Exploring the Vast Diversity of Marine Viruses by Mya Breitbart, Luke R

Total Page:16

File Type:pdf, Size:1020Kb

Exploring the Vast Diversity of Marine Viruses by Mya Breitbart, Luke R This article has This been published in or collective redistirbution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The approval portionthe ofwith any permitted articleonly photocopy by is machine, of this reposting, means or collective or other redistirbution A S E A O F M I C ROB E S > SecTION V. EXAMPleS OF DIveRSITY Oceanography > CHAPTER 10. MICROBIAL COmmUNITIES > A . WATER COLUMN , Volume 20, , Volume Exploring the Vast Diversity of Marine Viruses N BY MYA BREITBART, LUKE R . THOMPSON, CURTIS A . SUTTle, AND MATTHEW B. SUllIVAN umber 2, a quarterly journal of journal The umber 2, a quarterly At abundances routinely greater than Here, we review advances in understand- high. Mathematical modeling based on 10 million particles per milliliter, viruses ing viral diversity and genome evolution, viral metagenomic data predicts that are the most numerous biological and discuss potentially fruitful areas there are hundreds of thousands of viral O ceanography ceanography entities1 in the oceans. To put the sheer for future research. Our emerging view genotypes in the world’s ocean (Angly abundance of marine viruses in context, of the virosphere, inferred from giga- et al., 2006). This may not be surprising S we note that they contain more carbon bases of sequence data ground truthed given that marine microbial prokaryotic ociety. Copyright 2007 by The 2007 by Copyright ociety. than 75 million blue whales and, if such by model systems in culture, is one of and eukaryotic diversity is also enor- viruses were joined end-to-end, they would stretch further than the nearest 60 galaxies (Suttle, 2005). While marine ...65–95% of marine viral metagenomic viruses were first described by Spencer O sequences are not similar to previously ceanography ceanography O (1955), they were largely ignored for ceanography ceanography three decades because of the relatively described sequences, as opposed to ~ 10% S ociety. ociety. low abundances inferred using culture- for cellular metagenomic surveys. S ociety. ociety. based assays. However, since Bergh et al. A ll rights reserved. S (1989) recognized their numeric impor- end all correspondence to: [email protected] or Th e [email protected] to: all correspondence end tance, they have been considered at least immense but finely tuned genetic diver- mous (e.g., Irigoien et al., 2004; Witman as abundant as marine microbes, and sity, where viruses have seemingly end- et al., 2004; Thompson et al., 2005; P ermission is granted to copy this article for use in teaching and research. article use for research. and this copy in teaching to granted is ermission scientists have been characterizing them less genetic potential, yet clearly are Worden, 2006), and there are likely to and trying to determine the extent of maintaining key genetic elements to be multiple host-specific viruses infect- marine viral diversity. Extensive efforts propagate their extraordinary success. ing each marine organism (Moebus, have focused on understanding the role One focus area is the diversity of 1991; Moebus, 1992; Waterbury and of viruses in horizontal gene transfer and marine viruses and marine viral com- Valois, 1993; Wilson et al., 1993; Wichels microbial mortality, and on the conse- munities. Although viruses might defy et al., 1998; Sullivan et al., 2003). The O ceanography ceanography quent impacts on microbial abundance, traditional species concepts, it is clear diversity of marine viral morpholo- diversity, and community structure. that viral genetic diversity is extremely gies ranges from a variety of icosahe- S ociety, ociety, dral tailed phages (Figure 1) (Moebus, PO MYA BREITBART ([email protected]) is Assistant Professor, College of Marine Science, 1991; Moebus, 1992; Waterbury and B ox 1931, ox University of South Florida, St. Petersburg, FL, USA. LUKE R. THOMPSON is Ph.D. Candidate, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 1 Viruses themselves are nonmetabolic (outside of the R ockville, MD 20849-1931, R epublication, systemmatic reproduction, reproduction, systemmatic epublication, USA. CURTIS A. SUTTle is Professor, Departments of Earth & Ocean Sciences, Botany, infection