature and Forest (INBO), Kliniekstraat 25, BE-1070 Brussels, Belgium *Author for correspondence: [email protected] Background and aims – The effects of gut treatment on the germination of animal-dispersed seeds are critical for the recruitment of many fleshy-fruited plant species, and hence for forest dynamics. However, these effects remain poorly studied especially in African plant species. In this paper, we aim to investigate the effects of gut treatment on the germination capacity and mean germination time of four common plant species of an Afrotropical cloud forest. Methods – We fed Xymalos monospora fruits to its three main avian dispersers to investigate different responses among frugivore species. Next, fruits of four plant species were fed to the most dominant avian disperser, Andropadus milanjensis, to compare responses among plant species. Germination capacity and mean germination time were compared among gut-passed seeds, manually depulped seeds and intact fruits. Key results – Germination of Xymalos monospora seeds was up to nine times more likely and almost twice as fast after bird ingestion compared to intact fruits. An increase in germination capacity, but not in mean germination time, was also detected in four sympatric plant species after ingestion by Andropadus milanjensis.
    [Show full text]
  • E-Cop18-Prop Draft-Widdringtonia
    Original language: English CoP18 Doc. XXX CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________________ Eighteenth meeting of the Conference of the Parties Colombo (Sri Lanka), 23 May – 3 June 2019 CONSIDERATION OF PROPOSALS FOR AMENDMENT OF APPENDICES II1 A. Proposal To list the species Widdringtonia whytei in CITES Appendix II without annotation specifying the types of specimens to be included, in order to include all readily recognizable parts and derivatives in accordance with Resolution Conf. 11.21 (Rev. CoP17). On the basis of available trade data and information it is known that the regulation of trade in the species is absolutely necessary to avoid this critically endangered species, with major replantation efforts underway, becoming eligible for inclusion in Appendix I in the very near future. B. Proponent Malawi C. Supporting Statement 1. Taxonomy 1.1. Class: Pinopsida 1.2. Order: Pinales 1.3. Family: Cupressaceae 1.4. Genus and species: Widdringtonia whytei Rendle 1.5. Scientific synonyms: Widdringtonia nodiflora variety whytei (Rendle) Silba 1.6. Common names: Mulanje cedar, Mulanje cedarwood, Mulanje cypress, Mkunguza 2. Overview Widdringtonia whytei or Mulanje cedar, the national tree of Malawi, is a conifer in the cypress family endemic to the upper altitude reaches of the Mount Mulanje massif (1500-2200 a.s.l.). This highly valued, decay- and termite-resistant species is considered to be “critically endangered” by the International Union for Conservation of Nature (IUCN) Red List of Threatened Species after years of overexploitation from unsustainable and illegal logging combined with human-induced changes to the fire regime, invasive competing tree species, aphid infestation, and low rates of 1 This document has been submitted by Malawi.
    [Show full text]
  • Vegetation Survey of Mount Gorongosa
    VEGETATION SURVEY OF MOUNT GORONGOSA Tom Müller, Anthony Mapaura, Bart Wursten, Christopher Chapano, Petra Ballings & Robin Wild 2008 (published 2012) Occasional Publications in Biodiversity No. 23 VEGETATION SURVEY OF MOUNT GORONGOSA Tom Müller, Anthony Mapaura, Bart Wursten, Christopher Chapano, Petra Ballings & Robin Wild 2008 (published 2012) Occasional Publications in Biodiversity No. 23 Biodiversity Foundation for Africa P.O. Box FM730, Famona, Bulawayo, Zimbabwe Vegetation Survey of Mt Gorongosa, page 2 SUMMARY Mount Gorongosa is a large inselberg almost 700 sq. km in extent in central Mozambique. With a vertical relief of between 900 and 1400 m above the surrounding plain, the highest point is at 1863 m. The mountain consists of a Lower Zone (mainly below 1100 m altitude) containing settlements and over which the natural vegetation cover has been strongly modified by people, and an Upper Zone in which much of the natural vegetation is still well preserved. Both zones are very important to the hydrology of surrounding areas. Immediately adjacent to the mountain lies Gorongosa National Park, one of Mozambique's main conservation areas. A key issue in recent years has been whether and how to incorporate the upper parts of Mount Gorongosa above 700 m altitude into the existing National Park, which is primarily lowland. [These areas were eventually incorporated into the National Park in 2010.] In recent years the unique biodiversity and scenic beauty of Mount Gorongosa have come under severe threat from the destruction of natural vegetation. This is particularly acute as regards moist evergreen forest, the loss of which has accelerated to alarming proportions.
