Comparative Analysis of Sonic Hedgehog Signalling and the Response to Sonic Hedgehog Signalling in Vertebrate Forelimbs and Hindlimbs

Total Page:16

File Type:pdf, Size:1020Kb

Comparative Analysis of Sonic Hedgehog Signalling and the Response to Sonic Hedgehog Signalling in Vertebrate Forelimbs and Hindlimbs Comparative analysis of Sonic Hedgehog signalling and the response to Sonic Hedgehog signalling in vertebrate forelimbs and hindlimbs Martin David Carkett Division of Developmental Biology, MRC Francis Crick Institute, Mill Hill Laboratories Mill Hill, London UCL Submitted in 2015 for the degree of doctor of philosophy Declaration I, Martin David Carkett, confirm that the work presented in this thesis is my own and was performed in the laboratory of Dr. Malcolm Logan at the MRC National Institute for Medical Research, the Francis Crick Institute Mill Hill Laboratories and King’s College London. Where information or reagents have been derived from other sources, I confirm that this has been indicated in the thesis. This work has been submitted for the degree of doctor of philosophy. 2 Acknowledgments First and foremost I would like to thank Malcolm for giving me the opportunity to study this project and for giving me both the freedom and support to complete it as best I could. It has been a great experience and I have learnt a lot. I would like to thank fellow Logan lab members Sorrel, Satoko, Ania, Sue, Vero, Natalie and Laurianne for their input, advice and friendship without which this would have been far more difficult and far less fun. Noriaki, James B, James T and Tim have given me valuable advice throughout, for which I thank them too. I would like to mention Alex E, Clem, Jimena, Andy, Manu, Charlie, Alex W and Aina who have been great friends and have made the last four years a far richer experience beyond the lab. Lastly, as ever, my family have offered perspective, support and guidance throughout which has been invaluable. 3 Abstract The Sonic Hedgehog (Shh) morphogen is required to establish anteroposterior (AP) pattern in vertebrate limbs. Limb progenitors exposed to increasing levels or durations of Shh signalling ultimately give rise to progressively more posterior structures. However, how Shh specifies different digit identities at a molecular level is poorly understood and molecular markers of individual digits are yet to be determined. Shh also patterns the dorsoventral axis of the vertebrate neural tube, where desensitisation to Shh signalling via Patched-mediated negative feedback – termed temporal adaptation - is required for correct interpretation of the Shh morphogen gradient. To investigate how limb progenitors respond to, and integrate, different levels and durations of Shh signalling at a molecular level I have developed an ex vivo assay and used RNA-sequencing to examine the immediate transcriptional responses of chick limb progenitors exposed to defined concentrations of Shh over fixed periods of time. I observe that limb progenitors initially respond equivalently to different concentrations of Shh but establish a graded response over time through a variation of a temporal adaptation mechanism in which both signal desensitisation and signal accumulation are required to generate distinct transcriptional outputs. I demonstrate that signal desensitisation is mediated, at least in