Application of General Purpose HPC Systems in HPEC

Total Page:16

File Type:pdf, Size:1020Kb

Application of General Purpose HPC Systems in HPEC Application of General Purpose HPC Systems in HPEC David Alexander Director of Engineering SGI, Inc. dca 8/2003 SGI HPC System Architecture dca 8/2003 SGI Scalable ccNUMA Architecture Basic Node Structure and Interconnect C C C C A A A A C C C C H CPU CPU H H CPU CPU H E E E E Processor Interface Processor Interface (>6GB/sec) NUMAlink Interconnect (>6GB/sec) (>6GB/sec) Interface Interface Chip Chip Memory Interface Memory Interface (>8GB/sec) (>8GB/sec) Physical Memory Physical Memory (2-16GB) (2-16GB) Physical Memory SGI Scalable ccNUMA Architecture Scaling to Large Node Counts CPU CPU CPU CPU CPU CPU CPU CPU Interface Interface Interface Interface Chip Chip Chip Chip Memory Memory Memory Memory System Interconnect Fabric • Scaling to 100’s of processors • RT Memory Latency < 600ns worst case (64p config) • Bi-section bandwidth >25GB/sec (64p config) SGI Scalable ccNUMA Architecture SGI® NUMAflex™ Modular Design System Performance:Performance: HighHigh--bandwidthbandwidth Interconnect interconnectinterconnect withwith veryvery lowlow latencylatency CPU & Flexibility:Flexibility: TailoredTailored configurationsconfigurations forfor Memory differentdifferent dimensionsdimensions ofof scalabilityscalability InvestmentInvestment protection:protection: AddAdd newnew System I/O technologiestechnologies asas theythey evolveevolve Scalability:Scalability: NoNo centralcentral busbus oror switch;switch; justjust Standard I/O modulesmodules andand NUMAlink™NUMAlink™ cablescables Expansion High BW I/O Expansion Graphics Expansion Storage Expansion Modules from SGI® Onyx® 3000 Series SGI Scalable ccNUMA Architecture The Benefits of Shared Memory Traditional Clusters SGI® Altix™ 3000 Commodity interconnect Fast NUMAflex™ interconnect mem mem mem mem mem ... mem Global shared memory node node node node node node node node node node + + + + + + + + + ... + OS OS OS OS OS OS OS OS OS OS What is shared memory? • All nodes operate on one large shared memory space, instead of each node having its own small memory space Shared memory is high-performance • All nodes can access one large memory space efficiently, so complex communication and data passing between nodes aren’t needed • Big data sets fit entirely in memory; less disk I/O is needed Shared memory is cost-effective and easy to deploy • The SGI Altix 3000 family supports all major parallel programming models • It requires less memory per node, because large problems can be solved in big shared memory • Simpler programming means lower tuning and maintenance costs SGI® Altix™ 3000 HPC Product dca 8/2003 SGI® Altix™ 3000 Overview First Linux® node with 64 CPUs in single-OS image First clusters with global shared memory across multiple nodes First Linux solution with HPC system- and data-management tools World-record performance for floating- point calculations, memory performance, I/O bandwidth, and real technical applications SGI® Altix™ 3000 Fusion of Powerhouse Technologies SGI® supercomputing technology, Intel’s most advanced processors, and open-source computing Global shared memory (64-bit shared memory across cluster nodes) SGI ProPack™ and supercomputing enhancements SGI® NUMAlink™ (Built-in high-bandwidth, low-latency interconnect) SGI® NUMAflex™ (Third-generation modular supercomputing architecture) Intel® Itanium® 2 processor family Industry-standard Linux® SGI® Altix™ 3000 Family Extreme Power, Extreme Potential Model 3700 Superclusters Scalable performance offering Model 3300 Servers 4–64 Itanium 2 processors in a single node 1.30 GHz/3MB L3 cache Single-node entry offering 1.50 GHz/6MB L3 cache 4–12 1.30 GHz Itanium® 2 Shared memory across nodes processors, 3MB L3 cache Scalable to 2,048 processors, 16TB memory Up to 96GB memory Nodes up to 64P, 4TB memory Multi-Paradigm Architecture dca 