M. Jacobs Leyden; D.M
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Towards an Understanding of the Evolution of Violaceae from an Anatomical and Morphological Perspective Saul Ernesto Hoyos University of Missouri-St
University of Missouri, St. Louis IRL @ UMSL Theses Graduate Works 8-7-2011 Towards an understanding of the evolution of Violaceae from an anatomical and morphological perspective Saul Ernesto Hoyos University of Missouri-St. Louis, [email protected] Follow this and additional works at: http://irl.umsl.edu/thesis Recommended Citation Hoyos, Saul Ernesto, "Towards an understanding of the evolution of Violaceae from an anatomical and morphological perspective" (2011). Theses. 50. http://irl.umsl.edu/thesis/50 This Thesis is brought to you for free and open access by the Graduate Works at IRL @ UMSL. It has been accepted for inclusion in Theses by an authorized administrator of IRL @ UMSL. For more information, please contact [email protected]. Saul E. Hoyos Gomez MSc. Ecology, Evolution and Systematics, University of Missouri-Saint Louis, 2011 Thesis Submitted to The Graduate School at the University of Missouri – St. Louis in partial fulfillment of the requirements for the degree Master of Science July 2011 Advisory Committee Peter Stevens, Ph.D. Chairperson Peter Jorgensen, Ph.D. Richard Keating, Ph.D. TOWARDS AN UNDERSTANDING OF THE BASAL EVOLUTION OF VIOLACEAE FROM AN ANATOMICAL AND MORPHOLOGICAL PERSPECTIVE Saul Hoyos Introduction The violet family, Violaceae, are predominantly tropical and contains 23 genera and upwards of 900 species (Feng 2005, Tukuoka 2008, Wahlert and Ballard 2010 in press). The family is monophyletic (Feng 2005, Tukuoka 2008, Wahlert & Ballard 2010 in press), even though phylogenetic relationships within Violaceae are still unclear (Feng 2005, Tukuoka 2008). The family embrace a great diversity of vegetative and floral morphologies. Members are herbs, lianas or trees, with flowers ranging from strongly spurred to unspurred. -
One New Endemic Plant Species on Average Per Month in New Caledonia, Including Eight More New Species from Île Art (Belep Islan
CSIRO PUBLISHING Australian Systematic Botany, 2018, 31, 448–480 https://doi.org/10.1071/SB18016 One new endemic plant species on average per month in New Caledonia, including eight more new species from Île Art (Belep Islands), a major micro-hotspot in need of protection Gildas Gâteblé A,G, Laure Barrabé B, Gordon McPherson C, Jérôme Munzinger D, Neil Snow E and Ulf Swenson F AInstitut Agronomique Néo-Calédonien, Equipe ARBOREAL, BP 711, 98810 Mont-Dore, New Caledonia. BEndemia, Plant Red List Authority, 7 rue Pierre Artigue, Portes de Fer, 98800 Nouméa, New Caledonia. CHerbarium, Missouri Botanical Garden, 4344 Shaw Boulevard, Saint Louis, MO 63110, USA. DAMAP, IRD, CIRAD, CNRS, INRA, Université Montpellier, F-34000 Montpellier, France. ET.M. Sperry Herbarium, Department of Biology, Pittsburg State University, Pittsburg, KS 66762, USA. FDepartment of Botany, Swedish Museum of Natural History, PO Box 50007, SE-104 05 Stockholm, Sweden. GCorresponding author. Email: [email protected] Abstract. The New Caledonian biodiversity hotspot contains many micro-hotspots that exhibit high plant micro- endemism, and that are facing different types and intensities of threats. The Belep archipelago, and especially Île Art, with 24 and 21 respective narrowly endemic species (1 Extinct,21Critically Endangered and 2 Endangered), should be considered as the most sensitive micro-hotspot of plant diversity in New Caledonia because of the high anthropogenic threat of fire. Nano-hotspots could also be defined for the low forest remnants of the southern and northern plateaus of Île Art. With an average rate of more than one new species described for New Caledonia each month since January 2000 and five new endemics for the Belep archipelago since 2009, the state of knowledge of the flora is steadily improving. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M. -
Full of Beans: a Study on the Alignment of Two Flowering Plants Classification Systems