part, by Patched-mediated negative feedback, but that additional cell-autonomous and noncell-autonomous feedback mechanisms operating through Sufu/Gli and Disp1 also exist. I further use in silico analyses to identify candidate markers of digit identities that are induced by different levels of Shh signalling. I show a subset of candidate markers are expressed in intermediate AP domains, consistent with predictions, and may mark or specify middle digit identities. Finally, I have investigated differences in Shh signalling dynamics and the response to Shh signalling in chick forelimbs and hindlimbs and provide evidence that hindlimbs are patterned by Shh over a shorter period of time. Table of contents DECLARATION 2 ACKNOWLEDGMENTS 3 ABSTRACT 4 TABLE OF CONTENTS 5 LIST OF FIGURES 9 LIST OF TABLES 11 LIST OF ABBREVIATIONS 12 CHAPTER 1: INTRODUCTION 13 1.1 THE EMBRYOLOGICAL ORIGIN AND FORMATION OF VERTEBRATE LIMBS 14 THE SKELETAL STRUCTURE OF THE VERTEBRATE LIMB 14 EMBRYOLOGICAL ORIGIN OF VERTEBRATE LIMBS 16 LIMB BUD INITIATION 17 ORGANISING CENTRES WITHIN THE LIMB 18 1.2 THE SONIC HEDGEHOG (SHH) SIGNALLING PATHWAY 20 THE SHH MORPHOGEN 20 SHH SYNTHESIS AND DISPERSION 21 SHH SIGNALLING IS MEDIATED THROUGH GLI TRANSCRIPTION FACTORS 23 1.3 SONIC HEDGEHOG MORPHOGEN ACTIVITY IN VERTEBRATE LIMBS 27 SHH ACTS TO FORM A COUNTER GRADIENT OF GLI3R IN THE LIMB BUD 30 SHH SIGNALS IN A DOSE AND TIME DEPENDANT MANNER IN VERTEBRATE LIMBS 32 ENCODING DIGIT IDENTITY 39 1.4 INTRA-CELLULAR DYNAMICS OF SHH SIGNALLING: INSIGHTS FROM THE NEURAL TUBE 43 SHH INTERPRETATION BY A TEMPORAL ADAPTATION MECHANISM 43 LIGAND DEPENDENT ANTAGONISM 46 1.5 DIFFERENCES IN SHH SIGNALLING IN VERTEBRATE FORELIMBS AND HINDLIMBS 49 1.6 SUMMARY OF AIMS 52 CHAPTER 2: MATERIALS AND METHODS 54 2.1 CHICK LIMB BUD MEASUREMENTS 55 2.2 QUANTIFYING LIMB BUD CELL NUMBERS 55 2.3 WHOLE MOUNT IN SITU HYBRIDISATIONS 56 2.4 QUANTIFYING ENDOGENOUS EXPRESSION LEVELS OF SHH, PTCH1 AND GLI1 IN CHICK FORELIMBS AND HINDLIMB BUDS 57 5 2.5 QUANTIFYING SHH EXPRESSION AND SHH RESPONSE DOMAINS IN CHICK LIMB BUDS 58 2.6 DISSOCIATED CELL CULTURE 58 2.7 EXPLANT EX VIVO CULTURE 59 2.8 QUANTITATIVE PCR 60 2.9 RNA-SEQUENCING 61 2.10 GENERATION OF GENE LISTS 61 2.11 CHICK IN OVO ELECTROPORATION 64 2.12 CLONING OF CHICK GENES 66 CHAPTER 3: TEMPORAL AND QUANTITATIVE ANALYSIS OF SHH SIGNALLING AND SHH RESPONSE DOMAINS IN CHICKEN FORELIMB AND HINDLIMB BUDS 68 3.1 THE SIZE OF THE HINDLIMB BUD MORPHOGEN FIELD IS LARGER THAN THE FORELIMB BUD THROUGHOUT THE PERIOD OF SHH PATTERNING ACTIVITY 69 3.2 SHH IS EXPRESSED FOR A SHORTER PERIOD OF TIME IN HINDLIMB BUDS THAN IN FORELIMB BUDS 72 3.3 ENDOGENOUS EXPRESSION PROFILES OF SHH, PTCH1 AND GLI1 AT STAGES HH17- HH24 75 3.4 THE RELATIVE SIZE OF THE SHH EXPRESSING DOMAIN OF FORELIMB BUDS IS LARGER THAN THAT OF HINDLIMB BUDS DURING SHH PATTERNING STAGES 78 3.5 THE RELATIVE SIZE OF THE SHH RESPONSE DOMAIN OF FORELIMB BUDS IS LARGER THAN THAT OF HINDLIMB BUDS DURING SHH PATTERNING STAGES 79 CHAPTER 4: TRANSCRIPTOMIC ANALYSIS OF THE RESPONSE OF LIMB PROGENITORS TO SHH SIGNALLING 83 4.1 DISSOCIATED LIMB BUD CELLS EXHIBIT A LIMITED AND INCONSISTENT RESPONSE TO EXOGENOUS SHH 84 4.2 FORELIMB AND HINDLIMB EXPLANTS CULTURED EX VIVO EXHIBIT A ROBUST AND GRADED RESPONSE TO EXOGENOUS SHH 87 4.3 FORELIMB BUD EXPLANTS EXHIBIT A NON-LINEAR GRADED RESPONSE TO THE SHH