    [Show full text]
  • UC Santa Barbara Dissertation Template
    UNIVERSITY OF CALIFORNIA Santa Barbara Iron Mothers and Warrior Lovers: Intimacy, Power, and the State in the Nyiginya Kingdom, 1796-1913 A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in History by Sarah Elizabeth Watkins Committee in charge: Professor Stephan F. Miescher, Chair Professor Mhoze Chikowero Professor Erika Rappaport Professor Leila Rupp June 2014 The dissertation of Sarah E. Watkins is approved. _____________________________________________ Mhoze Chikowero _____________________________________________ Erika Rappaport ____________________________________________ Leila Rupp ____________________________________________ Stephan F. Miescher, Committee Chair May 2014 Iron Mothers and Warrior Lovers: Intimacy, Power, and the State in the Nyiginya Kingdom, 1796-1913 Copyright © 2014 by Sarah Elizabeth Watkins iii ACKNOWLEDGEMENTS While responsibility for the end result of this work rests with me, its creation would not have been possible without the support and dedication of many others. For their intellectual and moral support through the preparation and writing of this dissertation, I want to thank Stephan Miescher, my advisor, and Mhoze Chikowero, Erika Rappaport, and Leila Rupp, for agreeing to shepherd me through this process. Writing a dissertation can be excruciating, but having such a supportive and engaged committee makes all the difference. For their mentorship during my research and writing in Rwanda, I want to thank David Newbury, Catharine Newbury, Rose-Marie Mukarutabana, Bernard Rutikanga, and Jennie Burnet, as well as the Faculty of History at the National University of Rwanda. Their insights have sharpened my analysis, and consistently challenged me to engage more deeply with the sources, as well as to consider the broader context of the stories with which I am so fascinated.
    [Show full text]
  • South Cameroon)
    Plant Ecology and Evolution 152 (1): 8–29, 2019 https://doi.org/10.5091/plecevo.2019.1547 CHECKLIST Mine versus Wild: a plant conservation checklist of the rich Iron-Ore Ngovayang Massif Area (South Cameroon) Vincent Droissart1,2,3,8,*, Olivier Lachenaud3,4, Gilles Dauby1,5, Steven Dessein4, Gyslène Kamdem6, Charlemagne Nguembou K.6, Murielle Simo-Droissart6, Tariq Stévart2,3,4, Hermann Taedoumg6,7 & Bonaventure Sonké2,3,6,8 1AMAP Lab, IRD, CIRAD, CNRS, INRA, Université de Montpellier, Montpellier, France 2Missouri Botanical Garden, Africa and Madagascar Department, P.O. Box 299, St. Louis, Missouri 63166-0299, U.S.A. 3Herbarium et Bibliothèque de Botanique africaine, C.P. 265, Université Libre de Bruxelles, Campus de la Plaine, Boulevard du Triomphe, BE-1050 Brussels, Belgium 4Meise Botanic Garden, Domein van Bouchout, Nieuwelaan 38, BE-1860 Meise, Belgium 5Evolutionary Biology and Ecology, Faculté des Sciences, C.P. 160/12, Université Libre de Bruxelles, 50 Avenue F. Roosevelt, BE-1050 Brussels, Belgium 6Plant Systematics and Ecology Laboratory, Higher Teachers’ Training College, University of Yaoundé I, P.O. Box 047, Yaoundé, Cameroon 7Bioversity International, P.O. Box 2008 Messa, Yaoundé, Cameroon 8International Joint Laboratory DYCOFAC, IRD-UYI-IRGM, BP1857, Yaoundé, Cameroon *Author for correspondence: [email protected] Background and aims – The rapid expansion of human activities in South Cameroon, particularly mining in mountainous areas, threatens this region’s exceptional biodiversity. To comprehend the effects of land- use change on plant diversity and identify conservation priorities, we aim at providing a first comprehensive plant checklist of the Ngovayang Massif, focusing on the two richest plant families, Orchidaceae and Rubiaceae.