8/2003 Multi-Paradigm Architecture Overview IO IO R • NUMAlink system interconnect MSEC MSEC C C C • General-purpose compute nodes R R C C IO • Peer-attached general purpose I/O V C MSE • Mission-specific accel. and/or I/O (MSE) C R R C V • Integrated graphics/visualization MSEC MSEC IO IO Multi-Paradigm Architecture Mission Specific Element (MSE) Memory System >5GB/s FPGA, I/O Interconnect TIO ASIC DSP, or Fabric ASIC NL4 Ports (>5GB/s x 2) MSE Implementation variants: • Customer supplied/loaded FPGA algorithms and/or ASIC/DSP • Subroutine or standard library acceleration • Specific use “appliance” Embedded High Performance Computing (EHPC) dca 8/2003 Embedded High Performance Computing Unified Development/Deployment Environment EHPC Today EHPC Vision Different Development and Deployment Environments Unified Development and Deployment Enhanced software development productivity Superior performance and HW utilization Demonstration to deployment in days Benefits from mainstream HPC advances Development Environment HPC methods, tools, hardware Scalable ccNUMA Architecture provides freedom to develop new approaches System Architecture Embedded Systems Platform Port Packaging Months of work SGI Millions of dollars EHPC Significant schedule risk System Significant architectural/performance risk Development Model Seamless HPC Application Mission-Specific Processing Deployment Proprietary hardware and software “Islands of memory” narrows algorithm options Embedded High Performance Computing EHPC Platform Scalable ccNUMA System Architecture Embedded Systems • Unified software environment for development, SGI Packaging prototype and deployment EHPC System Development Model • Full multi-paradigm computing support Mission-Specific Seamless HPC Application • Field-upgradeable mission specific processing Processing acceleration • Highly optimized performance per watt and performance per slot • Design to fit into established environmentals, form factors, and interfaces • 6U Eurocard form factor • Passive, slot configurable backplane • PMC module connectivity to standard interfaces • Able to address oceanic, ground and airborne environmentals Embedded High Performance Computing Family of 6U Form Factor Modules 6U Form Factor 6U Form Factor Cache Cache PMC Module Site uP uP PIC Memory Memory PMC Module Site DDR SDRAM DDR SDRAM NUMAlink NUMAlink4 Controller Memory Ports Memory DDR SDRAM DDR SDRAM NUMAlink4 Memory NUMAlink Memory Ports DDR SDRAM DDR SDRAM Controller Memory System Diagnostic & Memory DDR SDRAM Control L1 Ports Diagnostic & DDR SDRAM System Control L1 Ports Scalable General Purpose General Purpose Processor/Memory Blade I/O Blade Embedded High Performance Computing Family of 6U Form Factor Modules 6U Form Factor 6U Form Factor Memory Memory 6.4GB/s NUMAlink4 NUMAlink4 FPGA TIO Port Port ASIC TIO FPGA External I/O NL4 System Diagnostic & External I/O NL4 System Diagnostic & (Optional) Port Control L1 Ports (Optional) Port Control L1 Ports 6.4GB/s NUMAlink4 NUMAlink4 FPGA TIO Port ASIC TIO Port FPGA Memory Memory Mission-Specific Accelerator and/or I/O Blades www.sgi.com ©2002 Silicon Graphics, Inc. All rights reserved. Silicon Graphics, SGI, IRIX, Challenge, Origin, Onyx, and the SGI logo are registered trademarks and OpenVault, FailSafe, Altix, XFS, and CXFS are trademarks of Silicon Graphics, Inc., in the U.S. and/or other countries worldwide. MIPS is a registered trademark of MIPS Technologies, Inc., used under license by Silicon Graphics, Inc. UNIX is a registered trademark of The Open Group in the U.S. and other countries. Intel and Itanium are registered trademarks of Intel Corporation. Linux is a registered trademark of Linus Torvalds. Mac is a registered trademark of Apple Computer, Inc. Windows is a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.Red Hat is a registered trademark of Red Hat, Inc. All other trademarks are the property of their respective owners. (1/03).
