ACTA HYDROLOGICA

SLOVACA Ročník 18, č. 2, 2017, 253 – 261

GROUNDWATER VULNERABILITY ASSESSMENT IN PRESPA REGION

Zoran Kačeski

The region around in recent years is under the constant influence of the different activities (natural and human) that endangers the quality of groundwater. Namely, the characteristics of the basin, topographic and hydrogeological, contribute that the ground water in the region is under constant threat of being contaminated. For these reasons there was appeared a need to make a map of vulnerability of groundwater by the degree of vulnerability and, consequently, to create the conditions for assessment of protection measures for certain areas regarding level of vulnerability of underground water. For groundwater vulnerability assessment and vulnerability maps preparation DRASTIC method (Aller et al., 1987) and Italian hydrogeological settings (GNDCI-CNR basic method) were applied.

KEY WORDS: vulnerability, pollution, DRASTIC, vulnerability map

HODNOTENIE ZNEČISTENIA PODZEMNEJ VODY V OBLASTI PRESPA. Oblasť okolo jazera Prespa je v posledných rokoch pod neustálym vplyvom rôznych prírodných a ľudských činností, ktoré ohrozujú kvalitu podzem- ných vôd. Topografické a hydrogeologické charakteristiky povodia prispievajú k tomu, že podzemná voda v regióne je neustále ohrozená kontamináciou. Z týchto dôvodov sa ukázalo, že je potrebné vypracovať mapu zraniteľnosti podzemných vôd v závislosti od stupňa zraniteľnosti a v dôsledku toho vytvoriť podmienky na posúdenie ochranných opatrení v určitých oblastiach týkajúcich sa úrovne zraniteľnosti podzemných vôd. Pre hodnotenie zraniteľnosti a zrani- teľnosti podzemných vôd sa použila metóda DRASTIC (Aller et al., 1987) a talianske hydrogeologické nastavenia (základná metóda GNDCI-CNR).

KĽÚČOVÉ SLOVÁ: zraniteľnosť, znečistenie, DRASTIC, mapa zraniteľnosti

Introduction The study area is divided into two parts because it is not possible for the entire study area to determine the In the last several decades the assessment of vulne- vulnerability on the basis of one method. The part where rability of underground water become very important exist enough hydrogeological and geological data task due to different reasons. Among them the most obtained from wells, DRASTIC method was used for important reasons are: increasing of water demand for assessment of vulnerability of ground water basin. This different needs (human needs, agriculture, industry etc.), area is in the vicinity of Prespa Lake. Other part of increased production of pollutants that cause dete- study area which is on bigger distance from the lake is riorating of underground water and increased awareness evaluated by using hydrogeological mapping. The data of society for importance of underground water. The about Geological setting and Hydrogeological characte- assessment of vulnerability of underground water is ristic for investigated area is taken from “UNDP Project required due to risk assessment is obtained by known RFP 10/2013 Hydrogeological Study for the Lake vulnerability of underground water and the type and Prespa Watershed”. degree of danger polluters which is applied on particular area. Methods

Proposed approach for evaluation of vulnerability of The Study area is located in one of the main tectonic underground water in Prespa region units, so called West-Macedonian zone.

253 Acta Hydrologica Slovaca, ročník 18, č. 2, 2017, 253 – 261

Fig. 1. Hydrogeological map of Lake Prespa region – Macedonian part. Obr. 1. Hydrogeologická mapa regiónu jazera Prespa – Macedónska časť.

