Actinopterygian Tree with Divergence Times Based on the Whole Mitochondrial Genome Sequences Jan

Total Page:16

File Type:pdf, Size:1020Kb

Actinopterygian Tree with Divergence Times Based on the Whole Mitochondrial Genome Sequences Jan Actinopterygian tree with divergence times based on the whole mitochondrial genome sequences Jan. 27. 2015. Jun Inoue Orders #17–60 (Nelson 2006) Genus Common name 17.Polypteriformes Polypteridae ポリプテルス科 Erpetoichthys Reedfish Inoue 05 ロープフィッシュ 82(66-101) Polypterus Bichir ポリプテルス Polyodontidae ヘラチョウザメ科 Polyodon Paddlefish Chondrostei 18.Acipenseriformes ヘラチョウザメ Acipenseridae チョウザメ科 Scaphirhynchus Shovelnose sturgeon Actinopterygii 114(92-144) Inoue 05 65(47-89) Acipenser Sturgeon 428(417-448) チョウザメ Azuma 08 19.Lepisosteiformes Lepisosteidae ガ ー パイク 科 Lepisosteus Spotted gar Holostei Azuma 08 33(24-44) Atractosteus Alligator gar ガーパイク 20.Amiiformes 339(315-360) Amia Amia (personal com.) アミア 21.Hiodontiformes Hiodontidae ハイオドン科 Actinopteri Hiodon Goldeye 381(364-392) ハイオドン Osteoglossomorpha Pantodontidae パントドン 科 Pantodon Azuma 08 22.Osteoglossiformes Butterflyfish パントドン (personal com.) 253(228-277) アロワナ目 Osteoglossidae Arapaima Arowana Inoue 09 201(176-226) Osteoglossum Gymnarchidae ギムナーカス科 アロワナ Mormyroidea Gymnarchus Neopterygii 179(155-204) Mormyridae モルミルス科 ジムナーカス 142(120-165) Gnathonemus モルミルス 360(339-376) 162(138-186) Notopteridae ナギナタナマズ科 Azuma 08 Notopterus ナギナタナマズ Elopidae カライワシ科 23.Elopiformes カライワシ目 Elops Megalopidae イセゴイ科 カライワシ Inoue 04 Megalops イセゴイ Albulidae ソトイワシ 科 Albula Elopomorpha 24.Albuliformes ソトイワシ目 Albulidae ソトイワシ Pterothrissus ハモ ウミヘビ ギス Teleostei 228(199-262) Inoue 04 Notacanthiformes ソコギス目 Notacanthidae Aldrovandia Inoue 05 324(300-344) Notacanthus Deep-sea spiny eel トカゲギス Azuma 08 Muraenidae ウツボ科 ソコギス Gymnothorax Moray eel ウツボ (personal com.) Congridae アナゴ科 シギウナギ アナゴ 25.Anguilliformes Conger Conger eel Ophichthidae ウミヘビ科 ウミヘビ ウナギ目 Ophisurus Snake eel Inoue 04 Inoue 01 Muraenesocidae ノコバウナギ ハモ科 Muraenesox Anguillidae ウナギ科 Anguilla Freshwater eel 26.Saccopharyngiformes Eurypharyngidae フウセンウナギ科 ウナギ Eurypharynx フクロウナギ Engraulidae カタクチイワシ科 Elopocephala 27.Clupeiformes ニシン目 Engraulis Anchovy カタクチイワシ Clupeidae ニシン科 307(282-328) Otomorpha (Otocephala) Sardinops Sardine Azuma 08 244(216-271) Alepocephaliformes セキトリイワシ目 マイワシ ( ニシン科 ) (personal com.) Azuma 08 28.Gonorynchiformes ネズミギス目 (personal com.) Cobitoidea Balitoridae タニノボリ科 Formosania Loach 29.Cypriniformes コイ目 Ostariophysi Nakatani 11 Cyprinidae コイ科 ( タニノボリ科 ) Azuma 08 Cyprinus Carp 139(111-169) Danio Zebrafish コイ 32.Gymnotiformes 248(227-268) ゼブラフィッシュ ( コイ科 ) Nakatani 11 Ctenoluciidae Boulengerella Pike-characid Clupeocephala 30.Characiformes カラシン目 Characidae Astyanax Cave fish 276(250-301) 226(206-245) Nakatani 11 31.Siluriformes ナマズ目 Pimelodidae ピメロドゥス科 Azuma 08 Pimelodus Long-whiskered catfish ドウクツギョ ( カラシン科 ) Lepidogalaxiiformes 36.Esociformes Esocidae カワカマス目 Esox Northern pike Protacanthopterygii カワカマス Coregonus Lake whitefish Ishiguro 03 35.Salmoniformes サケ目 Euteleostei Salvelinus Salvelinus Ishiguro 03 タイセイヨウサケ Miya 14 Ishiguro 03 Oncorhynchus Rainbow trout 33.Argentiniformes ニギス目 ニジマス 34.Osmeriformes キュウリウオ目 Plecoglossidae アユ科 Stomiatii Plecoglossus Ayu 249(223-274) Chauliodontidae ホウライエソ科 アユ 37.Stomiiformes ワニトカゲギス目 Chauliodus