Recommended publications
  • SGI® Altix® 330 Self-Paced Training
    SGI Multi-Paradigm Architecture Michael Woodacre Chief Engineer, Server Platform Group [email protected] A History of Innovation in HPC Challenge® XL media server fuels Steven Spielberg’s Shoah NASA Ames and project to document Altix® set world Power Series™, Holocaust survivor record for multi-processing stories systems provide STREAMS Jim Clark compute power First systems benchmark founded SGI on SGI introduces for high-end deployed in Stephen the vision of its first 64-bit graphics Hawking’s COSMOS Altix®, first scalable Computer operating applications system 64-bit Linux® Server Visualization system 1982 1984 1988 1994 1995 1996 1997 1998 2001 2003 2004 DOE deploys 6144p Introduced First generation Origin 2000 to IRIS® Workstations modular NUMA System: monitor and become first integrated NUMAflex™ Origin® 2000 simulate nuclear 3D graphics systems architecture stockpile with Origin® 3000 First 512p Altix cluster Dockside engineering analysis on Origin® drives ocean research at NASA Ames 2000 and Indigo2™ helps Team New +10000p upgrade! Zealand win America’s Cup Images courtesy of Team New Zealand and the University of Cambridge SGI Proprietary 2 Over Time, Problems Get More Complex, Data Sets Exploding Bumper, hood, engine, wheels Entire car E-crash dummy Organ damage This Trend Continues Across SGI's Markets Improve design Improve patient safety Improve oil exploration Improve hurricane prediction & manufacturing First Row Images: EAI, Lana Rushing, Engineering Animation, Inc, Volvo Car Corporation, Images courtesy of the SCI, Second Row Images: The MacNeal-Schwendler Corp , Manchester Visualization Center and University Department of Surgery, Paradigm Geophysical, the Laboratory for Atmospheres,SGI Proprietary NASA Goddard Space Flight Center.
    [Show full text]
  • SGI Origin 3000 Series Datasheet
    Datasheet SGI™ Origin™ 3000 Series SGI™ Origin™ 3200, SGI™ Origin™ 3400, and SGI™ Origin™ 3800 Servers Features As Flexible as Your Imagination •True multidimensional scalability Building on the robust NUMA architecture that made award-winning SGI •Snap-together flexibility, serviceability, and resiliency Origin family servers the most modular and scalable in the industry, the •Clustering to tens of thousands of processors SGI Origin 3000 series delivers flexibility, resiliency, and performance at •SGI Origin 3200—scales from two to eight breakthrough levels. Now taking modularity a step further, you can scale MIPS processors CPU, storage, and I/O components independently within each system. •SGI Origin 3400—scales from 4 to 32 MIPS processors Complete multidimensional flexibility allows organizations to deploy, •SGI Origin 3800—scales from 16 to 512 MIPS processors upgrade, service, expand, and redeploy system components in every possible dimension to meet any business demand. The only limitation is your imagination. Build It Your Way SGI™ NUMAflex™ is a revolutionary snap-together server system concept that allows you to configure—and reconfigure—systems brick by brick to meet the exact demands of your business applications. Upgrade CPUs to keep apace of innovation. Isolate and service I/O interfaces on the fly. Pay only for the computation, data processing, or communications power you need, and expand and redeploy systems with ease as new technologies emerge. Performance, Reliability, and Versatility With their high bandwidth, superior scalability, and efficient resource distribution, the new generation of Origin servers—SGI™ Origin™ 3200, SGI™ Origin™ 3400, and SGI™ Origin™ 3800—are performance leaders. The series provides peak bandwidth for high-speed peripheral connectiv- ity and support for the latest networking protocols.