    [Show full text]
  • Phylogenetic Relationships in the Order Ericales S.L.: Analyses of Molecular Data from Five Genes from the Plastid and Mitochondrial Genomes1
    American Journal of Botany 89(4): 677±687. 2002. PHYLOGENETIC RELATIONSHIPS IN THE ORDER ERICALES S.L.: ANALYSES OF MOLECULAR DATA FROM FIVE GENES FROM THE PLASTID AND MITOCHONDRIAL GENOMES1 ARNE A. ANDERBERG,2,5 CATARINA RYDIN,3 AND MARI KAÈ LLERSJOÈ 4 2Department of Phanerogamic Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden; 3Department of Systematic Botany, University of Stockholm, SE-106 91 Stockholm, Sweden; and 4Laboratory for Molecular Systematics, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden Phylogenetic interrelationships in the enlarged order Ericales were investigated by jackknife analysis of a combination of DNA sequences from the plastid genes rbcL, ndhF, atpB, and the mitochondrial genes atp1 and matR. Several well-supported groups were identi®ed, but neither a combination of all gene sequences nor any one alone fully resolved the relationships between all major clades in Ericales. All investigated families except Theaceae were found to be monophyletic. Four families, Marcgraviaceae, Balsaminaceae, Pellicieraceae, and Tetrameristaceae form a monophyletic group that is the sister of the remaining families. On the next higher level, Fouquieriaceae and Polemoniaceae form a clade that is sister to the majority of families that form a group with eight supported clades between which the interrelationships are unresolved: Theaceae-Ternstroemioideae with Ficalhoa, Sladenia, and Pentaphylacaceae; Theaceae-Theoideae; Ebenaceae and Lissocarpaceae; Symplocaceae; Maesaceae, Theophrastaceae, Primulaceae, and Myrsinaceae; Styr- acaceae and Diapensiaceae; Lecythidaceae and Sapotaceae; Actinidiaceae, Roridulaceae, Sarraceniaceae, Clethraceae, Cyrillaceae, and Ericaceae. Key words: atpB; atp1; cladistics; DNA; Ericales; jackknife; matR; ndhF; phylogeny; rbcL. Understanding of phylogenetic relationships among angio- was available for them at the time, viz.
    [Show full text]
  • A Brief Nomenclatural Review of Genera and Tribes in Theaceae Linda M
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 24 | Issue 1 Article 8 2007 A Brief Nomenclatural Review of Genera and Tribes in Theaceae Linda M. Prince Rancho Santa Ana Botanic Garden, Claremont, California Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Prince, Linda M. (2007) "A Brief Nomenclatural Review of Genera and Tribes in Theaceae," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 24: Iss. 1, Article 8. Available at: http://scholarship.claremont.edu/aliso/vol24/iss1/8 Aliso 24, pp. 105–121 ᭧ 2007, Rancho Santa Ana Botanic Garden A BRIEF NOMENCLATURAL REVIEW OF GENERA AND TRIBES IN THEACEAE LINDA M. PRINCE Rancho Santa Ana Botanic Garden, 1500 North College Ave., Claremont, California 91711-3157, USA ([email protected]) ABSTRACT The angiosperm family Theaceae has been investigated extensively with a rich publication record of anatomical, cytological, paleontological, and palynological data analyses and interpretation. Recent developmental and molecular data sets and the application of cladistic analytical methods support dramatic changes in circumscription at the familial, tribal, and generic levels. Growing interest in the family outside the taxonomic and systematic fields warrants a brief review of the recent nomenclatural history (mainly 20th century), some of the classification systems currently in use, and an explanation of which data support various classification schemes. An abridged bibliography with critical nomen- clatural references is provided. Key words: anatomy, classification, morphology, nomenclature, systematics, Theaceae. INTRODUCTION acters that were restricted to the family and could be used to circumscribe it.