Azuma 08 ホウライエソ Gonostomatidae ヨコエソ科 Sigmops ヨコエソ 38.Ateleopodiformes シャチブリ目 Ateleopodidae シャチブリ科 Ateleopus Jellynose fish シャチブリ 39.Aulopiformes ヒメ目 Chlorophthalmidae Chlorophthalmus Greeneye Synodontidae エソ科 アオメエソ Harpadon ミズテング ( エソ科 ) 40.Myctophiformes ハダカイワシ目 Myctophidae ハダカイワシ科 Neoteleostei Myctophum スズキハダカ ( ハダカイワシ科 ) Miya 14 ツノハダカ ( ハダカイワシ科 ) Regalecidae リュウグ ウノツカ イ 科 41.Lampriformes アカマンボウ目 Regalecus Ribbonfish Lampridae アカマンボウ科 Eurypterygii Lampris Opah リュウグウノツカイ 42.Polymixiiformes ギンメダイ目 Polymixiidae アカマンボウ Miya 14 Polymixia Beardfish 43.Percopsiformes ギンメダイ Paracanthopterygii サケスズキ目 54.Zeiformes マトウダイ目 Zeidae Zeus John dory Miya 07 Macrouridae マトウダイ ソコダラ科 Caelorinchus Ctenosquamata 44.Gadiformes タラ目 ムグラヒゲ ( ソコダラ科 ) Miya 14 Gadidae タラ科 Theragra Alaska pollack Gadus Cod タラ Trachichthyidae ヒウチダイ科 Hoplostethus Monocentridae マツカサウオ科 53.Beryciformes Monocentris Pinecone fish ヒウチダイ Berycidae キンメダイ科 Azuma 08 Beryx Alfonsino Acanthomorpha Miya 14 Holocentridae イットウダイ 科 Sargocentron Squirrelfish 191(166-216) Melamphaidae カブトウオ科 キンメダイ Azuma 08 52.Stephanoberyciformes クジラウオ目 Poromitra Rondeletiidae アンコウイワシ科 Rondeletia loricata カブトウオ アカチョッキクジラウオ 45.Ophidiiformes ( アンコウイワシ科 ) 46. Batrachoidiformes 59.Pleuronectiformes カレイ目 Paralichthyidae ヒラメ科 Paralichthys Flatfishes E Acanthopterygii Microstomus ヒラメ Carangiformes Carangidae Dover sole 182(157-206) Song 14 Miya 03 アジ科 Seriola Jack Azuma 08 Arripidea マアジ F Nomeidae エボシダイ科 クロマグロ Pelagia Scombriformes Scombridae サバ科 ( サバ科 ) タイセイヨウサバ Miya 13 Katsuwonus Katsuwonus Percomorpha Kurtiformes Apogonidae テンジクダイ科 カツオ Near 13 Pterapogon Pterapogon ≈58.Perciformes C Gobiiformes Gobiidae ハゼ科 Tridentiger Tridentiger トビハゼ D Syngnathiformes ヨウジウオ目 Dactylopteridae Song Song 14 Dactyloptena Dactyloptena 14 A 56.Synbranchiformes タウナギ目 Synbranchidae タウナギ科 : Broadly accepted node Monopterus albus Az 08 タウナギ 48.Mugiliformes Mugilidae ボラ科 Miya M, Nishida M. (2014). The mitogenomic contributions to molecular Mugil phylogenetics and evolution of fishes: A 15-year retrospect. Ichthyological Aplocheiloidei Aplocheilidae Aplocheilus Killifish ボラ Research 61:1–43. 51.Cyprinodontiformes B Goodeidae Xenotoca Splitfin ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– カダヤシ目 Cyprinodontidae Azuma Y, Kumazawa Y, Miya M, Mabuchi K, Nishida M (2008) Jordanella Pupfish Azuma 08: Stm 09 Cyprinodontoidei Poeciliidae Mitogenomic evaluation of the historical biogeography of cichlids toward カダヤシ科 Xiphophorus Platyfish 124 (personal com.) プラティー reliable dating of teleostean divergences. BMC Evol Biol 8:215. Atherinopsidae Menidia Neotropical silverside (115-138) 49.Atheriniformes Inoue 05: Inoue JG, Miya M, Venkatesh B, Nishida M (2005) The Atherino- Melanotaeniidae mitochondrial genome of Indonesian coelacanth Latimeria menadoensis morpha トウゴロウイワシ目 Melanotaenia Blue eye Isonidae (Sarcopterygii: Coelacanthiformes) and divergence time estimation between 136 ナミノハ ナ 科 Iso the two coelacanths. Gene 349:227–235 (115-159) Scomberesocidae サンマ科 Cololabis Saury Azuma 08 サンマ Inoue 09: Inoue JG, Kumazawa Y, Miya M, Nishida M (2009) The historical Exocoetidae トビウオ科 Exocoetus Flyingfish biogeography of the freshwater knifefishes using mitogenomic approaches: ダツ目 Hemiramphidae トビウオ a Mesozoic origin of the Asian notopterids (Actinopterygii: Stm 09 Hyporhamphus Halfbeak 50.Beloniformes Oryzias O.luzonensis Osteoglossomorpha). Mol Phylogenet Evol 51:486–499 118(106-130) Northern O.latipes (HNI) Ishiguro NB, Miya M, Nishida M (2003) Basal euteleostean 41(33-50) Southern O.latipes (Hd-rR) Medaka Ishiguro 03: 18(13-24) メダカ relationships: a mitogenomic perspective on the phylogenetic reality of the Pomacentridae スズメダイ科 Abudefduf ‘‘Protacanthopterygii’’ . Mol Phylogenet Evol 27:476–488 Azuma 08 Miya 03: Miya M, Takeshima H, Endo H, Ishiguro NB, Inoue JG, Mukai T, Amphiprion Anemonefish 159 (136-183) Satoh TP, Yamaguchi M, Kawaguchi A, Mabuchi K, Shirai SM, Nishida M 127 Indo/Sri Lanka Azuma 08 87(69-106) Etroplus (2003) Major patterns of higher teleostean phylogenies: a new perspective Azuma 08 (107-149) Madagascar Etroplinae Paretroplus based on 100 complete mitochondrial DNA sequences. Mol Phylogenet Madagascar Etroplinae Paratilapia Evol 26:121–138 Cichlidae Ptychochrominae Ptychochromoides Miya 13: Miya M, Friedman M, Satoh TP, Takeshima H, Sado T, Iwasaki W, カワスズメ科 South America Cichlasomatinae;Heroini Hypselecara Astronotinae;Astronotini Yamanoue Y, Nakatani M, Mabuchi K, Inoue JG, Poulsen JY, Fukunaga T, 96(78-115) Astronotus Nishida M (2013) Evolutionary origin of the Scombridae (tunas and Tylochromini Tylochromis 89(72-108) Africa Oreochromini Oreochromis Tilapia mackerels): members of a Paleogene adaptive radiation with 14 other Pseudocrenilabrinae Tropheini pelagic fish families. PLoS ONE 8:e73535. Tropheus ティラピア Neolamprologus Nakatani 11: Nakatani M, Miya M, Mabuchi K, Saitoh K, Nishida M (2011) Lamprologini Julidochromis Evolutionary history of Otophysi (Teleostei), a major clade of the modern Sturmbauer 10 freshwater fishes: Pangaean origin and Mesozoic radiation. BMC Evol Biol 11:177 Serranoidei Serranidae ハタ科 Epinephelus Grouper Poulsen 13: Poulsen JY, Byrkjedal I, Willassen E, Rees D, Takeshima H, Satoh Notothenioidei Nototheniidae ノトセニア 科 TP, Shinohara G, Nishida M, Miya M (2013) Mitogenomic sequences and Notothenia Atlantic icefish タマカイ ( ハタ科 ) Near 13 55.Gasterosteiformes Gasterosteidae トゲウオ科 evidence from unique gene rearrangements corroborate evolutionary G Gasterosteus Stickleback relationships of Myctophiformes (Neoteleostei). BMC Evol Biol 13:111. Song 14 57.Scorpaeniformes Scorpaenidae フサカサゴ科 Helicolenus Scorpion fish イトヨ Song 14: Song HY, Mabuchi K, Satoh TP, Moore JA, Yamanoue Y, Miya M, 154 (131-177) カサゴ目 ユメカサゴ Nishida M (2014) Mitogenomic circumscription of a novel percomorph fish Azuma 08 Labridae ベラ科 Cheilinus clade mainly comprising ‘‘Syngnathoidei’’ (Teleostei). Gene 542:146–155 Pseudolabrus Wrasse Azuma 08 Stm 09: Setiamarga DHE, Miya M, Inoue JG, Ishiguro NB, Mabuchi K, Nishida Halichoeres メガネモチノウオ Chaetodontiformes Chaetodontidae チョウチョウウオ科 ( ベラ科 ) M (2009) Divergence time of the two regional medaka populations in Japan Azuma 08 Chaetodon Butterflyfish as a new time scale for comparative genomics of vertebrates. Biol Lett Sparidae タイ科 5:81–86 Pagrus Red seabream Near 13 H 47.Lophiiformes アンコウ目 Ogcocephalidae アカグツ科 タイ Sturmbauer 10: Sturmbauer C, Salzburger W, Duftner N, Schelly R, & Ogcocephalus Batfish Koblmuller S (2010) Evolutionary history of the Lake Tanganyika cichlid Song 14 Tetraodontidae フグ科 ミドリフグ tribe Lamprologini (Teleostei: Perciformes) derived from mitochondrial and Tetraodon nuclear DNA data. Mol. Phylogenet. Evol. 57(1):266-284. 70 (55-86) Tekifugu 60.Tetraodontiformes Monacanthidae カワハギ科 Azuma 08 トラフグ Yamanoue 08 Stephanolepis Threadsail filefish カワハギ.