About the geological conditions of the Western- nerability of aquifer bodies is created by Aller at all, Macedonian zone we will note the following facts: 1987 and it is based on evaluation of 7 parameters - The area is covered with Paleozoic, Triassic, which together with the weight factors are calculated to Neogene and Quaternary geological units. obtain index of vulnerability of underground water, - The Paleozoic consists of metamorphic schist's DRASTIC index (DI). DRASTIC method was complex with Cambrian, Ordovician and Devonian developed with the intention to serve as like a tool for age from one, and Permian magmatic complex from determining the degree of vulnerability of any kind the other side. aquifers and DRASTIC index is relatively easy to - The schist complex is mainly built up of different calculate because it requires, comparatively speaking, kind of phyletic schist's, metasandstones, meta- a basic knowledge of hydrogeology and processes that conglomerates and rarely with marbled limestone. lead to pollution of the system groundwater. DRASTIC - Granitoides are present mainly for a zone Pelister methodology has two main parts: the determination of mountain (Baba mountain). hydrogeological units or hydrogeological zoning and - Triassic complex lies transgressive over schist's, and application pattern of relative ranking DRASTIC its mainly composed of limestone's and conglo- method. merates at the bottom level. In this paper, the evaluation of vulnerability of under- - On some zones (especially from the lake ground water on area near to the lake Prespa is side), there are occurrences of intrusions or diapiric conducted by DRASTIC method due to there are 15 magmatic bodies of diabases, gabbros and wells from which was obtained a view of Geology peridotites. The upper zones of the field are covered profile and groundwater levels. with thick overlay of Pliocene and Quarternary DRASTIC method is based on evaluation of 7 para- sediments. meters which have their own weight. The weight deter- mines the importance of a parameter in determining the DRASTIC method overall vulnerability of aquifer. These elements and corresponding weights are shown in DRASTIC methodology for assessment of the vul- the table 1.

254 Kačeski, Z.: Groundwater vulnerability assessment in Prespa region

Table 1. Elements for DRASTIC Method Tabuľka 1. Zložky pre metódu DRASTIC Parameter Weight Agricultural Weight Depth to water D 5 5 Net Recharge R 4 4 Aquifer Media A 3 3 Soil Media S 2 5 Topography T 1 3 Impact of Vadose Zone I 5 4 Hydraulic Conductivity of Aquifer C 3 2

D - Depth to Water (Depth to Water affects the time available for a contaminant to undergo chemical and biological. A low depth to water parameter will lead to a higher vulnerability rating. R - Net Recharge Net Recharge is the amount of water which enters the aquifer. This value can be calculated on an annual or monthly basis with data available. Net Recharge can be calculated using climate data by applying a mass balance on the water. Net Recharge = Precipitation – Evaporation – Runoff A - Aquifer Media Aquifer Media is used to produce a rating based on the permeability of each layer of media. High permeability allows more water and therefore more contaminants to enter the aquifer. Therefore a high permeability will yield a high vulnerability rating. S - Soil Media Soil media is affects the transport of the contaminant and water from the soil surface to the aquifer. The soil media can affect the types of reactions which can take place. T - Topography The topography of the land affects groundwater vulnerability because the slope of the land is an important factor in determining whether the contaminant released will become run-off or infiltrate the aquifer. I - Impact of Vadose Zone The vadose zone is the typical soil horizon above and below the water table, which is unsaturated or discontinuously saturated. If the vadose zone is highly permeable then this will lead to a high vulnerability rating. C - Hydraulic Conductivity The hydraulic conductivity relates the fractures, bedding planes and intergranular voids in the aquifer. These components become pathways for fluid movement, and likewise pathways for contaminant movement once a contaminant enters the aquifer. The hydraulic conductivity is positively correlated with the vulnerability rating.

DRASTIC method relies on ranking, rating and weight: Table 2. Class of vulnerability by Rang – Each parameter is divided in several ranges DRASTIC Method which have influence in vulnerability of aquifer. Tabuľka 2. Triedy zraniteľnosti metódou Rating – Each rang of each parameter is assessed in DRASTIC relation to the other ranks to determine its emollient Class of Vulnerability Points capacity. Each rank is evaluated with a rating from 1 to 10. Negligible 23 – 30 Weight – Each parameter is evaluated in relation to Small 30 – 90 other parameters to gain importance in determining Medium 90 – 140 vulnerability. High 140 – 200 Extreme >200 The vulnerability of aquifer, the DRASTIC Index (DI), is obtained by formula: Application of DRASTIC Method for assessment of vulnerability of underground water shall consider the DI = DR · DW + RR · RW + AR · AW + SR · SW + TR · TW + following assumptions: a. Contamination occurs at the IR · IW + CR · CW (1) ground surface; b. The pollutant enters the water table when rain falls on the surface and percolates into the where saturated zone; c. The contaminant travels with water, at Index R – Rating, the same rate and speed as water; d. The aquifer is Index W – Weight. unconfined (the method can be modified for a confined aquifer); e. The dominant pollutants are not pesticides From the parameters mentioned above the DRASTIC (the method can be modified to include pesticides) index or vulnerability rating of underground water can be obtained. The higher the value for the DRASTIC Calculation of DRASTIC Index index, the greater the vulnerability of underground water on that location of an aquifer. Data obtained from the wells (P-1 to P-15) and needed for evaluation of DRASTIC Index (ID). 255 Acta Hydrologica Slovaca, ročník 18, č. 2, 2017, 253 – 261