process) and lack the standard genetic marker (ribosomal RNA) that allows routine genetic compari- and Microbiology & Immunology, University of British Columbia, Vancouver, Canada. son of known and unknown life forms using the “Tree of MATTHEW B. SUllIVAN is Postdoctoral Associate, Department of Civil and Environmental Life,” so they are often not considered “alive.” The term “biological entities” is used to allow classification of Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. viruses with other life forms. USA . Oceanography June 2007 135 diversity in natural communities is enor- mous and dynamic as revealed at the levels of morphology, single genes, and whole genome sizes. Recently, genomic sequencing of marine viral isolates and metagenomic sequencing of marine viral communi- ties has revealed a plethora of previ- ously unknown viruses. Among cul- tured marine phage genomes, typically between 60% and 80% of the open reading frames show no similarity to any sequences in GenBank (Paul and Sullivan, 2005), while some marine viruses infecting protists have almost no recognizable similarity to extant sequences (Nagasaki et al., 2005b). Furthermore, 65–95% of marine viral Figure 1. Electron micrographs of representative ocean cyanobacterial viruses that infect Prochlorococcus metagenomic sequences are not simi- and Synechococcus. Panels A and B represent the noncontracted and contracted tails of myoviruses, lar to previously described sequences respectively. Note that the tails are nonflexible and contain rather conspicuous baseplates and tail fibers. Panels C, D, and E represent siphoviruses that contain long, flexible, noncontractile tails. Note the vari- (Breitbart et al., 2002, 2004; Angly et al., ability in tail length, tail-terminus structures, and capsid morphology in C and D as compared to E. 2006; Culley et al., 2006), as opposed to Panel F shows the icosahedral capsids of podoviruses that contain small, noncontractile tails. All black ~ 10% for cellular metagenomic surveys scale bars are 100 nm. Photos by M.B. Sullivan, P. Weigele, and B. Ni. Images C and D were originally pub- lished in Sullivan et al. (2006) (Tyson et al., 2004; Venter et al., 2004), suggesting that we have only begun to scratch the surface of marine viral sequence diversity. Valois, 1993; Proctor, 1997; Wichels et virus HcRNAV [Nagasaki et al., 2005a] One of the most striking features of al., 1998; Sullivan et al., 2003) to long and the 407 kb Coccolithovirus HeV-86 this sequence diversity is an abundance filamentous viruses (Middelboe et al., [Wilson et al., 2005]). Studies target- of viral-encoded genes that were previ- 2003) with particle diameters ranging ing genes conserved among members ously thought to be restricted to cellular from 25 nm (Schizochytrium single- of a viral group (e.g., g20 and g23 of genomes with metabolic capacity. For stranded RNA virus SssRNAV) (Takao myophages [Fuller et al., 1998; Zhong example, photosynthesis genes, which et al., 2005) up to ~ 300 nm for a virus et al., 2002; Marston and Sallee, 2003; would seem of little use to something that infects a marine phagotrophic pro- Filee et al., 2005; Short and Suttle, other than a photosynthetic cell, are tist (Garza and Suttle, 1995). Reported 2005], the RNA polymerase of picorna now thought to be common in cyano- marine viral genome sizes range from viruses [Culley et al., 2003], or the DNA phages (Mann et al., 2003; Lindell et al., 4.4 kilobases (kb) (Tomaru et al., 2004) polymerase of algal viruses [Chen et 2004; Millard et al., 2004; Sullivan et to 630 kb (Ovreas et al., 2003), with al., 1996; Short and Suttle, 2002] and al., 2006). Extensive sequencing efforts representative genome sequences avail- T7-like podophages [Breitbart and on these core photosystem II reaction- able from cultured isolates from nearly Rohwer, 2004]) demonstrate tremendous center genes show that cyanophages the extremes of the observed ranges single-gene diversity even within these themselves act as genetic reservoirs for (the 4.4 kb Heterocapsa circularisquama restricted groups of viruses. Thus, viral their hosts, generating diversity even at 136 Oceanography Vol. 20, No. 2 the level of these globally distributed across multiple phage lineages, such as the role of viruses in host metabolism genes (Zeidner et al., 2005; Sullivan et the photosynthesis and carbon