Full of beans: a study on the alignment of two flowering plants classification systems Yi-Yun Cheng and Bertram Ludäscher School of Information Sciences, University of Illinois at Urbana-Champaign, USA {yiyunyc2,ludaesch}@illinois.edu Abstract. Advancements in technologies such as DNA analysis have given rise to new ways in organizing organisms in biodiversity classification systems. In this paper, we examine the feasibility of aligning two classification systems for flowering plants using a logic-based, Region Connection Calculus (RCC-5) ap- proach. The older “Cronquist system” (1981) classifies plants using their mor- phological features, while the more recent Angiosperm Phylogeny Group IV (APG IV) (2016) system classifies based on many new methods including ge- nome-level analysis. In our approach, we align pairwise concepts X and Y from two taxonomies using five basic set relations: congruence (X=Y), inclusion (X>Y), inverse inclusion (X<Y), overlap (X><Y), and disjointness (X!Y). With some of the RCC-5 relationships among the Fabaceae family (beans family) and the Sapindaceae family (maple family) uncertain, we anticipate that the merging of the two classification systems will lead to numerous merged solutions, so- called possible worlds. Our research demonstrates how logic-based alignment with ambiguities can lead to multiple merged solutions, which would not have been feasible when aligning taxonomies, classifications, or other knowledge or- ganization systems (KOS) manually. We believe that this work can introduce a novel approach for aligning KOS, where merged possible worlds can serve as a minimum viable product for engaging domain experts in the loop. Keywords: taxonomy alignment, KOS alignment, interoperability 1 Introduction With the advent of large-scale technologies and datasets, it has become increasingly difficult to organize information using a stable unitary classification scheme over time. -
JUDD W.S. Et. Al. (1999) Plant Systematics
CHAPTER8 Phylogenetic Relationships of Angiosperms he angiosperms (or flowering plants) are the dominant group of land Tplants. The monophyly of this group is strongly supported, as dis- cussed in the previous chapter, and these plants are possibly sister (among extant seed plants) to the gnetopsids (Chase et al. 1993; Crane 1985; Donoghue and Doyle 1989; Doyle 1996; Doyle et al. 1994). The angio- sperms have a long fossil record, going back to the upper Jurassic and increasing in abundance as one moves through the Cretaceous (Beck 1973; Sun et al. 1998). The group probably originated during the Jurassic, more than 140 million years ago. Cladistic analyses based on morphology, rRNA, rbcL, and atpB sequences do not support the traditional division of angiosperms into monocots (plants with a single cotyledon, radicle aborting early in growth with the root system adventitious, stems with scattered vascular bundles and usually lacking secondary growth, leaves with parallel venation, flow- ers 3-merous, and pollen grains usually monosulcate) and dicots (plants with two cotyledons, radicle not aborting and giving rise to mature root system, stems with vascular bundles in a ring and often showing sec- ondary growth, leaves with a network of veins forming a pinnate to palmate pattern, flowers 4- or 5-merous, and pollen grains predominantly tricolpate or modifications thereof) (Chase et al. 1993; Doyle 1996; Doyle et al. 1994; Donoghue and Doyle 1989). In all published cladistic analyses the “dicots” form a paraphyletic complex, and features such as two cotyle- dons, a persistent radicle, stems with vascular bundles in a ring, secondary growth, and leaves with net venation are plesiomorphic within angio- sperms; that is, these features evolved earlier in the phylogenetic history of tracheophytes. -
Pharmacognostical and Phytochemical Studies on Viola Tianschanica Maxim –An Uyghur Ethnomedicinal Plant
© 2016 Journal of Pharmacy & Pharmacognosy Research, 4 (3), 95-106 ISSN 0719-4250 http://jppres.com/jppres Original Article | Artículo Original Pharmacognostical and phytochemical studies of Viola tianschanica Maxim. – An Uyghur ethnomedicinal plant [Estudios farmacognóstico y fitoquímico de Viola tianschanica Maxim. – Una planta de la etnomedicina Uyghur] Yun Zhu, Lulu Zhao, Xiangfei Wang, Peng Li* School of Pharmacy, Shihezi University. Key Laboratory of Phytomedicine Resources & Modernization of TCM, Shihezi Xinjiang 832002, PR China. *E-mail: [email protected] Abstract Resumen Context: Viola tianschanica Maxim. (Violaceae) is a perennial herb widely Contexto: Viola tianschanica Maxim. (Violaceae) es una hierba perenne distributed in Central Asia, especially in the Xinjiang of China. The whole ampliamente distribuida en Asia Central, especialmente en Xinjiang, herb has been used in traditional Uygur medicines as an antifebrile- China. Esta hierba se ha utilizado en la medicina tradicional Uygur como detoxicate drugs. antifebrífugo-desintoxicante. Aims: To characterize macroscopical and microscopical features of the Objetivos: Caracterizar las peculiaridades macroscópicas y microscópicas root, leave and rhizome of the V. tianschanica Maxim. Explore and de la raíz, hojas y rizoma de V. tianschanica Maxim. Analizar y establecer establish the micro-morphology and quality control methods for this los métodos de micro-morfología y control de calidad de esta planta. plant. Métodos: Las investigaciones farmacognósticas y fitoquímicas -
