Newsletter, Program & Abstracts
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geschichte Der Chemischen Institute in Innsbruck Und Die Verantwortung Von Natur- Und Geisteswissenschaften an Schulen Und Der Universität
LEOPOLD-FRANZENS-UNIVERSITÄT INNSBRUCK Philosophisch-Historische Fakultät Institut für Zeitgeschichte Geschichte der Chemischen Institute in Innsbruck und die Verantwortung von Natur- und Geisteswissenschaften an Schulen und der Universität DIPLOMARBEIT zur Erlangung des akademischen Grades eines Magisters der Philosophie (Mag. phil.) eingereicht bei Univ.-Prof. Mag. Dr. Dirk Rupnow von Simon Hermann Schöpf 00718216 Philippine-Welser-Straße 1; 6020 Innsbruck Innsbruck, im Juni 2019 „Alles ist Chemie!“ Alle Chemiker*innen, immer. Eidesstattliche Erklärung Ich erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht verwendet und die den benützten Quellen wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Innsbruck, im Juni 2019 Simon Hermann Schöpf Vorwort Hiermit möchte ich mich bei allen bedanken, die zur Entstehung dieser Arbeit beigetragen und dabei mitgeholfen haben. Auch möchte ich mich bei allen bedanken, die mich in meiner gesamten Studienzeit unterstützt und motiviert haben! Ein herzliches Dankeschön an meinen Betreuer, Univ.- Prof. Mag. Dr. Dirk Rupnow, welcher es mir ermöglichte, meine beiden wissenschaftlichen Interessen, die Geistes- und die Naturwissenschaften, in einer Arbeit zu vereinen und mir immer hilfreiche Tipps gab. Auch bei MMag. Ina Friedmann und Mag. Dr. Christof Aichner, mit denen ich das wunderbare „Einhornbüro“ teilen konnte, möchte ich meinen Dank für die Unterstützung und die nette Zeit aussprechen. Danke auch an ao.Univ.-Prof. Mag. Dr. Margret Friedrich für ihr Feedback und ihre Hilfestellungen. Einen besonderen Dank möchte ich auch Dr. Ludwig Call aussprechen, der sich für diese Arbeit als Zeitzeuge zur Verfügung stellte und mir neue Einblicke in die „alte Chemie“ gab. -
Erika Cremer (20.05.1900 München – 21.09.1996 Innsbruck) Pionierin Der Gaschromatographie
310 Please take notice of: (c)Beneke. Don't quote without permission. Erika Cremer (20.05.1900 München – 21.09.1996 Innsbruck) Pionierin der Gaschromatographie Klaus Beneke Institut für Anorganische Chemie der Christian-Albrechts-Universität der Universität D-24098 Kiel [email protected] Aus: Klaus Beneke Biographien und wissenschaftliche Lebensläufe von Kolloidwis- senschaftlern, deren Lebensdaten mit 1996 in Verbindung stehen. Beiträge zur Geschichte der Kolloidwissenschaften, VIII Mitteilungen der Kolloid-Gesellschaft, 1999, Seite 311-334 Verlag Reinhard Knof, Nehmten ISBN 3-934413-01-3 311 Cremer, Erika (20.05.1900 München - 21.09.1996 Innsbruck) Erika Cremer wurde als als einzige Tochter, als zweites von von drei Kindern, dem Professor für Physiologie in München, Max Cremer, gebo- ren. Dieser gilt als der Entdecker der Glaselek- trode (Cremer, 1906). Ihr Vater stammte aus Ürdingen. Großvater und Vater der Mutter, Els- beth Rothmund, waren berühmte Kliniker an der Münchner Universität. Ihr Onkel Viktor Rothmund war Ordinarius für Physikalische Chemie in Prag. Die Berufung des Vaters nach Köln (1909) und nach Berlin an die Tierärztilche Hochschule (1911) war ein schwerer Eingriff in dem jungen Leben der gebürtigen Münchnerin. Zuerst wurde ihr in Köln der Dialekt radikal abgewöhnt, und der Schulwechsel in das preußische Berlin war wohl Erika Cremer auch nicht ganz im Sinne der kleinen Erika. Hei- misch wurde sie weder in Köln noch Berlin. Ihre Sehnsucht waren München und Miesbach wo sie einen Teil ihrer Kindheit verbrachte und vorallem die Alpen (Patat, 1965; Bobleter, 1990, 1997; Stöger, 1990). Mit dem Reifezeugnis an der Oberrealschule in der Kochstraße in Berlin immatri- kulierte sich Erika Cremer im Sommer 1921 an der Friedrich-Wilhelm-Universität in Berlin. -
Books of HIST (MVO) Completed