metabo- is perhaps even more important. It is al., 2006). Gene-expression studies on lism genes, which suggest that these now recognized that marine viruses rou- model phage-host pairs show that both genes play critical roles during infection, tinely procure AMGs to tap into critical, messenger RNA (Lindell et al., 2005; likely augmenting biochemical processes rate-limiting steps of host metabolism Clokie et al., 2006) and protein (Lindell at key metabolic bottlenecks (Figure 2). during infection (Sullivan et al., 2006; et al., 2005) are produced from viral For this reason, we suggest the term Angly et al., 2006). Such AMGs are not photosynthesis genes during infection, “auxiliary metabolic genes” (AMGs) random evolutionary noise, but rather which suggests that they are functional. rather than the potentially misleading entrenched parts of viral genomes, akin Several other so-called “host genes,” term “host genes” when describing
Recommended publications
  • Coming-Of-Age Characterization of Soil Viruses: a User's Guide To
    Review Coming-of-Age Characterization of Soil Viruses: A User’s Guide to Virus Isolation, Detection within Metagenomes, and Viromics Gareth Trubl 1,* , Paul Hyman 2 , Simon Roux 3 and Stephen T. Abedon 4,* 1 Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA 2 Department of Biology/Toxicology, Ashland University, Ashland, OH 44805, USA; [email protected] 3 DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; [email protected] 4 Department of Microbiology, The Ohio State University, Mansfield, OH 44906, USA * Correspondence: [email protected] (G.T.); [email protected] (S.T.A.) Received: 25 February 2020; Accepted: 17 April 2020; Published: 21 April 2020 Abstract: The study of soil viruses, though not new, has languished relative to the study of marine viruses. This is particularly due to challenges associated with separating virions from harboring soils. Generally, three approaches to analyzing soil viruses have been employed: (1) Isolation, to characterize virus genotypes and phenotypes, the primary method used prior to the start of the 21st century. (2) Metagenomics, which has revealed a vast diversity of viruses while also allowing insights into viral community ecology, although with limitations due to DNA from cellular organisms obscuring viral DNA. (3) Viromics (targeted metagenomics of virus-like-particles), which has provided a more focused development of ‘virus-sequence-to-ecology’ pipelines, a result of separation of presumptive virions from cellular organisms prior to DNA extraction. This separation permits greater sequencing emphasis on virus DNA and thereby more targeted molecular and ecological characterization of viruses.
    [Show full text]
  • Marine Microplankton Ecology Reading
    Marine Microplankton Ecology Reading Microbes dominate our planet, especially the Earth’s oceans. The distinguishing feature of microorganisms is their small size, usually defined as less than 200 micrometers (µm); they are all invisible to the naked eye. As a group, sea microbes are extremely diverse, and extremely versatile with respect to their abilities to make and eat food. All marine microbes are too small to swim against the current and are therefore classified as plankton. First we will discuss several ways to classify marine microbes. 1. Size Planktonic marine organisms can be divided into the following size categories: Category Size femtoplankton <0.2 µm picoplankton 0.2-2 µm nanoplankton 2-20 µm microplankton 20-200 µm mesoplankton 200-2000 µm In this laboratory we are concerned with the microscopic portion of the plankton, less than 200 µm. These organisms are not visible to the naked eye (Figure 1). Figure 1. Size classes of marine plankton 2. Type A. Viruses Viruses are the smallest and simplest microplankton. They range from 0.01 to 0.3 um in diameter. Externally, viruses have a capsid, or protein coat. Viruses can also have simple or complex external morphologies with tail fibers and structures that are used to inject DNA or RNA into their host. Viruses have little internal morphology. They do not have a nucleus or organelles. They do not have chlorophyll. Inside a virus there is only nucleic acid, either DNA or RNA. Viruses do not grow and have no metabolism. Marine viruses are highly abundant. There are up to 10 billion in one liter of seawater! B.