Recommended publications
  • Article Evolutionary Dynamics of the OR Gene Repertoire in Teleost Fishes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Article Evolutionary dynamics of the OR gene repertoire in teleost fishes: evidence of an association with changes in olfactory epithelium shape Maxime Policarpo1, Katherine E Bemis2, James C Tyler3, Cushla J Metcalfe4, Patrick Laurenti5, Jean-Christophe Sandoz1, Sylvie Rétaux6 and Didier Casane*,1,7 1 Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France. 2 NOAA National Systematics Laboratory, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A. 3Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20560, U.S.A. 4 Independent Researcher, PO Box 21, Nambour QLD 4560, Australia. 5 Université de Paris, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France 6 Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur- Yvette, France. 7 Université de Paris, UFR Sciences du Vivant, F-75013 Paris, France. * Corresponding author: e-mail: [email protected]. !1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Teleost fishes perceive their environment through a range of sensory modalities, among which olfaction often plays an important role.
    [Show full text]
  • Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi
    Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 (http://www.accessscience.com/) Article by: Boschung, Herbert Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama. Gardiner, Brian Linnean Society of London, Burlington House, Piccadilly, London, United Kingdom. Publication year: 2014 DOI: http://dx.doi.org/10.1036/1097-8542.680400 (http://dx.doi.org/10.1036/1097-8542.680400) Content Morphology Euteleostei Bibliography Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi The most recent group of actinopterygians (rayfin fishes), first appearing in the Upper Triassic (Fig. 1). About 26,840 species are contained within the Teleostei, accounting for more than half of all living vertebrates and over 96% of all living fishes. Teleosts comprise 517 families, of which 69 are extinct, leaving 448 extant families; of these, about 43% have no fossil record. See also: Actinopterygii (/content/actinopterygii/009100); Osteichthyes (/content/osteichthyes/478500) Fig. 1 Cladogram showing the relationships of the extant teleosts with the other extant actinopterygians. (J. S. Nelson, Fishes of the World, 4th ed., Wiley, New York, 2006) 1 of 9 10/7/2015 1:07 PM Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 Morphology Much of the evidence for teleost monophyly (evolving from a common ancestral form) and relationships comes from the caudal skeleton and concomitant acquisition of a homocercal tail (upper and lower lobes of the caudal fin are symmetrical). This type of tail primitively results from an ontogenetic fusion of centra (bodies of vertebrae) and the possession of paired bracing bones located bilaterally along the dorsal region of the caudal skeleton, derived ontogenetically from the neural arches (uroneurals) of the ural (tail) centra.