    [Show full text]
  • SGI® Origin®
    Datasheet SGI® Origin® 350 Features Modular Scalability for Technical Computing • Modular scalability SGI Origin 350 technical servers are the only midrange systems that enable •Customized configurations truly modular, single-system configurations, providing completely independent •Operating environment optimized for scalability of I/O bandwidth, system bandwidth, computational performance, high-productivity computing memory, storage, and visualization capabilities. Using the revolutionary SGI® NUMAflex™ architecture, SGI Origin 350 technical servers deliver sustained, multidimensional performance in compact, affordable, rack-mountable components. Customized Configurations With its compact form factor and individually scalable modules, SGI Origin 350 is an ideal choice for solving big problems in a little package. Users select only the components that optimally solve their problems, and SGI Origin 350 scales easily to meet the challenge of more complex problems over time. Customized configurations are built with the following modules. Base technical server The base SGI Origin 350 compute module can be a stand-alone and compute expansion technical server with two or four processors, up to 8GB memory, four PCI-X slots1, two drive bays, and integrated power, all in 3.5 inches of rack space. Cable in more compute modules for additional computational power. I/O expansion Choose between PCI-X and PCI expansion. The PCI-X expansion module brings in four additional 64-bit PCI-X slots in 3.5 inches of rack space. The PCI expansion module2 has 12 64-bit PCI slots in 7 inches of rack height. Memory expansion The memory expansion module adds 8GB of additional memory capacity and four additional PCI-X slots in 3.5 inches.
    [Show full text]
  • SGI™Origin™3000 Series
    Product Guide SGI™Origin™ 3000 Series Modular, High-Performance Servers The successful deployment of today’s high-performance computing solutions is often obstructed by architectural bottlenecks. To enable organizations to adapt their computing assets rapidly to new application environments, SGI™ servers have provided revolutionary architectural flexibility for more than a decade. Now, the pioneer of shared-memory parallel processing systems has delivered a radical breakthrough in flexibility, resiliency, and investment protection: the SGI Origin 3000 series of modular high-performance servers. Design Your System to Precisely Match Your Application Requirements SGI Origin 3000 series systems take modularity A New Snap-Together Approach to the next level. Building on the same modular This new approach to server architecture architecture of award-winning SGI™ 2000 allows you to configure—and reconfigure— series servers, the SGI Origin 3000 series systems brick by brick. Upgrade CPUs now provides the flexibility to scale CPU and selectively to keep apace of innovation. memory, storage, and I/O components inde- Isolate and service I/O interfaces on the fly. pendently within the system. You can design Pay only for the computation, data processing, a system down to the level of individual visualization, or communication muscle you components to meet your exact application need. Achieve all this while seamlessly fitting requirements—and easily and cost effectively systems into your IT environment with an make changes as desired. industry-standard form factor. Brick-by-brick modularity lets you build and maintain your Unmatched Flexibility system optimally, with a level of flexibility that The unique SGI NUMA system architecture makes obsolescence almost obsolete.
    [Show full text]
  • Indigo and Indigo IMPACT Dual Head Installation Guide and Notes For
    Indigo2™ and Indigo2 IMPACT™ Dual Head Installation Guide and Notes for Developers Document Number 007-9206-003 CONTRIBUTORS Written by Judy Muchowski, Jed Hartman, Charmaine Moyer Illustrated by Dany Galgani, Cheri Brown Production by Laura Cooper Engineering Contributions by Michael Nagy, Jeff Quilici, Peter Daifuku, Barbara Corriero, Michael Wright, Richard Wright Copyright 1996, Silicon Graphics, Inc.— All Rights Reserved This document contains proprietary and confidential information of Silicon Graphics, Inc. The contents of this document may not be disclosed to third parties, copied, or duplicated in any form, in whole or in part, without the prior written permission of Silicon Graphics, Inc. RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure of the technical data contained in this document by the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights reserved under the Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311. Silicon Graphics is a registered trademark and Indigo2, Indigo2 IMPACT, Indigo2 High IMPACT, IRIS GL, IRIX, and OpenGL are trademarks of Silicon Graphics, Inc. Extreme is a trademark used under license by Silicon Graphics, Inc. Indigo2™ and Indigo2 IMPACT™ Dual Head Installation Guide and Notes for Developers Document Number 007-9206-003 Contents Introduction xi Product Support xi 1. Installing the XL Graphics Board: Indigo2 XL/XL Configuration 1 Shutting Down and Powering Off the System 1 Removing the Cover 3 Attaching the Wrist Strap 5 Installing the Board 6 Replacing the Cover 10 2.