    [Show full text]
  • Marine Microbiology at Scripps
    81832_Ocean 8/28/03 7:18 PM Page 67 Special Issue—Scripps Centennial Marine Microbiology at Scripps A. Aristides Yayanos Scripps Institution of Oceanography, University of California, • San Diego, California USA Marine microbiology is the study of the smallest isolated marine bioluminescent bacteria, isolated and organisms found in the oceans—bacteria and archaea, characterized sulfate-reducing bacteria, and showed many eukaryotes (among the protozoa, fungi, and denitrifying bacteria could both produce and consume plants), and viruses. Most microorganisms can be seen nitrous oxide, now known to be an important green- only with a microscope. Microbes pervade the oceans, house gas. Beijerinck also founded the field of virology its sediments, and some hydrothermal fluids and through his work on plant viruses (van Iterson et al., exhibit solitary life styles as well as complex relation- 1983). Mills (1989) describes the significance of the ships with animals, other microorganisms, and each work of Beijerink and Winogradsky to plankton other. The skeletal remains of microorganisms form the research and marine chemistry. largest component of sedimentary fossils whose study Around 1903, bacteriology in California was reveals Earth’s history. The enormous morphological, emerging in the areas of medicine and public health physiological, and taxonomic diversity of marine and accordingly was developing into an academic dis- microorganisms remains far from adequately cipline in medical schools (McClung and Meyer, 1974). described and studied. Because the sea receives terres- Whereas the branch of microbiology dealing with bac- trial microorganisms from rivers, sewage outfalls, and teria and viruses was just beginning, the branch con- other sources, marine microbiology also includes the cerning protozoa and algae was a relatively more estab- study of alien microorganisms.
    [Show full text]
  • Interactions Between Marine Picoeukaryotes and Their Viruses One Cell at a Time
    Interactions between marine picoeukaryotes and their viruses one cell at a time Interacciones entre picoeucariotas marinos y sus virus célula a célula Yaiza M. Castillo de la Peña Aquesta tesi doctoral està subjecta a la llicència Reconeixement 4.0. Espanya de Creative Commons . Esta tesis doctoral está sujeta a la licencia Reconocimiento 4.0. España de Creative Commons . This doctoral thesis is licensed under the Creative Commons Attribution 4.0. Spain License . Interactions between marine picoeukaryotes and their viruses one cell at a time (Interacciones entre picoeucariotas marinos y sus virus célula a célula) Yaiza M. Castillo de la Peña Tesis doctoral presentada por Dª Yaiza M. Castillo de la Peña para obtener el grado de Doctora por la Universitat de Barcelona y el Institut de Ciències del Mar, programa de doctorado en Biotecnología, Facultat de Farmàcia i Ciències de l’Alimentació . Directoras: Dra. Mª Dolors Vaqué Vidal y Dra. Marta Sebastián Caumel Tutora: Dra. Josefa Badía Palacín Universitat de Barcelona (UB) Institut de Ciències del Mar (ICM-CSIC) La doctoranda La directora La co -directora La tutora Yaiza M. Castillo Dolors Vaqué Marta Sebastián Josefa Badía En Barcelona, a 25 de noviembre de 2019 Cover design and images: © Yaiza M. Castillo. TEM images from Derelle et al ., 2008 This thesis has been funded by the Spanish Ministry of Economy and competitivity (MINECO) through a PhD fellowship to Yaiza M. Castillo de la Peña (BES-2014- 067849), under the program “Formación de Personal Investigador (FPI)”, and adscribed to the project: “Impact of viruses on marine microbial communities using virus-host models and metagenomic analyzes.” MEFISTO (Ref.
    [Show full text]
  • A Distinct Lineage of Giant Viruses Brings a Rhodopsin Photosystem to Unicellular Marine Predators
    A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators David M. Needhama,1, Susumu Yoshizawab,1, Toshiaki Hosakac,1, Camille Poiriera,d, Chang Jae Choia,d, Elisabeth Hehenbergera,d, Nicholas A. T. Irwine, Susanne Wilkena,2, Cheuk-Man Yunga,d, Charles Bachya,3, Rika Kuriharaf, Yu Nakajimab, Keiichi Kojimaf, Tomomi Kimura-Someyac, Guy Leonardg, Rex R. Malmstromh, Daniel R. Mendei, Daniel K. Olsoni, Yuki Sudof, Sebastian Sudeka, Thomas A. Richardsg, Edward F. DeLongi, Patrick J. Keelinge, Alyson E. Santoroj, Mikako Shirouzuc, Wataru Iwasakib,k,4, and Alexandra Z. Wordena,d,4 aMonterey Bay Aquarium Research Institute, Moss Landing, CA 95039; bAtmosphere & Ocean Research Institute, University of Tokyo, Chiba 277-8564, Japan; cLaboratory for Protein Functional & Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan; dOcean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research, 24105 Kiel, Germany; eDepartment of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; fGraduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan; gLiving Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4SB, United Kingdom; hDepartment of Energy Joint Genome Institute, Walnut Creek, CA 94598; iDaniel K. Inouye Center for Microbial Oceanography, University of Hawaii, Manoa, Honolulu, HI 96822; jDepartment of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106; and kDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0032, Japan Edited by W. Ford Doolittle, Dalhousie University, Halifax, Canada, and approved August 8, 2019 (received for review May 27, 2019) Giant viruses are remarkable for their large genomes, often rivaling genomes that range up to 2.4 Mb (Fig.
