Quantitative and Qualitative Analyses of Genus Pyrus L. (Pear Tree) in West Azerbaijan Province, Iran
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Noble Hardwoods Network
EUROPEAN FOREST GENETIC RESOURCES PROGRAMME (EUFORGEN) Noble Hardwoods Network Report of the second meeting 22-25 March 1997 Lourizan, Spain J. Turok, E. Collin, B. Demesure, G. Eriksson, J. Kleinschmit, M. Rusanen and R. Stephan, compilers ii NOBLE HARDWOODS NETWORK: SECOND MEETING The International Plant Genetic Resources Institute (IPGRl) is an autonomous international scientific organization, supported by the Consultative Group on International Agricultural Research (CGIAR). IPGRl's mandate is to advance the conservation and use of plant genetic resources for the benefit of present and future generations. IPGRl's headquarters is based in Rome, Italy, with offices in another 14 countries worldwide. It operates through three programmes: (1) the Plant Genetic Resources Programme, (2) the CGIAR Genetic Resources Support Programme, and (3) the International Network for the Improvement of Banana and Plantain (INIBAP). The international status of IPGRl is conferred under an Establishment Agreement which, by January 1998, had been signed and ratified by the Governments of Algeria, Australia, Belgium, Benin, Bolivia, Brazil, Burkina Faso, Cameroon, Chile, China, Congo, Costa Rica, Cote d'Ivoire, Cyprus, Czech Republic, Denmark, Ecuador, Egypt, Greece, Guinea, Hungary, India, Indonesia, Iran, Israel, Italy, Jordan, Kenya, Malaysia, Mauritania, Morocco, Pakistan, Panama, Peru, Poland, Portugal, Romania, Russia, Senegal, Slovak Republic, Sudan, Switzerland, Syria, Tunisia, Turkey, Uganda and Ukraine. Financial support for the Research Agenda of -
Tree Planting and Management
COMMONWEALTH WAR GRAVES COMMISSION Tree Planting and Management Breadth of Opportunity The spread of the Commission's responsibilities over some 148 countries in temperate, mediterranean, tropical and desert climates provides wonderful opportunities to experiment with nature's wealth of tree species. We are particularly fortunate in being able to grow many interesting and beautiful trees and we will explain how we manage them and what splendid specimens they can make. Why Plant Trees? Trees are planted for a variety of reasons: their amenity value, leaf shape and size, flowers, fruit, habit, form, bark, landscape value, shelter or screening, backcloth planting, shade, noise and pollution reduction, soil stabilisation and to encourage wild life. Often we plant trees solely for their amenity value. That is, the beauty of the tree itself. This can be from the leaves such as those in Robinia pseudoacacia 'Frisia', the flowers in the tropical tree Tabebuia or Albizia, the crimson stems of the sealing wax palm (Cyrtostachys renda), or the fruit as in Magnolia grandiflora. above: Sealing wax palms at Taiping War Cemetery, Malaysia with insert of the fruit of Magnolia grandiflora Selection Generally speaking the form of the left: The tropical tree Tabebuia tree is very often a major contributing factor and this, together with a sound knowledge of below: Flowers of the tropical the situation in which the tree is to tree Albizia julibrissin be grown, guides the decision to the best choice of species. Exposure is a major limitation to the free choice of species in northern Europe especially and trees such as Sorbus, Betula, Tilia, Fraxinus, Crataegus and fastigiate yews play an important role in any landscape design where the elements are seriously against a wider selection. -
Pyrus Salicifolia 'Pendula'