    [Show full text]
  • IRIX® Admin System Configuration and Operation
    IRIX® Admin System Configuration and Operation 007-2859-017 COPYRIGHT © 1992-2001 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc. LIMITED RIGHTS LEGEND The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351. TRADEMARKS AND ATTRIBUTIONS Challenge, Indigo, IRIS, IRIX, Octane, and Onyx are registered trademarks and SGI, Crimson, Indigo2, IRIS FailSafe, IRIS InSight, IRIS WorkSpace, IRIX Networker, NUMAlink, Origin, Performance Co-Pilot, Power Challenge, Power Indigo2, Power Onyx, the SGI logo, and XFS are trademarks of Silicon Graphics, Inc. Indy is a registered trademark, used under license in the United States and owned by Silicon Graphics, Inc., in other countries worldwide. Centronics is a trademark of Centronics Data Computer Corporation. Cray is a registered trademark of Cray, Inc. Documenter’s Workbench is a trademark of Novell, Inc. FrameMaker, Illustrator, and PostScript are trademarks of Adobe Systems, Incorporated.
    [Show full text]
  • GPU History and Architecture
    3D graphic acceleration – history and architecture © 2003-2017 Josef Pelikán, Jan Horáček CGG MFF UK Praha [email protected] http://cgg.mff.cuni.cz/~pepca/ GPU architecture 2017 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 43 Advances in computer hardware 3D acceleration common in the consumer sector games, multimedia appearance: presentation quality, ~photorealistic sophisticated texturing and shading techniques, multi- pass methods, .. very high performance recent VLSI technology (NVIDIA Pascal .. 14-16 nm, AMD .. 1024-bit HBM memory, ..) extreme memory performance (stacked memory), massive parallelism very fast CPU-GPU buses (NVLink..) GPU architecture 2017 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 2 / 43 Advances in GPU software two main APIs for 3D graphics OpenGL (SGI, open standard, Khronos) Direct3D (Microsoft) parameter setup + efficient data transfer sharing of data arrays (“buffers”) programmable rendering pipeline revolution in realtime 3D graphics (~2000) vertex-shader: vertex processing tesselation and geometry shaders: geometry pro- cessing on the GPU (new primitives “on the fly”) fragment-shader (pixel-shader): pixel appearance GPU architecture 2017 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 3 / 43 Development tools for developers and artists high level shader programming [Cg (NVIDIA)], HLSL (DirectX), GLSL (OpenGL) Cg is almost equal to HLSL effect composition compact definition of the effect (GPU programs, data references, parameters..) in one source file/script DirectX .FX format, NVIDIA CgFX format
    [Show full text]
  • Public Transit
    110 TRANSPORTATION RESEARCH RECORD 1402 Design and AnalySis of Advanced Transit Systems Using Interactive Computer Animation ALAN L. ERERA AND ALAIN L. KORNHAUSER The Princeton Intelligent Transit Visualization System (PITVS) made available for transit planning is three-dimensional com­ is described. The PITVS is software designed to provide transit puter visualization. planners, engineers, and the general public with an interactive The state of current computer hardware and software tech­ three-dimensional transportation system design and analysis tool. The software provides the functionality to (a) build transit net­ nology offers the opportunity for the analysis of much crucial works, positioning guideway, intersections, and stations while visual information concerning proposed transit systems far specifying guideway cross-section characteristics and station .de­ before any physical construction takes place. The powerful mand characteristics using a graphical user interface; (b) view graphical capabilities of the personal workstation make pos­ these networks in a three-dimensional representation of the plan­ sible the three-dimensional viewing of transit system designs ning area with fully interactive user control over viewing posi­ in a modeled planning world. The processing power of the tions; and (c) view randomly generated simulated operations on workstation furthermore offers the possibility to view this a transit network design based on demand characteristics and a system operations strategy. Both the methods of and the moti­ visual information dynamically; users are not limited to a vations behind the PITVS are explained, and the positive en­ "fixed view" of the modeled world; but they can look at the hancement that interactive three-dimensional graphics will give state of the system at any instant in time from an almost to the transit systems design process is affirmed.