1 HIST’S SIXTY YEARS OF SPONSORED PUBLICATIONS: AN EXPANDED 2 BIBLIOGRAPHY 3 Mary Virginia Orna ([email protected]) 4 5 INTRODUCTION 6 For sixty years, the Division of the History of Chemistry (HIST) has sponsored publications 7 of history-related volumes drawn for the most part from symposia that were presented at 8 American Chemical Society (ACS) meetings. The origin of each volume depended upon 9 individuals who organized symposia, or in some cases, proposed book volumes. It has been 10 the practice of the Division to provide some financial support for these ventures; many 11 organizers were able to obtain additional support from various types of grants and 12 contributions. Generally, the editor of the volume was also the organizer of the event. Except 13 for the Archaeological Chemistry volumes, there were no set series or themes over the years, 14 but the volumes naturally fell into the six categories given in the Outline and Overview of 15 this article. 16 Since this paper has as its goal a permanent record of this HIST-initiated activity, 17 each volume will be highlighted with a re-publication of parts of its Preface and if warranted, 18 some additional information on the contents of the volume. Since a large percentage of the 19 volumes’ contents (titles and abstracts of papers) can be found on the ACS website, 20 [www.acs.org/publications], they will not be repeated here but a link to the volume on the 21 ACS website will be provided. However, several volumes were published elsewhere, and 22 even some volumes published by the ACS have no presence on its website. -
A Century of Chromatography — Gas Analysis in the First 50 Years
GC CONNECTIONS A Century of Chromatography — Gas Analysis in the First 50 Years John V. Hinshaw, Serveron Corp., Hillsboro, Oregon, USA. Although many decades intervened between the beginnings of chromatography as a liquid–solid adsorption technique and the formal invention of gas–liquid-phase chromatography, those years were full of advances in gaseous chemical separations. This month in “GC Connections,” John Hinshaw reviews the developments before 1952 that established the basis for the modern practice of gas chromatography. The date 21 March 2003 marked the twenty-first century separation scientists, Gas Adsorption passage of 100 years since Mikhail Tswett between gas- and liquid-based Modern chromatographers are familiar (1872–1919) presented a lecture to the chromatography separations; they worked with gas chromatography (GC) column Biological Section of the Warsaw Society of in entirely different disciplines with packings that are the direct descendents of Natural Scientists on his 1901–1903 divergent goals. Not until the 1940s did charcoal. These packings include investigations of liquid–solid adsorptive some begin to draw the analogy between Carbopack-B (Supelco-Sigma-Aldrich, separations of plant pigments at Warsaw their work with gaseous separations and Bellefonte, Pennsylvania, USA), which University.1 This lecture is generally separations with a liquid mobile phase. Yet, contains a surface area of 100 m2 — recognized as the first public disclosure of various separation techniques based upon roughly equal to the area of my laboratory the chromatographic technique, although gas adsorption, which scientists now floor — in 1 g. Adsorption is the primary the term chromatography, which Tswett consider to have been forms of physical effect used in the various gas coined, did not appear in print until several chromatography, gained significance in the separation techniques discussed in this years later in 1906. -
Learning from Entrepreneurial Failure
LEARNING FROM ENTREPRENEURIAL FAILURE Leo Baekeland’s Exit from Europe - Joris Mercelis1 - 150 years after the birth of Leo H. Baekeland (1863- 1944), one of Belgium’s most celebrated chemists and high-tech innovators, it has become a priority of policy-makers and academic administrators on both sides of the Atlantic to make university science students and/or faculty more entrepreneurial. It is therefore significant that Baekeland became a successful entrepreneur only after his move to the United States and departure from academia in 1889. Drawing on new source material and various conceptual frameworks regarding the determinants of successful entrepreneurship, this article will reconsider why this was the case. Consistent with recent evidence in entrepreneurship research, it will pay special attention to the institutional incentives faced by Baekeland and examine whether these were responsible for the failure of his first business endeavor. Yet this article will also consider the possibility that non-institutional factors mattered more than the influence of institutional considerations. 47 Learning from Entrepreneurial Failure Academia has long been a congenial setting The Belgian-American chemical innovator for various types of actions and behaviors that Leo H. Baekeland (1863-1944) was among could reasonably be termed “entrepreneurial”. the academic risk takers who, many decades The pursuit of organizational innovations, earlier, did found a business start-up while re- such as the creation of new departments and maining affiliated with his educational insti programs or the adjustment of existing ones tution(s). When Baekeland co-established Dr in response to changing societal needs and Baekelandt et Compagnie, a photochemical demands, provides one of the more obvious enterprise, in late December 1887, his ap- examples. -