    [Show full text]
  • Pacific Plate Biogeography, with Special Reference to Shorefishes
    Pacific Plate Biogeography, with Special Reference to Shorefishes VICTOR G. SPRINGER m SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 367 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • Argulus Ambystoma, a New Species Parasitic on the Salamander Ambystoma Dumerilii from Mexico (Crustacea: Branchiura: Argulidae)1
    Argulus ambystoma, a New Species Parasitic on the Salamander Ambystoma dumerilii from Mexico (Crustacea: Branchiura: Argulidae)1 WILLIAM J. POLY2, Department of Zoology, Southern Illinois University, Carbondale, IL 62901-6501 ABSTRACT. A new species of Argulus is described based on 18 specimens taken from the salamander ("achoque" or "ajolote") Ambystoma dumerilii Duges, collected in Lake Patzcuaro, Michoacan, Mexico. Diagnostic characters include the shape of the respiratory areas, number of sclerites in suction cup rods, and structures on the legs of males. Females are heavily stippled, whereas males have a very distinctive pigment pattern consisting of abundant melanophores covering the testes dors ally and two dark, inverted triangular patches on the carapace dorsally. The new species is similar to the North American species, A versicolor,A. americanus, A. maculosus, and A diversus. A single, dorsal pore was observed on each caudal ramus using scanning electron microscopy; these pores have not been reported previously in the Branchiura. OHIO J SCI 103 (3>52-6l, 2003 INTRODUCTION 1991; Osorio-Sarabia and others 1986; Perez-Ponce de Ten species of Argulus Miiller have been collected in Leon and others 1994; Peresbarbosa-Rojas and others Mexico, Central America, and the West Indies. The wide- 1994; Espinosa-Huerta and others 1996; Peresbarbosa- spread exotic, Argulus japonicus Thiele, was found on Rojas and others 1997). A number of endemic taxa exist aquarium fishes, Carassius auratus (Linne) and Astro- in Lake Patzcuaro including several fishes (Cbirostoma notus ocellatus (Agassiz), in Puerto Rico (Bunkley-Williams patzcuaro Meek, C. e. estor Jordan, C. a. attenuatum and Williams 1994), and Vargas and Fallas (1976) found Meek), a crayfish (Cambarellus patzcuarensis Villa- A.
    [Show full text]
  • Vertebrate Proteins Predicted from Genomic Sequences
    Vertebrate proteins predicted from genomic sequences VWD C8 TIL PTS Mucin2_WxxW F5_F8_type_C FCGBP_N VWC Lethenteron_camtschaticum Cyclostomata; Hyperoartia; Petromyzontiformes; Petromyzontidae; Lethenteron Lethenteron_camtschaticum.0.pep1 Petromyzon_marinus Cyclostomata; Hyperoartia; Petromyzontiformes; Petromyzontidae; Petromyzon Petromyzon_marinus.0.pep1 Callorhinchus_milii Gnathostomata; Chondrichthyes; Holocephali; Chimaeriformes; Callorhinchidae; Callorhinchus Callorhinchus_milii.0.pep1 Callorhinchus_milii Gnathostomata; Chondrichthyes; Holocephali; Chimaeriformes; Callorhinchidae; Callorhinchus Callorhinchus_milii.0.pep2 Callorhinchus_milii Gnathostomata; Chondrichthyes; Holocephali; Chimaeriformes; Callorhinchidae; Callorhinchus Callorhinchus_milii.0.pep3 Lepisosteus_oculatus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Holostei; Semionotiformes; Lepisosteus_oculatus.0.pep1 Lepisosteus_oculatus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Holostei; Semionotiformes; Lepisosteus_oculatus.0.pep2 Lepisosteus_oculatus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Holostei; Semionotiformes; Lepisosteus_oculatus.0.pep3 Lepisosteus_oculatus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Holostei; Semionotiformes; Lepisosteus_oculatus.1.pep1 TILa Cynoglossus_semilaevis Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Cynoglossus_semilaevis.1.pep1
    [Show full text]
  • The Evolution of the Placenta Drives a Shift in Sexual Selection in Livebearing Fish