    [Show full text]
  • SGI High Performance Visualization Solutions
    Next Generation Graphics Hardware Architectures Fabrizio Magugliani SE Director, EMEA [email protected] 1 SGI Confidential-Not for Redistribution Agenda • The ultimate architecture •Driving the technology •SGI® Onyx® 3000 series –InfiniteReality3™ –InfinitePerformance™ •SGI® Onyx® 300 •Silicon Graphics Fuel™ visual workstation •Conclusion •Q&A SGI Confidential-Not for Redistribution The Ultimate Architecture Because some people think that “There is no tool like an old tool” SGI Confidential-Not for Redistribution Driving the Technology Real-time visualization Large DBs Desktop Throughput and Visualization High Turnaround Throughput SGI® Reality Center™ Silicon Graphics Fuel™ Silicon Graphics® SGI® Origin® 3000 series SGI® Origin® 3800 SGI® Origin® 300 SGI™ Onyx® 3000 series Octane2® SGI® Onyx® 3800 SGI® Onyx® 300 (IRIX) (IRIX®) (IRIX) (IRIX) Distributed memory Shared memory SGI Confidential-Not for Redistribution SGI™ Onyx® 3000 Series • SGI Onyx 3000 series with InfiniteReality® graphics IntroducedIntroduced JulyJuly 2000 2000 • The industry’s highest quality graphics • Revolutionary NUMAflex™ modular computing design with integrated graphics SGI Confidential-Not for Redistribution InfiniteReality™ Performance, Flexibility, and Quality SGI Confidential-Not for Redistribution InfiniteReality™ Versatile Frame Buffer Displays Frame Buffer SGI Confidential-Not for Redistribution InfiniteReality™ Versatile Frame Buffer SGI Confidential-Not for Redistribution InfiniteReality™ Reality Center™ Multichannels are easy! Even in Edge-Blended
    [Show full text]
  • IRIX® Admin: System Configuration and Operation
    IRIX® Admin: System Configuration and Operation 007-2859-021 COPYRIGHT © 1992-2003 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc. LIMITED RIGHTS LEGEND The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351. TRADEMARKS AND ATTRIBUTIONS Silicon Graphics, SGI, the SGI logo, Challenge, Indigo, IRIS, IRIX, Octane, Onyx, and Origin are registered trademarks and Crimson, Indigo2, IRIS FailSafe, IRIS InSight, IRIS WorkSpace, IRIX Networker, NUMAlink, Performance Co-Pilot, Power Challenge, Power Indigo2, Power Onyx, and XFS are trademarks of Silicon Graphics, Inc., in the United States and/or other countries worldwide. Indy is a registered trademark, used under license in the United States and owned by Silicon Graphics, Inc., in other countries worldwide. Centronics is a trademark of GENICOM, L.L. C. Cray is a registered trademark of Cray, Inc. Documenter’s Workbench is a trademark of Novell, Inc.