MORPHOGEN GRADIENT THROUGH SIGNAL ACCUMULATION AND SIGNAL DESENSITISATION 92 4.4 SIGNAL DESENSITISATION IS MEDIATED BY A PTCH1/2 LIGAND DEPENDENT ANTAGONISM 99 4.5 SUFU IS UPREGULATED BUT GLI2-3 AND DISP1 ARE DOWNREGULATED BY SHH SIGNALLING 105 6 4.6 GENES IMPLICATED IN ANTEROPOSTERIOR (AP) IDENTITY EXHIBIT A NON-LINEAR GRADED RESPONSE TO SHH IN FORELIMB AND HINDLIMB EXPLANTS 107 4.7 HINDLIMB EXPLANTS RESPOND MORE RAPIDLY THAN FORELIMB EXPLANTS TO SHH SIGNALLING 111 CHAPTER 5: IN SILICO AND IN SITU ANALYSIS OF THE INTERPRETATION OF GRADED SHH SIGNALLING IN CHICKEN FORELIMBS AND HINDLIMBS 118 5.1 GENES IMPLICATED IN LIMB DEVELOPMENT ARE DIFFERENTIALLY EXPRESSED IN EXPLANTS EXPOSED TO SHH 119 5.2 IN SILICO ANALYSES CAN BE USED TO PREDICT SPECIFIC AP EXPRESSION PATTERNS OF SHH TARGETS IN CHICKEN LIMB BUDS 127 5.3 CANDIDATE TARGETS OF SHH SIGNALLING ARE EXPRESSED IN DISTINCT AP DOMAINS IN CHICKEN LIMB BUDS CONSISTENT WITH PREDICTIONS 136 5.4 ATTEMPT TO MIS-EXPRESS SMOC1 IN THE DEVELOPING FORELIMB BUD 140 5.5 TRANSCRIPTIONAL TARGETS OF SHH SIGNALLING ARE EXPRESSED IN THE PHARYNGEAL ARCHES 143 CHAPTER 6: DISCUSSION 146 6.1 DIFFERENCES IN SHH SIGNALLING BETWEEN CHICKEN FORELIMB AND HINDLIMB BUDS 147 THE CHICKEN HINDLIMB APPEARS TO BE PATTERNED FASTER THAN THE FORELIMB 150 6.2 ESTABLISHING A GRADED RESPONSE TO THE SHH MORPHOGEN GRADIENT IN VERTEBRATE LIMBS 151 6.3 THE ROLE OF FEEDBACK MECHANISMS IN CORRECT MORPHOGEN GRADIENT INTERPRETATION 158 TEMPORAL ADAPTATION BY LIGAND DEPENDENT ANTAGONISM 158 ADDITIONAL FEEDBACK MECHANISMS 161 6.4 TARGETS OF SHH SIGNALLING IN THE LIMB AND ENCODING DIGIT IDENTITY 165 EVALUATION OF IN SILICO ANALYSES 165 ENCODING POSTERIOR DIGIT IDENTITIES 168 ENCODING ANTERIOR DIGIT IDENTITIES 169 ENCODING INTERMEDIATE DIGIT IDENTITIES 173 THE ROLE OF SMOC1 IN SPECIFYING AND MARKING MIDDLE DIGIT IDENTITIES 173 AN OVERVIEW OF SHH TARGETS IN THE LIMB 175 6.5 DIFFERENCES IN THE RESPONSE OF FORELIMB AND HINDLIMB PROGENITORS TO EQUIVALENT SHH SIGNALLING 177 7 6.6 SUMMARY AND FUTURE DIRECTIONS 180 FUTURE LINES OF INVESTIGATION 181 REFERENCES 184 APPENDICES 207 8 List of Figures Figure 1| Overview of limb skeletal structures and the role of Shh in establishing anteroposterior polarity __________________________________________________________________________ 15 Figure 2 | Schematic of the Shh signalling pathway and structure of Gli proteins _____________ 24 Figure 2.1 | The polarising activity of the posterior margin of the limb bud is concentration dependent __________________________________________________________________________________________29 Figure 2.2 | Overview of different models of digit specification in vertebrate limbs by Shh signalling.__________________________________________________________________________________________35 Figure 3 | Schematic of the proposed Gene Regulatory Network (GRN) downstream of Shh signalling in the limb. _____________________________________________________________________________ 41 Figure 4| Schematic of the Temporal adaptation model ________________________________________ 45 Figure 5 | Comparison of the size and cell number of chicken forelimb and hindlimb buds
Recommended publications
  • Role of Sulfs in Colorectal Cancer Cells Original Article Enhanced