    [Show full text]
  • Aquatic Microbial Ecology 79:1
    Vol. 79: 1–12, 2017 AQUATIC MICROBIAL ECOLOGY Published online March 28 https://doi.org/10.3354/ame01811 Aquat Microb Ecol Contribution to AME Special 6 ‘SAME 14: progress and perspectives in aquatic microbial ecology’ OPENPEN ACCESSCCESS REVIEW Exploring the oceanic microeukaryotic interactome with metaomics approaches Anders K. Krabberød1, Marit F. M. Bjorbækmo1, Kamran Shalchian-Tabrizi1, Ramiro Logares2,1,* 1University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, 0316 Oslo, Norway 2Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de la Barceloneta, Barcelona, Spain ABSTRACT: Biological communities are systems composed of many interacting parts (species, populations or single cells) that in combination constitute the functional basis of the biosphere. Animal and plant ecologists have advanced substantially our understanding of ecological inter- actions. In contrast, our knowledge of ecological interaction in microbes is still rudimentary. This represents a major knowledge gap, as microbes are key players in almost all ecosystems, particu- larly in the oceans. Several studies still pool together widely different marine microbes into broad functional categories (e.g. grazers) and therefore overlook fine-grained species/population-spe- cific interactions. Increasing our understanding of ecological interactions is particularly needed for oceanic microeukaryotes, which include a large diversity of poorly understood symbiotic rela- tionships that range from mutualistic to parasitic. The reason for the current state of affairs is that determining ecological interactions between microbes has proven to be highly challenging. How- ever, recent technological developments in genomics and transcriptomics (metaomics for short), coupled with microfluidics and high-performance computing are making it increasingly feasible to determine ecological interactions at the microscale.
    [Show full text]
  • Water Column Stratification Structures Viral Community Composition in the Sargasso Sea
    Vol. 76: 85–94, 2015 AQUATIC MICROBIAL ECOLOGY Published online October 7 doi: 10.3354/ame01768 Aquat Microb Ecol OPEN ACCESS FEATURE ARTICLE Water column stratification structures viral community composition in the Sargasso Sea Dawn B. Goldsmith1, Jennifer R. Brum2,4, Max Hopkins1, Craig A. Carlson3, Mya Breitbart1,* 1College of Marine Science, University of South Florida, St. Petersburg, FL 33701, USA 2Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA 3Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106-9620, USA 4Present address: Department of Microbiology, Ohio State University, Columbus, OH 43210, USA ABSTRACT: A decade-long study of viral abundance at the Bermuda Atlantic Time-series Study (BATS) site recently revealed an annually recurring pattern where viral abundance was fairly uniform in the well-mixed upper water column each winter, yet a subsurface peak in viral abundance between 60 and 100 m depth developed each summer during water column stratification (Parsons et al. 2012; ISME J 6:273–284). Building upon these findings, this study tests the hypothesis that in the well-mixed period (March), the viral communities at the surface and at 100 m depth are similar in composition, while during water column stratification (September), differences in the viruses occupying these 2 depths emerge. Amplification and sequencing of 3 signature genes (g23, phoH, and the ssDNA phage major capsid pro- Sargasso Sea viral communities at 0 and 100 m are similar tein) in addition to randomly amplified polymorphic in the well-mixed winter, but differ during summer water- DNA PCR gel banding patterns were used to assess column stratification.