Michael Polanyi and the Social Studies of Science
Michael Polanyi and the Social Studies of Science: Comments on Mary Jo Nye’s Michael Polanyi and His Generation Theodore L. Brown ABSTRACT Key Words: Michael Polanyi, Mary Jo Nye, Weimar Berlin, republic of science, scientific authority, social construction of science,Thomas Kuhn, Robert Merton, Ludwik Fleck, J. D. Bernal. This review offers comments on the book, Michael Polanyi and His Generation: Origins of the Social Construction of Science by Mary Jo Nye. Mary Jo Nye’s book about Michael Polanyi and his fellow pioneers in social studies of science is a joy to read. Her perspectives on the development of this field of inquiry, and her assessment of Polanyi’s role are presented through an unusual organizational structure. While her book is not intended to be primarily biographical, her account of Polanyi’s career, with its twists and turns, triumphs and defeats, is filled with many fascinating insights into his life and work. Nye begins by relating her own early introduction to the social aspects of science as a member of the 1960s graduate school generation studying the history of science. It was at about this time that study of the social aspects of science was ceded as having an importance in its own right, apart from science’s intellectual history. Nye has aimed to show that the origins of new social conceptions of science can be traced to the scientific culture and political events of Europe in the 1930s. Michael Polanyi’s story is an excellent vehicle for conveying just how those conceptions arose and evolved over time into a full-blown field of intellectual endeavor. -
Early Stages in the History of Gas Chromatography
Accepted Manuscript Title: Early Stages in the History of Gas Chromatography Authors: Ivan G. Kolomnikov, Alexander M. Efremov, Tatyana I. Tikhomirova, Nadezhda M. Sorokina, Yury A. Zolotov PII: S0021-9673(18)30006-2 DOI: https://doi.org/10.1016/j.chroma.2018.01.006 Reference: CHROMA 359132 To appear in: Journal of Chromatography A Received date: 10-10-2017 Revised date: 28-12-2017 Accepted date: 2-1-2018 Please cite this article as: Ivan G.Kolomnikov, Alexander M.Efremov, Tatyana I.Tikhomirova, Nadezhda M.Sorokina, Yury A.Zolotov, Early Stages in the History of Gas Chromatography, Journal of Chromatography A https://doi.org/10.1016/j.chroma.2018.01.006 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Early Stages in the History of Gas Chromatography Ivan G. Kolomnikova, Alexander M. Efremova, Tatyana I. Tikhomirovaa, Nadezhda M. Sorokinaa, Yury A. Zolotova, b, * aDepartment of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, GSP-1, Moscow 119991, Russia b Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, 119991 Russia *Corresponding author. Tel.: +7(495)939-55-64 E-mail: * [email protected] ACCEPTED MANUSCRIPT 1 Highlights The history of gas chromatography began earlier than famous Archer Martin’s works Most of the earlier chromatographic studies dealt with gas-adsorption chromatography Early studies were carried out mostly in Germany, Austria, UK and USSR Abstract The creation of gas chromatography is traditionally associated with the names of Nobel Prize winner Archer Martin and his colleagues Richard Synge and Anthony James. -
Guide to the Michael Polanyi Papers 1900-1975