    Author Manuscript Published OnlineFirst on December 4, 2014; DOI: 10.1158/1541-7786.MCR-14-0372 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Running Title: Role of SULFs in colorectal cancer cells Original Article Enhanced Tumorigenic Potential of Colorectal Cancer Cells by Extracellular Sulfatases Carolina M Vicente1, Marcelo A Lima1,2, Edwin A Yates2,1, Helena B Nader1, Leny Toma1* 1Disciplina de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de São Paulo, UNIFESP, Brazil 2Institute of Integrative Biology, Department of Biochemistry, University of Liverpool, Liverpool, UK *Corresponding author: Leny Toma, Disciplina de Biologia Molecular, Universidade Federal de São Paulo, UNIFESP, Rua Três de Maio, 100 – 4º andar, Vila Clementino, CEP 04044-020, São Paulo, SP, Brazil. E-mail: [email protected], [email protected], Tel (+55) (11) 55793175; FAX (+55) (11) 55736407. Disclosure of Potential Conflicts of Interest No potential conflicts of interest were disclosed by the authors. Downloaded from mcr.aacrjournals.org on September 24, 2021. © 2014 American Association for Cancer Research. Author Manuscript Published OnlineFirst on December 4, 2014; DOI: 10.1158/1541-7786.MCR-14-0372 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Abstract Heparan sulfate endosulfatase-1 and -2 (SULF1 and SULF2) are two important extracellular 6-O-endosulfatases that remove 6-O sulfate groups of N-glucosamine along heparan sulfate (HS) proteoglycan chains often found in the extracellular matrix (ECM). The HS sulfation pattern influences signaling events at the cell surface, which are critical for interactions with growth factors and their receptors.
    [Show full text]
  • Review Heterochronic Genes and the Nature of Developmental Time
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology 17, R425–R434, June 5, 2007 ª2007 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2007.03.043 Heterochronic Genes and the Nature of Review Developmental Time Eric G. Moss that have arisen to solve the problem of regulated tim- ing in animal development. Timing is a fundamental issue in development, with Heterochrony and Developmental Timing a range of implications from birth defects to evolu- in Evolution tion. In the roundworm Caenorhabditis elegans, Changes in developmental timing have long been be- the heterochronic genes encode components of lieved to be a major force in the evolution of morphol- a molecular developmental timing mechanism. This ogy [1]. A variety of changes is encompassed by the mechanism functions in diverse cell types through- concept of ‘heterochrony’ — differences in the relative out the animal to specify cell fates at each larval timing of developmental events between two closely stage. MicroRNAs play an important role in this related species. A classic example of heterochrony is mechanism by stage-specifically repressing cell- the axolotl. This salamander reaches sexual maturity fate regulators. Recent studies reveal the surprising without undergoing metamorphosis, such that its complexity surrounding this regulation — for exam- non-gonadal tissues retain larval features of other ple, a positive feedback loop may make the regula- salamanders. Different species of axolotls exhibit ge- tion more robust, and certain components of the netic differences in the production or activity of thyroid mechanism are expressed in brief periods at each hormones that trigger metamorphosis from aquatic stage.