    LETTER doi:10.1038/nature13451 The evolution of the placenta drives a shift in sexual selection in livebearing fish B. J. A. Pollux1,2, R. W. Meredith1,3, M. S. Springer1, T. Garland1 & D. N. Reznick1 The evolution of the placenta from a non-placental ancestor causes a species produce large, ‘costly’ (that is, fully provisioned) eggs5,6, gaining shift of maternal investment from pre- to post-fertilization, creating most reproductive benefits by carefully selecting suitable mates based a venue for parent–offspring conflicts during pregnancy1–4. Theory on phenotype or behaviour2. These females, however, run the risk of mat- predicts that the rise of these conflicts should drive a shift from a ing with genetically inferior (for example, closely related or dishonestly reliance on pre-copulatory female mate choice to polyandry in conjunc- signalling) males, because genetically incompatible males are generally tion with post-zygotic mechanisms of sexual selection2. This hypoth- not discernable at the phenotypic level10. Placental females may reduce esis has not yet been empirically tested. Here we apply comparative these risks by producing tiny, inexpensive eggs and creating large mixed- methods to test a key prediction of this hypothesis, which is that the paternity litters by mating with multiple males. They may then rely on evolution of placentation is associated with reduced pre-copulatory the expression of the paternal genomes to induce differential patterns of female mate choice. We exploit a unique quality of the livebearing fish post-zygotic maternal investment among the embryos and, in extreme family Poeciliidae: placentas have repeatedly evolved or been lost, cases, divert resources from genetically defective (incompatible) to viable creating diversity among closely related lineages in the presence or embryos1–4,6,11.
    [Show full text]
  • Sexual Plasticity and Gametogenesis in Fishes
    FISH, FISHING AND FISHERIES SEXUAL PLASTICITY AND GAMETOGENESIS IN FISHES No part of this digital document may be reproduced, stored in a retrieval system or transmitted in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. FISH, FISHING AND FISHERIES Additional books in this series can be found on Nova’s website under the Series tab. Additional e-books in this series can be found on Nova’s website under the e-book tab. MARINE BIOLOGY Additional books in this series can be found on Nova’s website under the Series tab. Additional e-books in this series can be found on Nova’s website under the e-book tab. FISH, FISHING AND FISHERIES SEXUAL PLASTICITY AND GAMETOGENESIS IN FISHES BALASUBRAMANIAN SENTHILKUMARAN EDITOR New York Copyright © 2013 by Nova Science Publishers, Inc. All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic, tape, mechanical photocopying, recording or otherwise without the written permission of the Publisher. For permission to use material from this book please contact us: Telephone 631-231-7269; Fax 631-231-8175 Web Site: http://www.novapublishers.com NOTICE TO THE READER The Publisher has taken reasonable care in the preparation of this book, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions.
    [Show full text]
  • Origin, Evolution and Homologies of the Weberian Apparatus: a New Insight
    Int. J. Morphol., 27(2):333-354, 2009. Origin, Evolution and Homologies of the Weberian Apparatus: A New Insight Origen, Evolución y Homologías del Aparato Weberiano: Un Nuevo Acercamiento Rui Diogo DIOGO, R. Origin, evolution and homologies of the Weberian apparatus: a new insight. Int. J. Morphol., 27(2):333-354, 2009. SUMMARY: The Weberian apparatus is essentially a mechanical device improving audition, consisting of a double chain of ossicles joining the air bladder to the inner ear. Despite being one of the most notable complex systems of teleost fishes and the subject of several comparative, developmental and functional studies, there is still much controversy concerning the origin, evolution and homologies of the structures forming this apparatus. In this paper I provide a new insight on these topics, which takes into account the results of recent works on comparative anatomy, paleontology, and ontogeny as well as of a recent extensive phylogenetic analysis including not only numerous otophysan and non-otophysan extant otocephalans but also ostariophysan fossils such as †Chanoides macropoma, †Clupavus maroccanus, †Santanichthys diasii, †Lusitanichthys characiformis, †Sorbininardus apuliensis and †Tischlingerichthys viohli. According to the evidence now available, the Weberian apparatus of otophysans seems to be the outcome of a functional integration of features acquired in basal otocephalans and in basal ostariophysans, which were very likely not directly related with the functioning of this apparatus, and of features acquired in the nodes leading to the Otophysi and to the clade including the four extant otophysan orders, which could well have been the result of a selection directly related to the functioning of the apparatus.