    [Show full text]
  • SGI UV for SAP HANA 1
    WHITE PAPER SGI® UV™ for SAP HANA® Scale-up, Single-node Architecture Enables Real-time Operations at Extreme Scale and Lower TCO WHITE PAPER TABLE OF Contents Introduction 1 SGI UV for SAP HANA 1 Architectural Overview 2 SGI UV 300H 2 Intel Xeon E7 Processors 3 SAP HANA on SUSE Linux Enterprise Server for SAP Applications 3 NetApp E2700 RAID 3 Rack Management Controller 4 Custom-Designed Rack 4 Scale-Up Design with SGI NUMAlink 7 4 Four to 32-Socket Scalability 4 SGI HARP-Based Motherboard 5 ccNUMA Memory Architecture 6 All-to-All NUMAlink 7 Topology 7 Adaptive Routing 7 Enterprise-Class Reliability, Availability, and Serviceability 8 Conclusion 8 SGI UV for SAP HANA WHITE PAPER Introduction SGI® UV™ for SAP HANA® is a purpose-built, in-memory computing appliance for large or growing environments running on SAP HANA. Developed by SGI—the trusted leader in high performance computing— the system combines Intel® XEON® E7 processors with SGI NUMAlink® ASIC technology. Currently SAP-certified as a four- or eight-socket system, SGI’s new appliance for SAP HANA® is designed to scale to 32 sockets and 24TB of shared memory as a single node. This paper describes the future-ready, modular architecture of SGI UV for SAP HANA that enables enterprises to achieve real-time operations at extreme scale and lower cost of ownership. SGI UV for SAP HANA Building on SGI’s proven in-memory computing technology and unique scale-up architecture, SGI UV for SAP HANA enables large enterprises to confidently leverage the power of SAP HANA for mission-critical applications and heavy, multi-engine analytics that require single-node systems, and to reduce overhead and raise service levels for cluster-supported environments that become a struggle.
    [Show full text]
  • Realtime Computer Graphics on Gpus Introduction
    Real-time Algorithms Programmable Pipeline History Summary Realtime Computer Graphics on GPUs Introduction Jan Kolomazn´ık Department of Software and Computer Science Education Faculty of Mathematics and Physics Charles University in Prague March 3, 2021 1 / 55 Real-time Algorithms Programmable Pipeline History Summary Real-time Algorithms 2 / 55 Real-time Algorithms Programmable Pipeline History Summary REAL-TIME ALGORITHMS I Time Constrains: I Hard limit I Soft limit I CG examples: I Video frame rate I Cinema – 24 Hz I TV – 25 (50) Hz, 30 (60) Hz I Video games – 30–60 Hz I Virtual reality – frame rate doubled I Haptic rendering – 1 kHz 3 / 55 Real-time Algorithms Programmable Pipeline History Summary REAL-TIME ALGORITHMS I Time Constrains: I Hard limit I Soft limit I CG examples: I Video frame rate I Cinema – 24 Hz I TV – 25 (50) Hz, 30 (60) Hz I Video games – 30–60 Hz I Virtual reality – frame rate doubled I Haptic rendering – 1 kHz 4 / 55 Real-time Algorithms Programmable Pipeline History Summary REAL-TIME ALGORITHMS I Time Constrains: I Hard limit I Soft limit I CG examples: I Video frame rate I Cinema – 24 Hz I TV – 25 (50) Hz, 30 (60) Hz I Video games – 30–60 Hz I Virtual reality – frame rate doubled I Haptic rendering – 1 kHz 5 / 55 Real-time Algorithms Programmable Pipeline History Summary REAL-TIME ALGORITHMS I Time Constrains: I Hard limit I Soft limit I CG examples: I Video frame rate I Cinema – 24 Hz I TV – 25 (50) Hz, 30 (60) Hz I Video games – 30–60 Hz I Virtual reality – frame rate doubled I Haptic rendering – 1 kHz 6 / 55 Real-time Algorithms Programmable Pipeline History Summary REAL-TIME ALGORITHMS I Time Constrains: I Hard limit I Soft limit I CG examples: I Video frame rate I Cinema – 24 Hz I TV – 25 (50) Hz, 30 (60) Hz I Video games – 30–60 Hz I Virtual reality – frame rate doubled I Haptic rendering – 1 kHz 7 / 55 Real-time Algorithms Programmable Pipeline History Summary HOW TO ACHIEVE SPEED I Optimal algorithm (time complexity ?) I Approximations vs.
    [Show full text]