    [Show full text]
  • Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B
    Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B. M ü ller, G ü nter P. Wagner, and Werner Callebaut, editors The Evolution of Cognition , edited by Cecilia Heyes and Ludwig Huber, 2000 Origination of Organismal Form: Beyond the Gene in Development and Evolutionary Biology , edited by Gerd B. M ü ller and Stuart A. Newman, 2003 Environment, Development, and Evolution: Toward a Synthesis , edited by Brian K. Hall, Roy D. Pearson, and Gerd B. M ü ller, 2004 Evolution of Communication Systems: A Comparative Approach , edited by D. Kimbrough Oller and Ulrike Griebel, 2004 Modularity: Understanding the Development and Evolution of Natural Complex Systems , edited by Werner Callebaut and Diego Rasskin-Gutman, 2005 Compositional Evolution: The Impact of Sex, Symbiosis, and Modularity on the Gradualist Framework of Evolution , by Richard A. Watson, 2006 Biological Emergences: Evolution by Natural Experiment , by Robert G. B. Reid, 2007 Modeling Biology: Structure, Behaviors, Evolution , edited by Manfred D. Laubichler and Gerd B. M ü ller, 2007 Evolution of Communicative Flexibility: Complexity, Creativity, and Adaptability in Human and Animal Communication , edited by Kimbrough D. Oller and Ulrike Griebel, 2008 Functions in Biological and Artifi cial Worlds: Comparative Philosophical Perspectives , edited by Ulrich Krohs and Peter Kroes, 2009 Cognitive Biology: Evolutionary and Developmental Perspectives on Mind, Brain, and Behavior , edited by Luca Tommasi, Mary A. Peterson, and Lynn Nadel, 2009 Innovation in Cultural Systems: Contributions from Evolutionary Anthropology , edited by Michael J. O ’ Brien and Stephen J. Shennan, 2010 The Major Transitions in Evolution Revisited , edited by Brett Calcott and Kim Sterelny, 2011 Transformations of Lamarckism: From Subtle Fluids to Molecular Biology , edited by Snait B.
    [Show full text]
  • Sonic Hedgehog Signaling in Limb Development
    REVIEW published: 28 February 2017 doi: 10.3389/fcell.2017.00014 Sonic Hedgehog Signaling in Limb Development Cheryll Tickle 1* and Matthew Towers 2* 1 Department of Biology and Biochemistry, University of Bath, Bath, UK, 2 Department of Biomedical Science, The Bateson Centre, University of Sheffield, Western Bank, Sheffield, UK The gene encoding the secreted protein Sonic hedgehog (Shh) is expressed in the polarizing region (or zone of polarizing activity), a small group of mesenchyme cells at the posterior margin of the vertebrate limb bud. Detailed analyses have revealed that Shh has the properties of the long sought after polarizing region morphogen that specifies positional values across the antero-posterior axis (e.g., thumb to little finger axis) of the limb. Shh has also been shown to control the width of the limb bud by stimulating mesenchyme cell proliferation and by regulating the antero-posterior length of the apical ectodermal ridge, the signaling region required for limb bud outgrowth and the laying down of structures along the proximo-distal axis (e.g., shoulder to digits axis) of the limb. It has been shown that Shh signaling can specify antero-posterior positional values in Edited by: limb buds in both a concentration- (paracrine) and time-dependent (autocrine) fashion. Andrea Erika Münsterberg, University of East Anglia, UK Currently there are several models for how Shh specifies positional values over time in the Reviewed by: limb buds of chick and mouse embryos and how this is integrated with growth. Extensive Megan Davey, work has elucidated downstream transcriptional targets of Shh signaling. Nevertheless, it University of Edinburgh, UK Robert Hill, remains unclear how antero-posterior positional values are encoded and then interpreted University of Edinburgh, UK to give the particular structure appropriate to that position, for example, the type of digit.