Table 3. Coordinates and elevation of performed boreholes Tabuľka 3. Súradnice a nadmorská výška vykonaných vrtov Borehole/ Location Coordinates Piezometer X (m) Y (m) Ztop (m) Zbottom (m) P-1 Dolno Perovo 4541226 7499102 863 823 P-2 4541405 7502764 861 821 P-3 Asamati 4538692 7504247 858 818 P-4 Asamati 4537802 7505044 879 839 P-5 4543911 7499934 866 826 P-6 4542983 7502445 864 824 P-7 Dolna Bela Crvka 4544085 7503835 872 832 P-8 4544765 7500977 871 831 P-9 Gorna Bela Crkva 4545210 7502722 872 832 P-10 Carev Dvor 4547238 7500892 882 842 P-11 4551422 7501611 898 858 P-12 4531578 7507652 865 835 P-13 Shtrbovo 4530880 7508136 861 831 P-14 4527860 7509542 862 842 P-15 Dolno Dupeni 4525776 7510212 871 841

Table 4. Main data from granulometric analyses, coefficient of uniformity (Cu after Allen-Hazen) and specific gravity for main soil types at the Quarterian deposits in the study area Tabuľka 4. Základné údaje z granulometrických analýz, koeficient rovnomernosti (Cu podľa Allen- Hazene) a špecifická hmotnosť pre hlavné typy pôdy v ložiskách zo skúmanej oblasti za štvrťrok Coefficient of Specific Depth Borehole No uniformity Soil type gravity interval (m) Cu=d60/d10 Gs P-1 2.00-3.50 21.92 Silty sand 2.85 Dolno 6.00-7.50 7.75 Silty sand 2.96 Perovo 16.00-17.00 9.38 Silty sand 2.91 1.40-2.40 Sandy silt 2.70 P-2 2.40-2.70 Sandy silt 2.72 Dolno 7.20-8.00 100.90 Sandy silt with some gravel Dupeni 21.50-22.00 Sandy silt 22.00-40.00 8.09 Sand with traces of silt 0.00-0.20 3.87 Sandy silt 2.70 3.50-10.00 56.50 Silty sand with some gravel P-3 13.00-20.00 Sand with traces of silt 2.91 Asamati 28.00-29.00 7.30 Sandy silt 2.73 37.00-38.00 18.31 Sand with gravel and silt 39.00-40.00 7.25 Sandy silt 2.76 0.00-1.00 16.64 Sandy silt with traces of gravel 2.00-3.00 292.03 Sandy gravel 2.86 4.80-5.00 Silt with some sand P-4 8.00-10.00 37.34 Silty sand with some gravel 2.68 Asamati 12.00-14.50 10.40 Silty sand 2.79

19.00-20.00 93.53 Silty sand 2.79 27.00-29.00 8.90 Silty sand 2.80 35.00-40.00 14.31 Silty sand 0.00-0.20 Sandy silt with some clay 3.50-4.50 Sandy silt P-5 8.00-14.00 244.23 Gravel with sand and silt 2.83 Drmani 14.00-17.00 Sandy silt with some clay 2.71 22.00-23.00 42.01 Sand with some silt and traces of gravel 35.00-40.00 26.17 Sand with some silt 2.95