University of Chicago Library Guide to the Michael Polanyi Papers 1900-1975 © 2009 University of Chicago Library Table of Contents Descriptive Summary 4 Information on Use 4 Access 4 Citation 4 Biographical Note 5 Scope Note 7 Related Resources 18 Subject Headings 18 INVENTORY 18 Series I: Correspondence 18 Subseries 1: General 19 Subseries 2: John R. Baker and the Society for Freedom in Science 32 Subseries 3: Joseph H. Oldham and the "Moot" 32 Subseries 4: Marjorie Grene and the Unity of Knowledge Group 33 Subseries 5: Harry Prosch 33 Subseries 6: Karl and Ilona Polanyi 34 Subseries 7: Cecile Polanyi 35 Series II: Notes 37 Subseries 1: Subject 37 Subseries 2: Author 39 Subseries 3: File Cards 52 Series III: Manuscripts 54 Subseries 1: 1936 55 Subseries 3: 1939 56 Subseries 4: 1940 56 Subseries 5: 1941 56 Subseries 6: 1942 58 Subseries 7: 1943 58 Subseries 8: 1944 60 Subseries 9: 1945 60 Subseries 10: 1946 61 Subseries 11: 1947 62 Subseries 12: 1948 63 Subseries 13: 1949 64 Subseries 14: 1950 64 Subseries 15: 1951 65 Subseries 16: 1952 65 Subseries 17: 1953 66 Subseries 18: 1954 66 Subseries 19: 1955, 1956, 1957 66 Subseries 20: 1958 67 Subseries 21: 1959 67 Subseries 22: 1960 67 Subseries 23: 1961 68 Subseries 24: 1962 68 Subseries 25: 1963 69 Subseries 26: 1964 70 Subseries 27: 1965 72 Subseries 28: 1966 73 Subseries 29: 1967 73 Subseries 30: 1968 73 Subseries 31: 1969 74 Subseries 32: 1970 75 Subseries 33: 1971 75 Subseries 34: 1972 76 Subseries 35: Undated 76 Subseries 36: Notebooks, Travel Diaries, and Bibliographies 78 Series IV: Offprints and Memorabilia 79 Subseries 1: Photographs and Postcards 79 Subseries 2: General Memorabilia 79 Subseries 3: Clippings 80 Subseries 4: Offprints, works by Michael Polanyi 82 Subseries 5: Offprints by Other Authors 83 Subseries 6: Michael Polanyi Library, photocopied title pages of Polanyi’s library,85 dispersed July 1994 Descriptive Summary Identifier ICU.SPCL.POLANYI Title Polanyi, Michael. -
Leo Baekeland Diary Volume 2, 1908
Smithsonian Institution Transcription Center, Archives Center - NMAH Smithsonian Institution Archives Center - NMAH Leo Baekeland Diary Volume 2, 1908 Extracted on Jul-15-2014 09:19:10 The Smithsonian Institution continues to research information on its collections and is thankful to the digital volunteers who helped to transcribe this material. We look forward to using the work they created to further enrich our collections. - Before you incorporate this material into a for-profit publication or online project, please contact the Archives Center - NMAH; - Please leave source and copyright information as is and avoid obscuring these details in the material; - Do not post this document as a whole to a social media site, such as a blog, Facebook page, Twitter feed, etc; - Researchers: if you deposit this material, please let Archives Center - NMAH know where the material is deposited so that we can guide the community members to it. Contact the Smithsonian Institution for the current status of this project and related material. To see this project online - or other transcription projects - please visit here. Smithsonian Institution Transcription Center, Archives Center - NMAH Smithsonian Institution Transcription Center, Archives Center - NMAH Front & back cover of book [[Preprinted]] Record [/preprinted]] [[on spine]] [[underlined]] 2 [[/underlined]] June 23 [[underlined]] 1908 [[/underlined]] Nov 5 1908 [[/on spine]] Leo Baekeland Diary Volume 2, 1908 Transcribed and Reviewed by Digital Volunteers Approved by Smithsonian Staff Extracted Jul-15-2014 09:19:10 Smithsonian Institution Transcription Center, Archives Center - NMAH Smithsonian Institution Transcription Center, Archives Center - NMAH AC 0005 Diary 2 [[end page]] [[start page]] II Journal of Dr L. -
Gordon-Fogelson on Mercelis, 'Beyond Bakelite: Leo Baekeland and the Business of Science and Invention'
H-Material-Culture Gordon-Fogelson on Mercelis, 'Beyond Bakelite: Leo Baekeland and the Business of Science and Invention' Review published on Monday, December 7, 2020 Joris Mercelis. Beyond Bakelite: Leo Baekeland and the Business of Science and Invention. Lemelson Center Studies in Invention and Innovation Series. Cambridge: MIT Press, 2020. 378 pp. $55.00 (paper), ISBN 978-0-262-53869-5. Reviewed by Robert Gordon-Fogelson (University of Southern California) Published on H-Material- Culture (December, 2020) Commissioned by Colin Fanning (Bard Graduate Center) Printable Version: https://www.h-net.org/reviews/showpdf.php?id=55422 Since its introduction to the public in 1909, Bakelite, the world’s first synthetic plastic, has accrued considerable cultural meaning as an emblem of scientific innovation, technological transformation, and economic abundance. Like its inventor and near-namesake, the Belgian American chemist Leo Baekeland, Bakelite became a household name around the middle of the twentieth century. Marketed as “the material of a thousand uses,” it quickly outpaced its original function as a substitute for shellac