http://www.vdberk.ru/derevya/pyrus-salicifolia-pendula/ Rosaceae Pyrus Pyrus salicifolia 'Pendula' Height 5 - 6 m ????? broad weeping, half-open crown ???? ? ????? bark silvery grey, young twigs silvery white ???? narrow elliptical to lanceolate, velvety white, 4 - 9 cm long ????? in umbels, creamy-white, Ø approx. 2.5 cm, April/May ????? pear-shaped, green with brown lenticels, 2 – 3 cm ???????/???? none ?????????? ?????????? (??????) ??? ????? places little demands ????????? ????? suitable for dry soil ??????? tolerates paving ????????????? 5b (-26,0 to -23,4 °C) Wind resistance good ?????, ?????, ???? resistant to frost (WH 1 - 6) ??????????? ? ????? light-loving ??????-????? ???????? ??? valuable for bees (honey plant), provides food for birds ???????? ?????, ????? ??? ????????, ????? ????????????, ????????, ???? ?? ?????, ?????????, ?????????? ???????????? ????, ??????? ????, ????????? ????, ?????????? ??????? ???/????? ????????? ??????, ????????????? ??????, ?????????? ??????, ??????? Origin unknown Broadly growing weeping tree with protruding, pendulous branches with thin twigs that grow straight downward. The height is approx 5 -6 m and the tree often grows equally broad. The bark is silvery grey, twigs are lighter grey. Young twigs in particular are slightly hairy. The twigs have irregular thorns. The narrow elliptical to leaceolate leaves are grey-white, later greyish green and have a velvety hair. The underside remains grey-white and practically bare. The leaf is very similar to willow leaves (salicifolia = willow leaf) and remains on the tree until late in the autumn. The creamy white flowers grow in umbels of 6 – 8 together and appear at the same time as the leaves. They do not stand out very well amidst the silvery grey leaves. Places little demands on the soil. Tolerates dry conditions. More weeping manner of growth than the species and thus used more frequently. © Copyright Boomkwekerij Gebr. Van den Berk B.V. 2021. -
Noble Hardwoods Network: Third Meeting
I Report of the third meeting -13-16 June 1998 - Sagadi, Estonia J. Turok, J. Jensen, Ch. Palmberg-Lerche, M. Rusanen, K. Russell, S. de Vries and E. Lipman, compilers z w CJ a: o LL ::) W (]) E E cc5 "- CJ) o "- (f) (]) o "- :::J o (f) (]) a: o +-' (]) c (]) CJ (f) (]) "- o LL c cc5 (]) 0... o "- :::J W ii NOBLE HARDWOODS NETWORK: THIRD MEETING The International Plant Genetic Resources Institute (IPGRl) is an autonomous international scientific organization, supported by the Consultative Group on International Agricultural Research (CGIAR). IPGRl's mandate is to advance the conservation and use of genetic diversity for the well-being of present and future generations. IPGRl's headquarters is based in Rome, Italy, with offices in another 14 countries worldwide. It operates through three programmes: (1) the Plant Genetic Resources Programme, (2) the CGIAR Genetic Resources Support Programme, and (3) the International Network for the Improvement of Banana and Plantain (INIBAP). The international status of IPGRl is conferred under an Establishment Agreement which, by January 1998, had been signed and ratified by the Governments of Algeria, Australia, Belgium, Benin, Bolivia, Brazil, Burkina Faso, Cameroon, Chile, China, Congo, Costa Rica, Cote d'Ivoire, Cyprus, Czech Republic, Denmark, Ecuador, Egypt, Greece, Guinea, Hungary, India, Indonesia, Iran, Israel, Italy, Jordan, Kenya, Malaysia, Mauritania, Morocco, Pakistan, Panama, Peru, Poland, Portugal, Romania, Russia, Senegal, Slovakia, Sudan, Switzerland, Syria, Tunisia, Turkey, Uganda and Ukraine. Financial support for the Research Agenda of IPGRl is provided by the Governments of Australia, Austria, Belgium, Brazil, Bulgaria, Canada, China, Croatia, Cyprus, Czech Republic, Denmark, Estonia, F.R. -
Origin, Domestication, and Dispersing of Pear (Pyrus Spp.)