As Espécies De Violaceae Batsch Nativas No Estado Do Paraná, Brasil 1 the Native Species of Violaceae Batsch of Paraná State, Brazil 1
Acta Biol. Par., Curitiba, 31 (1, 2, 3, 4): 1-41. 2002 1 As espécies de Violaceae Batsch nativas no Estado do Paraná, Brasil 1 The native species of Violaceae Batsch of Paraná state, Brazil 1 MARDJA CÁSSIA MONTES LUZ 2 OLAVO A. GUIMARÃES 3 ÉLIDE P. DOS SANTOS 4 A família Violaceae Batsch, foi descrita em 1802 e consiste de aproximadamente 25 gêneros e 800 espécies de distribuição cos- mopolita, das quais, no Brasil, são encontradas 69 distribuídas em 10 gêneros (SOUZA & SOUZA, 2000). Considerando que ao ser efetuado levantamento bibliográfico para esta família foram encontrados apenas os trabalhos de ANGELY (1965, 1970) e de CERVI et al. (1988) que tratavam das espécies paranaenses, houvemos por bem realizar o presente levantamento, visando atualizar os conhecimentos da mesma sobre as espécies ocorrentes neste Estado. 1 Contribuição do Departamento de Botânica, SCB, da Universidade Federal do Paraná —Caixa Postal 1931 — Curitiba, Paraná, Brasil — CEP 81531-990; 2 Parte da dissertação de mestrado da Autora Sênior (MCML), feita com o Auxílio CAPES — Email: [email protected]; 3 e 4 Professores do Departamento de Botânica, SCB, UFPR. Bolsista de Produtividade em Pesquisa do CNPq, Brasília. Email: [email protected]. 2 Acta Biol. Par., Curitiba, 31 (1, 2, 3, 4): 1-41. 2002 ANGELY (l.c.) lista para o Estado do Paraná a ocorrência de Anchietea parvifolia Hallier, Anchietea salutaris A. St.-Hil., Hybanthus albus (A. St.-Hil.), H. bigibbosus (A. St.-Hil.) Hassl., H. communis (A. St.-Hil.), H. calceolaria (L.) Schulze-Menz, H. glutinosus (Vent.) Taub. H. ipecacuanha (Vent.) Angely, H. -
The Flora of Johnson County, Iowa
Proceedings of the Iowa Academy of Science Volume 62 Annual Issue Article 20 1955 The Flora of Johnson County, Iowa Robert F. Thorne State University of Iowa Let us know how access to this document benefits ouy Copyright ©1955 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Thorne, Robert F. (1955) "The Flora of Johnson County, Iowa," Proceedings of the Iowa Academy of Science, 62(1), 155-196. Available at: https://scholarworks.uni.edu/pias/vol62/iss1/20 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Thorne: The Flora of Johnson County, Iowa The Flora of Johnson County, Iowa By ROBERT F. THORNE INTRODUCTION A need for a reasonably complete and modern list of vascular plants for the Iowa City vicinity has long been felt in the field botany and taxonomy courses at the State University of Iowa. This annotated list of vascular plants indigenous or naturalized in the county is an attempt to fill that need. It is hoped that the flora will also be useful to other botanists and their students in Johnson County and adjacent areas of Iowa. The writer's field work in Johnson County has extended over a period of nearly six years ( 1949-1955). In that time he has col lected or observed in the county 814 species. -
Gei Et Al. 2020A
A systematic assessment of the occurrence of trace element hyperaccumulation in the flora of New Caledonia Vidiro Gei1, Sandrine Isnard2,3, Peter D. Erskine1, Guillaume Echevarria1,4, Bruno Fogliani5, Tanguy Jaffré2,3, Antony van der Ent1,4* 1Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, St Lucia, QLD 4072, Australia 2botAnique et Modelisation de l’Architecture des Plantes et des végétation (AMAP), Université Montpellier, IRD, CIRAD, CNRS, INRA, Montpellier, France 3botAnique et Modelisation de l’Architecture des Plantes et des végétation (AMAP), IRD, Herbier de Nouvelle-Calédonie, Nouméa, New Caledonia 4Laboratoire Sols et Environnement, Université de Lorraine – INRAE, F54000 Nancy, France 5Équipe ARBOREAL (AgricultuRe BiOdiveRsité Et vALorisation), Institut Agronomique néo-Calédonien (IAC), 98890 Païta, New Caledonia *Corresponding author. E-mail: [email protected] ABSTRACT New Caledonia is a global biodiversity hotspot known for its metal