and its first technical applications in the electrical and automobile industries. Suitable for the fabrication of everything from radios and cameras to buttons and billiard balls, Bakelite was naturalized as a quintessentially modern material. And while many other scientists and entrepreneurs contributed to the meteoric rise of the plastics industry, it was Baekeland who, in the 1930s, earned the exaggerated and enduring epithet “father of plastics.” In Beyond Bakelite, Joris Mercelis works to denaturalize these myths of technological inevitability and innovative genius by retracing Bakelite’s invention and commercialization. In the process, he identifies interdependencies between scientists and businessmen, who increasingly worked together over the course of the twentieth century to produce, patent, and profit from new materials and productive technologies. -
Download the January Issue in PDF Format
Future Mission, Goals and Function of IUPAC The following article by President Joshua Jortner was published as a Guest Editorial in ‘Nachrichten aus Chemie’, February 1998, the news magazine of the Gesellschaft Deutscher Chemiker. The International Union of Pure and Applied Chemistry (IUPAC) serves as a Scientific, international, non-gov- ernmental and objective body in addressing the global issues involving the chemical sciences. The future mis- sion and function of IUPAC should rest on the principles of the globalization of the scientific-technological en- deavour, the response to current changes in science and technology, the fast expansion of the boundaries of modern chemistry and the mission oriented service of Professor Dr. Joshua Jortner chemistry. IUPAC was formed in 1919 by chemists from industry and academia. Over nearly eight decades the Union IUPAC will represent, when appropriate, the interests of has succeeded in fostering world-wide communications chemistry in international governmental and non-gov- in the chemical sciences and in uniting academic and ernmental forums. Goals have also been established for industrial chemistry in a common language. IUPAC has the Union’s contributions to the advancement of world- long been recognized as the world authority on nomen- wide research in the chemical sciences, the promotion clature, atomic weights and many other critically evalu- of the service of chemistry to society (with attention to ated data, and it continues to sponsor major the advancement of the chemical sciences in develop- international meetings that range from specialized sym- ing countries), and the facilitation of the development of posia to CHEMRAWN meetings with societal impact. -
James, Steinhauser, Hoffmann, Friedrich One Hundred Years at The
James, Steinhauser, Hoffmann, Friedrich One Hundred Years at the Intersection of Chemistry and Physics Published under the auspices of the Board of Directors of the Fritz Haber Institute of the Max Planck Society: Hans-Joachim Freund Gerard Meijer Matthias Scheffler Robert Schlögl Martin Wolf Jeremiah James · Thomas Steinhauser · Dieter Hoffmann · Bretislav Friedrich One Hundred Years at the Intersection of Chemistry and Physics The Fritz Haber Institute of the Max Planck Society 1911–2011 De Gruyter An electronic version of this book is freely available, thanks to the support of libra- ries working with Knowledge Unlatched. KU is a collaborative initiative designed to make high quality books Open Access. More information about the initiative can be found at www.knowledgeunlatched.org Aut ho rs: Dr. Jeremiah James Prof. Dr. Dieter Hoffmann Fritz Haber Institute of the Max Planck Institute for the Max Planck Society History of Science Faradayweg 4–6 Boltzmannstr. 22 14195 Berlin 14195 Berlin [email protected] [email protected] Dr. Thomas Steinhauser Prof. Dr. Bretislav Friedrich Fritz Haber Institute of the Fritz Haber Institute of the Max Planck Society Max Planck Society Faradayweg 4–6 Faradayweg 4–6 14195 Berlin 14195 Berlin [email protected] [email protected] Cover images: Front cover: Kaiser Wilhelm Institute for Physical Chemistry and Electrochemistry, 1913. From left to right, “factory” building, main building, director’s villa, known today as Haber Villa. Back cover: Campus of the Fritz Haber Institute of the Max Planck Society, 2011. The Institute’s his- toric buildings, contiguous with the “Röntgenbau” on their right, house the Departments of Physical Chemistry and Molecular Physics.