    [Show full text]
  • WRA Species Report
    Family: Sapindaceae Taxon: Filicium decipiens Synonym: Jurighas decipiens (Wight & Arn.) Kuntze Common Name: Fern tree Pteridophyllum decipiens (Wight & Arn.) Thw Fern-leaf Rhus decipiens Wight & Arn. Questionaire : current 20090513 Assessor: Chuck Chimera Designation: EVALUATE Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score 2 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 n 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 y 301 Naturalized beyond native range y = 1*multiplier (see y Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see n Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see n Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see n Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 n 403 Parasitic y=1, n=0 n 404 Unpalatable
    [Show full text]
  • Threatened Ecosystems in South Africa: Descriptions and Maps
    Threatened Ecosystems in South Africa: Descriptions and Maps DRAFT May 2009 South African National Biodiversity Institute Department of Environmental Affairs and Tourism Contents List of tables .............................................................................................................................. vii List of figures............................................................................................................................. vii 1 Introduction .......................................................................................................................... 8 2 Criteria for identifying threatened ecosystems............................................................... 10 3 Summary of listed ecosystems ........................................................................................ 12 4 Descriptions and individual maps of threatened ecosystems ...................................... 14 4.1 Explanation of descriptions ........................................................................................................ 14 4.2 Listed threatened ecosystems ................................................................................................... 16 4.2.1 Critically Endangered (CR) ................................................................................................................ 16 1. Atlantis Sand Fynbos (FFd 4) .......................................................................................................................... 16 2. Blesbokspruit Highveld Grassland
    [Show full text]
  • Molecular Support for a Basal Grade of Morphologically
    TAXON 60 (4) • August 2011: 941–952 Razafimandimbison & al. • A basal grade in the Vanguerieae alliance MOLECULAR PHYLOGENETICS AND BIOGEOGRAPHY Molecular support for a basal grade of morphologically distinct, monotypic genera in the species-rich Vanguerieae alliance (Rubiaceae, Ixoroideae): Its systematic and conservation implications Sylvain G. Razafimandimbison,1 Kent Kainulainen,1,2 Khoon M. Wong, 3 Katy Beaver4 & Birgitta Bremer1 1 Bergius Foundation, Royal Swedish Academy of Sciences and Botany Department, Stockholm University, 10691 Stockholm, Sweden 2 Department of Botany, Stockholm University, 10691, Stockholm, Sweden 3 Singapore Botanic Gardens, 1 Cluny Road, Singapore 259569 4 Plant Conservation Action Group, P.O. Box 392, Victoria, Mahé, Seychelles Author for correspondence: Sylvain G. Razafimandimbison, [email protected] Abstract Many monotypic genera with unique apomorphic characters have been difficult to place in the morphology-based classifications of the coffee family (Rubiaceae). We rigorously assessed the subfamilial phylogenetic position and generic status of three enigmatic genera, the Seychellois Glionnetia, the Southeast Asian Jackiopsis, and the Chinese Trailliaedoxa within Rubiaceae, using sequence data of four plastid markers (ndhF, rbcL, rps16, trnT­F). The present study provides molecular phylogenetic support for positions of these genera in the subfamily Ixoroideae, and reveals the presence of a basal grade of morphologically distinct, monotypic genera (Crossopteryx, Jackiopsis, Scyphiphora, Trailliaedoxa, and Glionnetia, respectively) in the species-rich Vanguerieae alliance. These five genera may represent sole representatives of their respective lineages and therefore may carry unique genetic information. Their conservation status was assessed, applying the criteria set in IUCN Red List Categories. We consider Glionnetia and Jackiopsis Endangered. Scyphiphora is recognized as Near Threatened despite its extensive range and Crossopteryx as Least Concern.
    [Show full text]