    [Show full text]
  • Gene Section Review
    Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL INIST -CNRS Gene Section Review SULF1 (sulfatase 1) Jérôme Moreaux INSERM U1040, institut de recherche en biotherapie, CHRU Saint Eloi, 80 Av Augustain Fliche, 34295 Montpellier CEDEX 5, France (JM) Published in Atlas Database: March 2012 Online updated version : http://AtlasGeneticsOncology.org/Genes/SULF1ID44378ch8q13.html DOI: 10.4267/2042/47490 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2012 Atlas of Genetics and Cytogenetics in Oncology and Haematology - Homo sapiens sulfatase 1 (SULF1), transcript variant Identity 3, mRNA, 5710 bp Other names: HSULF-1, SULF-1 Accession: NM_015170.2 GI: 189571635 HGNC (Hugo): SULF1 - Homo sapiens sulfatase 1 (SULF1), transcript variant 4, mRNA, 5548 bp Location: 8q13.2 Accession: NM_001128204.1 GI: 189571637 DNA/RNA Protein Note Note The sulfation pattern of heparan sulfate chains Sulfs are sulfatases that edit the sulfation status of influences signaling events mediated by heparan sulfate heparan sulfate proteoglycans on the outside of cells proteoglycans located on cell surface. SULF1 is an and regulate a number of critical signaling pathways. endosulfatase able to cleave specific 6-O sulfate groups The Sulfs are dysregulated in many cancers. within the heparan chains. The Sulfs are synthesized as pre-proproteins. This action can modulate signaling processes, The signal sequence is removed and the pro-protein is modulating the effects of heparan sulfate by altering cleaved by a furin-type proteinase. binding sites for signaling molecules. Sulfs mature proteins are secreted as well as retained Description on the cell surface.
    [Show full text]
  • 2019.12.20.883900V1.Full.Pdf
    bioRxiv preprint doi: https://doi.org/10.1101/2019.12.20.883900; this version posted December 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Title 2 Sequence heterochrony led to a gain of functionality in an immature 3 stage of the central complex: a fly-beetle insight 4 Short title: Sequence heterochrony in central complex evolution 5 6 Authors: 7 Max S. Farnwortha,c, Kolja N. Eckermannb,c, Gregor Buchera,* 8 9 a Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, 10 University of Göttingen, Göttingen, Germany, b Department of Developmental Biology, Johann-Friedrich- 11 Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany, c Göttingen Graduate Center for 12 Molecular Biosciences, Neurosciences and Biophysics (GGNB), Göttingen, Germany 13 14 * Corresponding author: Gregor Bucher 15 Email: [email protected] 16 17 ORCID: Max S. Farnworth https://orcid.org/0000-0003-2418-3203, Gregor Bucher 18 https://orcid.org/0000-0002-4615-6401 19 - 1 - bioRxiv preprint doi: https://doi.org/10.1101/2019.12.20.883900; this version posted December 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 20 Abstract 21 Animal behavior is guided by the brain.
    [Show full text]
  • Sulf1 Influences the Shh Morphogen Gradient During the Dorsal Ventral Patterning of the Neural Tube in Xenopus Tropicalis
    Ramsbottom SA, Maguire RJ, Fellgett SW, Pownall ME. Sulf1 influences the Shh morphogen gradient during the dorsal ventral patterning of the neural tube in Xenopus tropicalis. Developmental Biology 2014, 39(391), 207-218. Copyright: © 2014 Elsevier Inc. All rights reserved. Published under an Elsevier user license DOI link to article: http://dx.doi.org/10.1016/j.ydbio.2014.04.010 Date deposited: 22/09/2016 This work is licensed under a Creative Commons Attribution 4.0 International License Newcastle University ePrints - eprint.ncl.ac.uk Developmental Biology 391 (2014) 207–218 Contents lists available at ScienceDirect Developmental Biology journal homepage: www.elsevier.com/locate/developmentalbiology Sulf1 influences the Shh morphogen gradient during the dorsal ventral patterning of the neural tube in Xenopus tropicalis Simon A. Ramsbottom, Richard J. Maguire, Simon W. Fellgett, Mary Elizabeth Pownall n Biology Department, University of York, York YO10 5YW, United Kingdom article info abstract Article history: Genetic studies have established that heparan sulphate proteoglycans (HSPGs) are required for signalling Received 1 November 2013 by key developmental regulators, including Hedgehog, Wnt/Wg, FGF, and BMP/Dpp. Post-synthetic Received in revised form remodelling of heparan sulphate (HS) by Sulf1 has been shown to modulate these same signalling 11 April 2014 pathways. Sulf1 codes for an N-acetylglucosamine 6-O-endosulfatase, an enzyme that specifically Accepted 15 April 2014 removes the 6-O sulphate group from glucosamine in highly sulfated regions of HS chains. One striking Available online 24 April 2014 aspect of Sulf1 expression in all vertebrates is its co-localisation with that of Sonic hedgehog in the floor Keywords: plate of the neural tube.