Hindawi Publishing Corporation Advances in Agriculture Volume 2014, Article ID 541097, 8 pages http://dx.doi.org/10.1155/2014/541097 Review Article Origin, Domestication, and Dispersing of Pear (Pyrus spp.) G. J. Silva, Tatiane Medeiros Souza, Rosa Lía Barbieri, and Antonio Costa de Oliveira Plant Genomics and Breeding Center, Federal University of Pelotas, 96001-970 Pelotas, RS, Brazil Correspondence should be addressed to Antonio Costa de Oliveira; [email protected] Received 11 March 2014; Accepted 29 April 2014; Published 9 June 2014 Academic Editor: Innocenzo Muzzalupo Copyright © 2014 G. J. Silva et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The pear (Pyrus communis L.) is a typical fruit of temperate regions, having its origin and domestication at two different points, China and Asia Minor until the Middle East. It is the fifth most widely produced fruit in the world, being produced mainly in China, Europe, and the United States. Pear belongs to rosaceous family, being a close “cousin” of the apple, but with some particularities that make this fruit special with a delicate flavor. Thus, it deserves a special attention and a meticulous review of all the history involved, and the recent research devoted to it, because of the economic and cultural importance of this fruit in a range of countries and cultures. Therefore, the purpose of this literature review is to approach the history of the origin, domestication, and dispersal of pears, as well as reporting their botany, their current scenario in the world, and their breeding and conservation. -
Molecular Characterization of Hellenic Variants of Apple Scar Skin Viroid
21st International Conference on Virus and other Graft Transmissible Diseases of Fruit Crops Molecular characterization of Hellenic variants of Apple scar skin viroid and Pear blister canker viroid in pome fruit trees Kaponi, M.S.1, Luigi, M.2, Barba, M.2, Kyriakopoulou, P.E.1 1 Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece 2 CRA-PAV, Centro di Ricerca per la Patologia Vegetale, 00156 Rome, Italy Abstract Apple scar skin viroid (ASSVd) and Pear blister canker viroid (PBCVd) are members of the genus Apscaviroid (family Pospiviroidae). In order to study the nucleotide sequence and secondary structure of Hellenic variants of these viroids, a large number of collected samples were initially screened by imprint hybridization; then ASSVd and PBCVd positive samples were assayed for the viroids by RT-PCR. Total RNA extracts were reverse-transcribed and amplified by polymerase chain reaction using two different specific primer pairs for each viroid. Purified RT-PCR products were directly sequenced or cloned into the pGEM-T and pCR® II vectors and then sequenced. Fourteen Hellenic full length ASSVd variants from 3 apple, 3 wild apple (Malus sylvestris), 1 wild pear (Pyrus amygdaliformis) and 3 pear trees are 330-335 nucleotides long. They differ from the reference sequences of ASSVd (ASSCS and Y00435) at 15-29 and 3-36 sites, respectively. Fifteen nucleotide changes (differences from ASSCS) are common among all Hellenic variants. Hellenic ASSVd variants share high identity (97-100%) with ASSVd isolates from Asian apples. Three Hellenic variants, deriving from different hosts and areas, are identical with each other (wild apple and apple from Pella [Macedonia] and pear from Achaia [Peloponnesus]) and with another group of 3 apple variants from China (Liaoning, AM1 and B-9). -
Pěstujeme Hrušně a Kdouloně
��������������������������������������������� ��������������������������������������������� ����������������������������������������������������������������� ��������������������������������������������������������������������������������������������������������������������������������� ������������������������������������������������������������������������������������������������������������������������������� ����������������������������������������������������������������������������������������������������������������� �������������������������������������������������� ���������������������������������������������������������������������������������� ������������������������������������������������������������������������������������������������������������������������������������������������������������������ ������������������������������������������������������������������������������������������������������������������������������������������������������������������� ������������������������������������������������������������������������������������������������������������������������������������������������������������������������ �������������������������������������������������������������������������������������������� ������������ ������ �� ������������ ���������� ��������� ������������� ����������� ����������������� ������������ ����������� ������ ����� �� ������������ ����������� ���������� ������ ������������ ��������� ������������� ����� ������������� ����������� �������������������������������������������������������������������������������������� -