256 Kačeski, Z.: Groundwater vulnerability assessment in Prespa region 0.90-1.30 16.88 Gravely sand with some silt 1.30-2.00 Sandy silt 2.00-3.00 Clayey silt with some sand 2.68 5.00-10.00 11.73 Sand with traces of silt P-6 11.00-13.50 32.65 Sandy gravel 2.82 Ezerani 14.50-15.00 3.33 Sandy gravel 16.00-17.00 3.44 Sandy gravel 19.00-20.00 Clayey silt with some sand and gravel 2.89 27.00-40.00 7.68 Sandy gravel 4.80-6.70 5.51 Sandy silt 2.73 9.00-9.80 25.12 Sand like silt with some gravel 9.80-10.40 5.48 Sandy silt P-7 11.60-16.50 8.12 Silty sand Dolna Bela 17.00-19.30 16.77 Silty sand Crkva 20.00-22.15 15.08 Silty sand 25.50-25.80 5.19 Sandy silt with some gravel 2.72 33.00-33.80 16.77 Silty sand with traces of gravel 34.90-39.50 10.33 Silt like sand with traces of gravel 2.82 16.00-18.00 3.50 Sand with traces of gravel 2.83 18.00-20.00 5.33 Sand with traces of gravel P-8 21.00-22.00 2.97 Gravel like sand Carev Dvor 31.00-33.00 Clayey silt with some sand 2.66 34.00-40.00 4.17 Sand with traces of gravel 3.00-3.70 8.53 Sandy silt 2.75 P-9 4.10-5.50 28.58 Sandy gravel Gorna Bela 5.50-11.40 284.55 Silty sand like gravel Crkva 11.40-40.00 Gravel-sand 2.92 2.50-8.00 329.61 Silty sand like gravel 2.89 8.00-12.50 2.50 Gravel like sand P-10 12.50-16.00 115.03 Silty sand with some gravel 2.81 Carev Dvor 18.00-26.00 2.73 Sandy gravel 32.00-38.00 17.03 Gravel like sand 2.80 38.00-40.00 90.27 Silty sand with some gravel 0.00-4.10 Silt with some clay and traces of sand 5.50-9.10 194.30 Gravely sand with silt P-11 10.00-10.50 Silt with some clay and gravel 2.67 Jankovec 15.00-16.00 Silt with some sand 21.00-28.00 Silt with some sand 2.69 9.40-15.00 92.81 Silty sand P-12 20.00-25.00 11.52 Silty sand 2.79 Krani 25.00-30.00 14.93 Silty sand 2.83 0.00-4.00 37.29 Silty sand 4.00-7.00 21.96 Silty sand P-13 13.00-20.00 9.06 Silty sand 2.80 Shtrbovo 20.00-25.00 9.02 Silty sand 25.00-28.00 27.02 Silty sand 28.00-30.00 20.15 Silty sand 2.83 0.30-0.50 9.07 Sandy silt 3.30-3.90 12.95 Sandy silt P-14 6.00-8.00 12.65 Silty sand 2.79 Nakolec 12.40-12.90 154.32 Gravel with some sand and silt 2.85 17.00-19.00 21.58 Silty sand 1.00-1.50 92.31 Sandy gravel with some silt P-15 12.30-12.70 12.32 Silty sand Dolno 17.20-17.80 21.43 Silty sand 2.82 Dupeni 20.60-21.00 18.60 Sand with traces of gravel and some silt 28.00-29.00 5.37 Sand with some gravel and traces of silt 2.83

257 Acta Hydrologica Slovaca, ročník 18, č. 2, 2017, 253 – 261

Table 5. DRASTIC Index (ID) for data obtained from wells P1-P15 Tabuľka 5. DRASTIC Index (ID) pre data získané zo studní P1-P15 Wells Weight P1 P2 P3 P4 P5 Depth to water D 5 50 45 35 25 50 Net Recharge R 4 36 36 36 24 36 Aquifer Media A 3 24 24 24 18 24 Soil Media S 2 10 10 12 12 12 Topography T 1 10 10 9 5 9 Impact of Vadose Zone I 5 30 30 30 25 30 Hydraulic Conductivity of Aquifer C 3 12 12 12 12 12 Sum = 172 167 158 121 173

Wells Weight P6 P7 P8 P9 P10 Depth to water D 5 45 25 35 45 35 Net Recharge R 4 36 24 24 24 24 Aquifer Media A 3 24 24 24 24 24 Soil Media S 2 10 12 12 12 12 Topography T 1 10 9 9 9 5 Impact of Vadose Zone I 5 30 30 30 30 30 Hydraulic Conductivity of Aquifer C 3 12 12 12 12 12 Sum = 167 136 146 156 142

Wells Weight P11 P12 P13 P14 P15 Depth to water D 5 35 35 45 45 35 Net Recharge R 4 24 24 24 24 24 Aquifer Media A 3 24 18 18 18 18 Soil Media S 2 12 12 12 12 12 Topography T 1 5 5 5 9 5 Impact of Vadose Zone I 5 30 30 30 30 25 Hydraulic Conductivity of Aquifer C 3 12 12 12 12 12 Sum = 142 136 136 150 131