    [Show full text]
  • First Insight Into the Viral Community of the Cnidarian Model Metaorganism Aiptasia Using RNA-Seq Data
    First insight into the viral community of the cnidarian model metaorganism Aiptasia using RNA-Seq data Jan D. Brüwer and Christian R. Voolstra Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah, Saudi Arabia ABSTRACT Current research posits that all multicellular organisms live in symbioses with asso- ciated microorganisms and form so-called metaorganisms or holobionts. Cnidarian metaorganisms are of specific interest given that stony corals provide the foundation of the globally threatened coral reef ecosystems. To gain first insight into viruses associated with the coral model system Aiptasia (sensu Exaiptasia pallida), we analyzed an existing RNA-Seq dataset of aposymbiotic, partially populated, and fully symbiotic Aiptasia CC7 anemones with Symbiodinium. Our approach included the selective removal of anemone host and algal endosymbiont sequences and subsequent microbial sequence annotation. Of a total of 297 million raw sequence reads, 8.6 million (∼3%) remained after host and endosymbiont sequence removal. Of these, 3,293 sequences could be assigned as of viral origin. Taxonomic annotation of these sequences suggests that Aiptasia is associated with a diverse viral community, comprising 116 viral taxa covering 40 families. The viral assemblage was dominated by viruses from the families Herpesviridae (12.00%), Partitiviridae (9.93%), and Picornaviridae (9.87%). Despite an overall stable viral assemblage, we found that some viral taxa exhibited significant changes in their relative abundance when Aiptasia engaged in a symbiotic relationship with Symbiodinium. Elucidation of viral taxa consistently present across all conditions revealed a core virome of 15 viral taxa from 11 viral families, encompassing many viruses previously reported as members of coral viromes.
    [Show full text]
  • Corals and Sponges Under the Light of the Holobiont Concept: How Microbiomes Underpin Our Understanding of Marine Ecosystems
    fmars-08-698853 August 11, 2021 Time: 11:16 # 1 REVIEW published: 16 August 2021 doi: 10.3389/fmars.2021.698853 Corals and Sponges Under the Light of the Holobiont Concept: How Microbiomes Underpin Our Understanding of Marine Ecosystems Chloé Stévenne*†, Maud Micha*†, Jean-Christophe Plumier and Stéphane Roberty InBioS – Animal Physiology and Ecophysiology, Department of Biology, Ecology & Evolution, University of Liège, Liège, Belgium In the past 20 years, a new concept has slowly emerged and expanded to various domains of marine biology research: the holobiont. A holobiont describes the consortium formed by a eukaryotic host and its associated microorganisms including Edited by: bacteria, archaea, protists, microalgae, fungi, and viruses. From coral reefs to the Viola Liebich, deep-sea, symbiotic relationships and host–microbiome interactions are omnipresent Bremen Society for Natural Sciences, and central to the health of marine ecosystems. Studying marine organisms under Germany the light of the holobiont is a new paradigm that impacts many aspects of marine Reviewed by: Carlotta Nonnis Marzano, sciences. This approach is an innovative way of understanding the complex functioning University of Bari Aldo Moro, Italy of marine organisms, their evolution, their ecological roles within their ecosystems, and Maria Pia Miglietta, Texas A&M University at Galveston, their adaptation to face environmental changes. This review offers a broad insight into United States key concepts of holobiont studies and into the current knowledge of marine model *Correspondence: holobionts. Firstly, the history of the holobiont concept and the expansion of its use Chloé Stévenne from evolutionary sciences to other fields of marine biology will be discussed.
    [Show full text]
  • Picoplankton Distribution and Activity in the Deep Waters of the Southern Adriatic Sea
    water Article Picoplankton Distribution and Activity in the Deep Waters of the Southern Adriatic Sea Danijela Šanti´c 1,* , Vedrana Kovaˇcevi´c 2, Manuel Bensi 2, Michele Giani 2 , Ana Vrdoljak Tomaš 1 , Marin Ordulj 3 , Chiara Santinelli 2, Stefanija Šestanovi´c 1, Mladen Šoli´c 1 and Branka Grbec 1 1 Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovi´ca63, POB 500, 21000 Split, Croatia 2 National Institute of Oceanography and Applied Geophysics, Borgo Grotta Gigante 42/c, 34010 Sgonico (Ts), Italy 3 University of Split, University Department of Marine Studies, Ruđera Boškovi´ca37, 21000 Split, Croatia * Correspondence: [email protected]; Tel.: +385-21-408-006; Fax: +385-21-358-650 Received: 19 July 2019; Accepted: 8 August 2019; Published: 10 August 2019 Abstract: Southern Adriatic (Eastern Mediterranean Sea) is a region strongly dominated by large-scale oceanographic processes and local open-ocean dense water formation. In this study, picoplankton biomass, distribution, and activity were examined during two oceanographic cruises and analyzed in relation to environmental parameters and hydrographic conditions comparing pre and post-winter phases (December 2015, April 2016). Picoplankton density with the domination of autotrophic biomasses was higher in the pre-winter phase when significant amounts of picoaoutotrophs were also found in the meso-and bathy-pelagic layers, while Synechococcus dominated the picoautotrophic group. Higher values of bacterial production and domination of High Nucleic Acid content bacteria (HNA bacteria) were found in deep waters, especially during the post-winter phase, suggesting that bacteria can have an active role in the deep-sea environment. Aerobic anoxygenic phototrophic bacteria accounted for a small proportion of total heterotrophic bacteria but contributed up to 4% of bacterial carbon content.