An Abstract of the Thesis Of
AN ABSTRACT OF THE THESIS OF Ramon J. Dolcet-Saniuan for the degree of Doctor of Philosophy in Horticulture presented on February 21. 1991. Title : Somatic Manipulation of Pvrus and Cvdonia : Characterization and Selection for Iron Efficiency Redacted for privacy Abstract approved :. Dr. Machteld C. Mok Appropriate micropropagation regimes were developed for four Pyrus species (P. amygdaliformis Vill., P. betulaefolia Bunge, P. calleryana Dene., and P. communis L.) and Cydonia oblonga L. Shoot multiplication was optimal at 10 or 20p.M N6- benzyladenine (BA) and high light intensity (135iiEm-2s-1). Root formation of the Pyrus species was stimulated by exposure of shoots to high levels (10 or 32^M) of 6- indolebutyric acid (IBA) for 7 days or a dip in 10mM IBA for 15s, followed by a passage on auxin-free medium. a-Naphthaleneacetic acid (NAA) was more effective than IBA in stimulating rooting of C. oblonga. Adventitious shoots of Cydonia oblonga Quince A were induced from leaves cultured on MS-N6 medium containing thidiazuron (TDZ) and NAA. Optimal regeneration (78% of the cultured leaves with 3.2 shoots per leaf) occurred with 32\iM TDZ plus 0.3M.M NAA on young leaves obtained from micropropagated shoots. Adventitious shoots of Pyrus amygdaliformis and P. communis were obtained, but at much lower frequency. Effects of Fe-iimiting conditions in vitro were determined by comparing the responses of shoots and rooted plantlets to media containing FeEDTA or FeSCM, with or without bicarbonate. Symptoms of Fe deficiency were genotype-dependent and most severe in the presence of FeSCU and bicarbonate. -
Correspondence
Persian J. Acarol., 2021, Vol. 10, No. 23, pp. 351–357. https://doi.org/10.22073/pja.v10i3.68875 Journal homepage: http://www.biotaxa.org/pja Correspondence Eriophyoid mites (Acari: Prostigmata) on common pear (Pyrus communis L.): species diversity and varietal attractiveness in the Fomin Botanical Garden (Kyiv, Ukraine) Lesia M. Bondareva1* and Рetro Ya. Chumak2 1. Department of Integrated Protection and Plant Quarantine, Faculty of Plant Protection, Biotechnology and Ecology, National University of Life and Environmental Sciences, Kyiv, Ukraine; E-mail: [email protected] 2. Department of Plant Protection and Quarantine, Agronomy Faculty, Polissia National University, Zhytomyr, Ukraine; E-mail: [email protected] * Corresponding author PAPER INFO.: Received: 18 May 2021, Accepted: 10 July 2021, Published: 15 July 2021 Mites of the superfamily Eriophyoidea Nalepa, 1898, are important pests in agriculture and forestry worldwide (Lindquist et al. 1996; de Lillo et al. 2018). The high economic significance of four- legged mites is associated with their ability to carry phytopathogens and cause the formation of various damages on plants, such as galls, "witch brooms", bud overgrowth, etc. (Sukhareva 1992). That is why many species of four-legged mites, along with spider mites, aphids and other plant pests, are included in the quarantine lists of phytosanitary control services around the world (Chetverikov et al. 2015). To date, about 5000 species of eriophyoids have been described, which, according to some researchers, is no more than 20% of their world diversity (Amrine et al. 2003). Most of the described species freely live on plants, and only 15–20% of the species live in natural shelters on the host or inside the galls they form. -
Dendrobiology 60.Vp