Determining vulnerability of underground water Results and Discussion on the part where does not exist data from the wells Determination by using “Italian hydrogeological It can be noticed from the Figure 2 (DRASTIC method) settings (GNDCI-CNR basic method)” that the vulnerability of underground water is bigger in karst formation on the east side of the like (Galičica For one part of the observed area, which is on bigger mountain) than on the formation created by schist distance from Prespa Lake, there are no data obtained complex (Baba mountain). Also, from the Figure 4 from investigating wells and the data needed for the (GNDCI-CNR Basic Method) can be concluded that the vulnerability of underground water assessment can be vulnerability of underground water is the highest around obtained only by hydrogeological map. For the purpose the Prespa lake and on the west mountain (Galičica of determining the vulnerability of underground water mountain). can be used Italian approach for assessment of vulnerability of underground water, called “Italian Conclusion hydrogeological settings (GNDCI-CNR basic method)”. To obtain map of ground water basin for Prespa region, From the map of vulnerability of underground water in the vulnerability of ground water obtained by this Prespa region can be made the following conclusions: method has to be adjusted to vulnerability of ground - The most sensitive part of the observed region is water obtained by DRASTIC method. It is shown in the near the lake and is characterized by sedimentary table 6. layers (along the coast and along the tributaries

258 Kačeski, Z.: Groundwater vulnerability assessment in Prespa region which flow into the lake). Also the high vulnerabi- pollution due to the formation of this mountain is lity of underground water is occurred on the line created by schist complex (it is mainly built up of from the cost to the town Resen. different kind of phyletic schists, metasandstone, - Galičica Mountain on the west side is very sensitive metaconglomerate and rarely with marble). due to this mountain was created by karst forma- tions. This part of the region shell to be investigated Due to Prespa Lake is connected to Ohrid Lake through very carefully due to connection between Prespa and Galičica Mountain special attention should be paid to Ohrid lake is in this mountain; further investigated works and activities in that part of - Baba Mountain on the east, is less sensitive to region.

Table 6. Vulnerability degree of underground water (DRASTIC Method and GNDCI-CNR basic method) Tabuľka 6. Stupeň zraniteľnosti podzemných vôd (metóda DRASTIC a základná metóda GNDCI-CNR)

DRASTIC Italian hydrogeological settings (GNDCI-CNR basic method) Vulnerability degrees Hydrogeological complexes and setting features

Unconfined (water table) aquifer in alluvial deposits: streams that freely recharge the groundwater body; well or multiple well systems that Extremely drawdown the water table to under the stream level (forced recharge). high Aquifer in carbonate (and sulphate) rocks affected by completely Extremely developed karst phenomena (holokarst with high karst index [KI]). (Lloyd et al., 1998) Unconfined (water-table) aquifer in course to medium-grained alluvial deposits, without any surficial protecting layer. Aquifer in highly Very high fractured (high fracturing index [FI]) limestone with low or null KI and depth to water <50m.

Confined, semi-confined (leaky) and unconfined aquifer with impervious (aquaculture) or semi-pervious (aquitard) superficial protecting layer. Aquifer in highly fractured (high fracturing index) limestone with low or High null KI and depth to water >50m. Aquifer in highly fractured (but not High cataclastic) dolomite with low or null KI and depth to water <50m. (Leopold et al., Aquifer in highly clivated volcanic rocks and non-weathered plutonic 1971) igneous rocks with high FI.

Aquifer in highly fractured (but not cataclastic) dolomite with low or null Medium KI and depth to water >50m. Aquifer in medium to fine-grained sand. Aquifer in glacial till and prevalently coarse-grained moraines.

Strip aquifers in bedded sedimentary sequences (shale-limestone- Medium Medium sandstone flysch) with layer by layer highly variable diffusion rates. (Bourke, 2006) low Multi-layered aquifer in pyroclastic non indurated rocks (tuffs, ash, etc.): different diffusion degrees layer by layer close to the change in grain size.

Aquifer in fissured sandstone or/and non carbonatic cemented Low conglomerate. Aquifer in fissured plutonic igneous rocks. Aquifer in Low (Kačeski, 2015) glacial till and prevalently fine-grained moraines. Fracture network aquifer in medium to high metamorphism rock complexes.