hyperaccumulator plants. X-ray fluorescence technology (XRF) has enabled non-destructive and quantitative determination of elemental concentrations in herbarium specimens from the ultramafic flora of the island. Specimens belonging to six major hyperaccumulator families (Cunoniaceae, Phyllanthaceae, Salicaceae, Sapotaceae, Oncothecaceae and Violaceae) and one to four specimens per species of the remaining ultramafic taxa in the herbarium were measured. XRF scanning included a total of c. 11 200 specimens from 35 orders, 96 families, 281 genera and 1484 species (1620 taxa) and covered 88.5% of the ultramafic flora. The study revealed the existence of 99 nickel hyperaccumulator taxa (65 known previously), 74 manganese hyperaccumulator taxa (11 known previously), eight cobalt hyperaccumulator taxa (two known previously) and four zinc hyperaccumulator taxa (none known previously). -
Conservation Assessment for Great-Spurred Violet
United States Department of Agriculture Conservation Assessment Forest Service for Great-spurred Violet Rocky Mountain Region in the Black Hills National Black Hills National Forest, South Dakota and Forest Custer, South Dakota Wyoming April 2003 J.Hope Hornbeck, Carolyn Hull Sieg, and Deanna J. Reyher Species Assessment of Great-spurred Violet in the Black Hills of South Dakota J. Hope Hornbeck, Deanna J. Reyher, and Carolyn Hull Sieg J. Hope Hornbeck is a Botanist with the Black Hills National Forest in Custer, South Dakota. She completed a B.S. in Environmental Biology (botany emphasis) at The University of Montana and a M.S. in Plant Biology (plant community ecology emphasis) at the University of Minnesota-Twin Cities. Deanna J. Reyher is an Ecologist/Soil Scientist with the Black Hills National Forest in Custer, South Dakota. She completed a B.S. degree in Agronomy (soil science and crop production emphasis) from the University of Nebraska – Lincoln. Carolyn Hull Sieg is a Research Plant Ecologist with the Rocky Mountain Research Station in Flagstaff, Arizona. She completed a B.S. in Wildlife Biology and M.S. in Range Science from Colorado State University and a Ph.D. in Range and Wildlife Management (fire ecology) at Texas Tech University. EXECUTIVE SUMMARY Great-spurred violet (Viola selkirkii Pursh ex Goldie; Violaceae) is an early spring flowering herb that occurs in the boreal and Rocky Mountain regions of North America, and cool temperate regions of Eurasia, eastern China and Japan. In the Black Hills, the species is restricted to spruce-dominated forests in cold, shady ravines from 5,400 to 7,000 ft (1,645 to 2,135 m) elevation on soils derived from granitic parent material. -
Agatea Deplanchei
Botanical characteristics of New Caledonia Constraints for mining industry and an opportunity for restoration Mining Revegetation T. Jaffré, F. Rigault, G. Dagostini One of the main biological characteristics of New Caledonia is its high biodiversity « There is probably no region of comparable area in the world with such a rich, archaic, pecular and endemic seed plant flora as that of New Caledonia » (Thorne 1965) •3300 indigenous species • 2475 (75%) endemics Primitive species Amborella trichopoda Parasitaxus usta T. Jaffré, F. Rigault, G. Dagostini Conifers diversity : (43 species all endemics of New Caledonia) Araucaria muelleri Araucaria scopulorum Araucaria humboldtiana Dacrydium guillauminii T. Jaffré, F. Rigault, G. Dagostini Diversity of Palms and various families 38 species, 37 endemics Cunonia atrorubens (Cunoniaceae 92 species) (Metrosideros Humboldtiana) (Myrtaceae 236 species) Pritchardiopsis Kentiopsis piriformis jeanneneyi T. Jaffré, F. Rigault, G. Dagostini Strasburgeria robusta One of the 5 Endemic Families Psychotria douarrei Sebertia acuminata Homalium kanaliense Nickel hyperaccumulators T. Jaffré, F. Rigault, G. Dagostini New Caledonia was recognised by « International Conservation » as one of the world’s most important biodiversity « hot spots » (Myers, 1988) largely because of the exceptional number of endemic taxa T. Jaffré, F. Rigault, G. Dagostini Floristic (vascular plants) richness and endemicity on ultramafic soils in New Caledonia 2200 species (66,7% of the native flora) are found on ultramafic soils containing low levels of P, Ca, K, N and high levels of Ni, Cr and Mn. About 1140 species, (nearly 35%) of the total native flora, are found only on ultramafic soils. So ultramafic biotopes in New Caledonia may also be considered as a « hot spot » for plants growing on Ni mining soils T.