2008, vol. 60, 45–49 Wojciech Antkowiak, Aneta Czarna, Magdalena Wawrzyniak Pyrus × myloslavensis (P. communis L. × P. salicifolia Pall.) – a new spontaneous pear hybrid Received: 12 September 2008, Accepted: 8 December 2008 Abstract: The paper describes a new taxon: Pyrus × myloslavensis, i.e. a spontaneous hybrid between P. communis (Common Pear) and P. salicifolia (Willowleaf Pear), found near Miłosław town (Wielkopolska province, West Poland). No such hybrid has been reported in the literature so far. P. × myloslavensis has ellip- tic leaves, 1.1–7.6 cm long and 1.0–2.9 cm wide, margin entire, near the apex shallowly and remotely serrate, shortly acute, silvery tomentose on both sides. Fruit of the hybrid is relatively large (mean weight 56.2 g), green-yellow, without rust-coloured patches and blush. Additional key words: Pyrus communis, Pyrus salicifolia, Pyrus hybrid, Pyrus × myloslavensis, taxonomy Address: Poznan University of Life Sciences, Department of Botany, Wojska Polskiego 71c, 60-625 Poznań, Poland, e-mail: [email protected] Introduction In Poland, in the wild, the most common is Wild Pear Pyrus pyraster (L.) Burgsd. and its frequent hy- brids with the cultivated European Pear P. communis L. (= P. domestica Med.), termed P. × amphigenea Domin ex Dostálek. During floristic field research in 2001, in the village of Nowa Wieś Podgórna (Fig. 1) near the road to Pyzdry (West Poland), we found a pear tree that clearly differed from the above-mentioned taxa. It is characterized by narrowly elliptic, tomentose leaves, and relatively large fruit. A detailed analysis of characteristics of this unique pear tree suggests that it can be a hybrid between the commonly cultivated P. -
A Cooperative Guide
A Cooperative Guide Growing Trees and Vegetation Within Electrical Transmission Line Corridors A Cooperative Effort Between College of Natural Resources University of Wisconsin – Stevens Point Richard Hauer, Assistant Professor of Urban Forestry Michael Demchik, Associate Professor of Forestry John DuPlissis, Extension Forestry Outreach Specialist Andrew Koser, Undergraduate Research Specialist Andrew Noth, Undergraduate Research Specialist And Dairyland Power Cooperative A Cooperative Guide - Growing Trees and Vegetation Within Electrical Transmission Line Corridors PROJECT CREDITS Technical Writing Team: Andrew Koser, Andrew Noth, Dr. Richard Hauer, Dr. Michael Demchik, John DuPlissis Graphic Design and Layout: Dr. Richard Hauer Photo Credits: Richard Hauer, Dave Hanson, Laura Jull or as noted. Figure 3 (Reprinted with permission of the Edison Electric Institute) The authors gratefully thank Dennis Fallon (Excel Energy), Brian Asmus (Minnesota Power), and Byron Johnson (Great River Energy) and Dairyland Power Cooperative for their constructive reviews and comments with this publication. A Cooperative Guide - Growing Trees and Vegetation Within Electrical Transmission Line Corridors airyland Power Cooperative has developed a long history of providing safe, reliable and economical electrical energy to its member cooperatives from its beginning in D 1941. Today, Dairyland supplies the total wholesale electrical energy requirements for its member rural electric cooperatives, as well as a number of municipalities, within a service territory -
Arbutin Analysis in Leaves, Fruit and Branches of Pyrus Amygdaliformis Vill
Ibrahim Bulduk.et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 6, Issue 6, ( Part -5) June 2016, pp.15-24 RESEARCH ARTICLE OPEN ACCESS Arbutin Analysis In Leaves, Fruit And Branches Of Pyrus Amygdaliformis Vill. Var. Amygdaliformis Method Optimization Ibrahim Bulduk*, Mehtap Donmez Sahin** *Uşak University, Health Care Education, Research And Application Center, 64200, Uşak, Turkey. **Uşak University, Health Care Education, Research And Application Center, 64200, Uşak, Turkey. ABSTRACT Arbutin is a derivative of hydroquinone that develops naturally. It is produced in numerous plant species belonging to various families, such as Lamiaceae, Ericaceae, Saxifragaceae and Rosaceae. It is a tyrosinase inhibitor and one of its uses is as a cosmetic skin whitening agent. Pyrus amygdaliformis Vill. var. amygdaliformis, also known as the almond-leaved pear, is a species of plant in the Rosaceae family. It is native to southern Europe, the Mediterranean, and west Asia. In this study, Arbutin was analyzed in leaves, fruits and branches of Pyrus amygdaliformis Vill. var. amygdaliformis and analytical method was optimized. A modeling of the ultrasound assisted extraction of arbutin from leaves, fruits and branches of Pyrus amygdaliformis Vill. var. amygdaliformis was achieved using response surface methodology. A three-level-three-factor Box– Behnken design was implemented with the aim of optimizing three extraction variables, including extraction temperature (X1), extraction time (X2), and methanol concentration (X3), for the achievement of high extraction yield of the arbutin. The optimized conditions are extraction temperature of 43.76 ˚C, methanol concentration of 48.50 %, extraction time of 39.44 min.