    [Show full text]
  • Enhanced Viral Activity in the Surface Microlayer of the Arctic and Antarctic Oceans
    microorganisms Article Enhanced Viral Activity in the Surface Microlayer of the Arctic and Antarctic Oceans Dolors Vaqué 1,*,† , Julia A. Boras 1,† , Jesús Maria Arrieta 2 , Susana Agustí 3 , Carlos M. Duarte 3 and Maria Montserrat Sala 1 1 Institut de Ciències del Mar-Consejo Superior de Investigaciones Científicas (ICM-CSIC), Passeig Marítim de la Barceloneta 37–49, 08003 Barcelona, Spain; [email protected] (J.A.B.); [email protected] (M.M.S.) 2 Centro Oceanográfico de Canarias (Instituto Español de Oceanografía, IEO), Farola del Mar 22, Dársena Pesquera, 38180 Tenerife, Spain; [email protected] 3 Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; [email protected] (S.A.); [email protected] (C.M.D.) * Correspondence: [email protected]; Tel.: +34-932309592 † Contributed equally to the elaboration of the study and manuscript. Abstract: The ocean surface microlayer (SML), with physicochemical characteristics different from those of subsurface waters (SSW), results in dense and active viral and microbial communities that may favor virus–host interactions. Conversely, wind speed and/or UV radiation could adversely affect virus infection. Furthermore, in polar regions, organic and inorganic nutrient inputs from melting ice may increase microbial activity in the SML. Since the role of viruses in the microbial food web of the SML is poorly understood in polar oceans, we aimed to study the impact of viruses on prokaryotic communities in the SML and in the SSW in Arctic and Antarctic waters. We hypothesized that a higher viral activity in the SML than in the SSW in both polar systems would be observed.
    [Show full text]
  • Effects of Virus Infection on Respiration Rates of Marine Phytoplankton and Microplankton Communities
    MARINE ECOLOGY PROGRESS SERIES Vol. 262: 71–80, 2003 Published November 7 Mar Ecol Prog Ser Effects of virus infection on respiration rates of marine phytoplankton and microplankton communities Yoanna Eissler 1,*, Elisabeth Sahlsten3, Renato A. Quiñones1, 2 1Centro de Investigación Oceanográfica en el Pacifico Sur-Oriental (COPAS), and 2Departamento de Oceanografía, Universidad de Concepción, Casilla 160-C, Concepción, Chile 3Swedish Meteorological and Hydrological Institute, Nya Varvet 31, 426 71 Västra Frölunda, Sweden ABSTRACT: The possible influence of viral infection on respiration rates in marine microbial pelagic communities was assessed by means of 3 experiments on respiration rate with viral concentrate addi- tion on single-species cultures of Mantoniella sp. and Micromonas pusilla and another 3 on natural microplankton communities (organisms <200 µm) from the Kattegat Sea (Åstol) and the Baltic Sea. Coastal surface seawater samples were taken during cruises of the RVs ‘Ancylus’ and ‘Argos’ during winter and spring 2000. Approximately 50 to 70 l of seawater were concentrated by ultrafiltration. The experiments were started by adding a viral particle concentrate to a container with algae or a natural microplankton community; a control container was kept free of the viral concentrate addition. Oxygen concentration determinations were carried out on each treatment and control to measure respiration rates throughout the incubation period. The in vivo chlorophyll a fluorescence was also monitored as an indication of algal infection. The rates of respiration indicated that the addition of the viral particle concentrate affected the respective metabolisms of the Mantoniella sp. and Micromonas pusilla cultures as well as natural microplankton communities. Viral infection decreased the Man- toniella sp.
    [Show full text]