    [Show full text]
  • Heparan Sulfate Proteoglycan
    Cellular Signalling 54 (2019) 115–121 Contents lists available at ScienceDirect Cellular Signalling journal homepage: www.elsevier.com/locate/cellsig Heparan sulfate proteoglycan – A common receptor for diverse cytokines T ⁎ Meng Xiea, Jin-ping Lib, a Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden b Department of Medical Biochemistry and Microbiology, SciLifeLab Uppsala, The Biomedical Center, University of Uppsala, Uppsala, Sweden ARTICLE INFO ABSTRACT Keywords: Heparan sulfate proteoglycans (HSPG) are macromolecular glyco-conjugates expressed ubiquitously on the cell Heparan sulfate proteoglycan surface and in the extracellular matrix where they interact with a wide range of ligands to regulate many aspects Cytokines of cellular function. The capacity of the side glycosaminoglycan chain heparan sulfate (HS) being able to interact Cellular signaling with diverse protein ligands relies on its complex structure that is generated by a controlled biosynthesis process, Heparin involving the actions of glycosyl-transferases, sulfotransferases and the glucuronyl C5-epimerase. It is believed that activities of the modification enzymes control the HS structures that are designed to serve the biological functions in a given cell or biological status. In this review, we briefly discuss recent understandings on the roles of HSPG in cytokine stimulated cellular signaling, focusing on FGF, TGF-β, Wnt, Hh, HGF and VEGF. 1. Introduction 2. Biosynthesis of HS Heparan sulfate proteoglycans (HSPGs) are macromolecules, typi- The capacity of HS to interact with a wide diversity of cytokines is cally composed of a core protein, to which several heparan sulfate (HS) attributed to its complex structures that are formed by a controlled glycosaminoglycan chains are covalently attached [1,2].
    [Show full text]
  • Homeobox Genes D11–D13 and A13 Control Mouse Autopod Cortical
    Research article Homeobox genes d11–d13 and a13 control mouse autopod cortical bone and joint formation Pablo Villavicencio-Lorini,1,2 Pia Kuss,1,2 Julia Friedrich,1,2 Julia Haupt,1,2 Muhammed Farooq,3 Seval Türkmen,2 Denis Duboule,4 Jochen Hecht,1,5 and Stefan Mundlos1,2,5 1Max Planck Institute for Molecular Genetics, Berlin, Germany. 2Institute for Medical Genetics, Charité, Universitätsmedizin Berlin, Berlin, Germany. 3Human Molecular Genetics Laboratory, National Institute for Biotechnology & Genetic Engineering (NIBGE), Faisalabad, Pakistan. 4National Research Centre Frontiers in Genetics, Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland. 5Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité, Universitätsmedizin Berlin, Berlin, Germany. The molecular mechanisms that govern bone and joint formation are complex, involving an integrated network of signaling pathways and gene regulators. We investigated the role of Hox genes, which are known to specify individual segments of the skeleton, in the formation of autopod limb bones (i.e., the hands and feet) using the mouse mutant synpolydactyly homolog (spdh), which encodes a polyalanine expansion in Hoxd13. We found that no cortical bone was formed in the autopod in spdh/spdh mice; instead, these bones underwent trabecular ossification after birth. Spdh/spdh metacarpals acquired an ovoid shape and developed ectopic joints, indicating a loss of long bone characteristics and thus a transformation of metacarpals into carpal bones. The perichon- drium of spdh/spdh mice showed abnormal morphology and decreased expression of Runt-related transcription factor 2 (Runx2), which was identified as a direct Hoxd13 transcriptional target. Hoxd11–/–Hoxd12–/–Hoxd13–/– tri- ple-knockout mice and Hoxd13–/–Hoxa13+/– mice exhibited similar but less severe defects, suggesting that these Hox genes have similar and complementary functions and that the spdh allele acts as a dominant negative.