    [Show full text]
  • Crestfish Lophotus Lacepede (Giorna, 1809) and Scalloped Ribbonfish Zu Cristatus (Bonelli, 1819) in the Northern Coast of Sicily, Italy
    ISSN: 0001-5113 ACTA ADRIAT., ORIGINAL SCIENTIFIC PAPER AADRAY 58(1): 137 - 146, 2017 Occurrence of two rare species from order Lampriformes: Crestfish Lophotus lacepede (Giorna, 1809) and scalloped ribbonfish Zu cristatus (Bonelli, 1819) in the northern coast of Sicily, Italy Fabio FALSONE1, Michele Luca GERACI1, Danilo SCANNELLA1, Charles Odilichukwu R. OKPALA1, Giovan Battista GIUSTO1, Mar BOSCH-BELMAR2, Salvatore GANCITANO1 and Gioacchino BONO1 1Institute for the Coastal Marine Environment, IAMC‑CNR, 91026 Mazara del Vallo, Sicily, Italy 2Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy Corresponding author, e‑mail: [email protected] The bony fish Lophotus lacepede (Giorna, 1809) and Zu cristatus (Bonelli, 1819) are the two species rarely recorded within the Mediterranean basin, usually reported as accidentally captured in depth (mesopelagic) fishing operations. In the current work, we present the first record of L. lacepede and Z. cristatus in fishing catches from southwestern Tyrrhenian Sea. Moreover, in order to improve existent biological/ecological knowledge, some bio-related aspects such as feeding aspect, sexual maturity and age estimate have been discussed. Key words: crestfish, scalloped ribbonfish, meristic features, vertebrae, growth ring INTRODUCTION species of Lophotidae family, the L. lacepede inhabits the epipelagic zone, although it could The target species of this study (Lophotus also be recorded in most oceans from the surface lacepede and Zu cristatus) belong to Lophotidae up to 1000 m depth (HEEMSTRA, 1986; PALMER, (Bonaparte, 1845) and Trachipteridae (Swain- 1986; OLNEY, 1999). First record of this spe- son, 1839) families respectively, including the cies in the Mediterranean Basin was from the Lampriformes order (consisted of 7 families).
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Across-Shelf Larval, Postlarval, and Juvenile Fish Collected at Offshore Oil and Gas Platforms and a Coastal Rock Jetty West of the Mississippi River Delta
    OCS Study MMS 2001-077 Coastal Marine Institute Across-Shelf Larval, Postlarval, and Juvenile Fish Collected at Offshore Oil and Gas Platforms and a Coastal Rock Jetty West of the Mississippi River Delta U .S . Department of the Interior AnK Cooperative Agreement Minerals 11Aanagement Service Coastal Marine Institute Adw Gulf of Mexico OCS Region Louisiana State University IR OCS Study MMS 2001-077 Coastal Marine Institute Across-Shelf Larval, Postlarval, and Juvenile Fish Collected at Offshore Oil and Gas Platforms and a Coastal Rock Jetty West of the Mississippi River Delta Authors Frank J. Hernandez, Jr. Richard F. Shaw Joseph S . Cope James G . Ditty Mark C. Benfield Talat Farooqi September 2001 Prepared under MMS Contract 14-35-0001-30660-19926 by Coastal Fisheries Institute Louisiana State University Baton Rouge, Louisiana 70803 Published by U .S. Department of the Interior Cooperative Agreement Minerals Management Service Coastal Marine Institute Gulf of Mexico OCS Region Louisiana State University DISCLAIMER This report was prepared under contract between the Minerals Management Service (MMS) and the Coastal Fisheries Institute (CFI), Louisiana State University (LSU). This report has been technically reviewed by the MMS and it has been approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of LSU or the MMS, nor does mention of trades names or commercial products constitute endorsement or recommendation for use. It is, however, exempt from review and compliance with the MMS editorial standard. REPORT AVAILABILITY Extra copies of the report may be obtained from the Public Information Office (Mail Stop 5034) at the following address : U.S .
    [Show full text]