Practically impermeable (aquifuge) marl and clay sedimentary complexes (also marly flysch): contamination directly reaches the surface waters. Practically impermeable (aquifuge). Fine-grained sedimentary complexes Negligible Very low (clay, silt, peat, etc.) contamination directly reaches the surface waters. (RFP, 2013) or null Meta-sediment complexes or poorly fissured highly tectonized clayey complexes low metamorphism complexes, almost aquifuge: contamination directly reaches the surface waters.

259 Acta Hydrologica Slovaca, ročník 18, č. 2, 2017, 253 – 261

Fig. 2. Vulnerability of underground water Fig. 3. Vulnerability of underground water for the part of in Prespa region (DRASTIC Method). Prespa region for which there are no data obtained from Obr. 2. Zraniteľnosť podzemných vôd v re- the investigating wells (GNDCI-CNR Basic Method). gióne Prespa (metóda DRASTIC). Obr. 3. Zraniteľnosť podzemnej vody časti v oblasti Prespa, pre ktorú nie sú k dispozícii žiadne údaje získané z prieskumných studní (základná metóda GNDCI-CNR).

Fig. 4. Combined map of vulnerability of underground water for Prespa region (DRASTIC Method and GNDCI-CNR Basic Method). Obr. 4. Kombinovaná mapa zraniteľnosti podzemných vôd pre oblasť Prespa (metóda DRASTIC a základná metóda GNDCI-CNR).

260 Kačeski, Z.: Groundwater vulnerability assessment in Prespa region

References Impact, Geological survey circular 645, 1–13. Lloyd, T., Foster, S., Morris, B., Hall, K., West, P., Robin- Bourke, M. (2006): Hydrgeological assessment (Ground- son, R., Aldour, P., Hart, A. (1998): Assessment of water qality) guidelines, EPA Victoria, Australia, Contamination Risk for Groundwater Resources, p. 26. Cryptosporidium in Water Supplies, Third Report of Kačeski, Z. (2015): Doctoral thesis: “Methodology of the Group of Experts, 26–42. interactive analysis application in evaluation of RFP (2013): Hydrogeological Study for the Lake Prespa underground waters pollution risk”, Watershed, UNDP Project with Ref., RFP 10/2013, Leopold, L.B., Clarke, F.E., Hanshaw, B.B., Balsley, J.R. University Ss. Cyril and Methodius, Faculty of Civil (1971): A Procedure for Evaluating Environmental Engineering.

HODNOTENIE ZNEČISTENIA PODZEMNEJ VODY V OBLASTI PRESPA

Oblasť okolo jazera Prespa je v posledných rokoch pod - Pohorie Galičica, ktoré je situované na západnej neustálym vplyvom rôznych prírodných a ľudských strane, je veľmi citlivé kvôli tomu, že je tvorené kra- činností, ktoré ohrozujú kvalitu podzemných vôd. sovými útvarmi. Táto časť regiónu sa musí starostli- Topografické a hydrogeologické charakteristiky povo- vo preskúmať, pretože prepojenie medzi Prespou dia prispievajú k tomu, že podzemná voda v regióne je a Ohridským jazerom je v tejto hore. neustále ohrozená kontamináciou. Z týchto dôvodov - Pohorie Baba na východe je menej citlivá na zne- bola vypracovaná mapa zraniteľnosti podzemných vôd, čistenie, pretože je vytvorená komplexom bridlico- z ktorej možno vyvodiť tieto závery: vých hornín (skladá sa predovšetkým z rôznych druhov fylitických bridlíc, metapieskovcov, meta- - Najcitlivejšia časť pozorovaného regiónu je v blíz- konglomerátu a zriedka z mramoru). kosti jazera a je charakterizovaná sedimentárnymi vrstvami (pozdĺž pobrežia a pozdĺž prítokov, ktoré Vzhľadom na to, že jazero Prespa je napojené na tečú do jazera). Vysoká zraniteľnosť podzemnej Ohridské jazero cez horu Galičica, osobitná pozornosť vody sa tiež vyskytuje medzi pobrežím a mestom by sa mala venovať ďalším skúmaniam a aktivitám Resen. v tejto časti regiónu.

Dr Zoran Kačeski United Nations Development Programme – Macedonia E-mail: [email protected]

261