    [Show full text]
  • Evolutionary Developmental Biology 573
    EVOC20 29/08/2003 11:15 AM Page 572 Evolutionary 20 Developmental Biology volutionary developmental biology, now often known Eas “evo-devo,” is the study of the relation between evolution and development. The relation between evolution and development has been the subject of research for many years, and the chapter begins by looking at some classic ideas. However, the subject has been transformed in recent years as the genes that control development have begun to be identified. This chapter looks at how changes in these developmental genes, such as changes in their spatial or temporal expression in the embryo, are associated with changes in adult morphology. The origin of a set of genes controlling development may have opened up new and more flexible ways in which evolution could occur: life may have become more “evolvable.” EVOC20 29/08/2003 11:15 AM Page 573 CHAPTER 20 / Evolutionary Developmental Biology 573 20.1 Changes in development, and the genes controlling development, underlie morphological evolution Morphological structures, such as heads, legs, and tails, are produced in each individual organism by development. The organism begins life as a single cell. The organism grows by cell division, and the various cell types (bone cells, skin cells, and so on) are produced by differentiation within dividing cell lines. When one species evolves into Morphological evolution is driven another, with a changed morphological form, the developmental process must have by developmental evolution changed too. If the descendant species has longer legs, it is because the developmental process that produces legs has been accelerated, or extended over time.
    [Show full text]
  • Heparin/Heparan Sulfate Proteoglycans Glycomic Interactome in Angiogenesis: Biological Implications and Therapeutical Use
    Molecules 2015, 20, 6342-6388; doi:10.3390/molecules20046342 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Heparin/Heparan Sulfate Proteoglycans Glycomic Interactome in Angiogenesis: Biological Implications and Therapeutical Use Paola Chiodelli, Antonella Bugatti, Chiara Urbinati and Marco Rusnati * Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy; E-Mails: [email protected] (P.C.); [email protected] (A.B.); [email protected] (C.U.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-030-371-7315; Fax: +39-030-371-7747. Academic Editor: Els Van Damme Received: 26 February 2015 / Accepted: 1 April 2015 / Published: 10 April 2015 Abstract: Angiogenesis, the process of formation of new blood vessel from pre-existing ones, is involved in various intertwined pathological processes including virus infection, inflammation and oncogenesis, making it a promising target for the development of novel strategies for various interventions. To induce angiogenesis, angiogenic growth factors (AGFs) must interact with pro-angiogenic receptors to induce proliferation, protease production and migration of endothelial cells (ECs). The action of AGFs is counteracted by antiangiogenic modulators whose main mechanism of action is to bind (thus sequestering or masking) AGFs or their receptors. Many sugars, either free or associated to proteins, are involved in these interactions, thus exerting a tight regulation of the neovascularization process. Heparin and heparan sulfate proteoglycans undoubtedly play a pivotal role in this context since they bind to almost all the known AGFs, to several pro-angiogenic receptors and even to angiogenic inhibitors, originating an intricate network of interaction, the so called “angiogenesis glycomic interactome”.
    [Show full text]
  • WT1-Dependent Sulfatase Expression Maintains the Normal Glomerular Filtration Barrier
    BASIC RESEARCH www.jasn.org WT1-Dependent Sulfatase Expression Maintains the Normal Glomerular Filtration Barrier Vale´rie A. Schumacher,*† Ursula Schlo¨tzer-Schrehardt,‡ S. Ananth Karumanchi,§ ʈ ʈ Xiaofeng Shi, Joseph Zaia, Stefanie Jeruschke,† Dongsheng Zhang,§ Hermann Pavenstädt,¶ Astrid Drenckhan,† Kerstin Amann,** Carrie Ng,* Sunny Hartwig,* Kar-Hui Ng,* Jacqueline Ho,* Jordan A. Kreidberg,* Mary Taglienti,* Brigitte Royer-Pokora,† and Xingbin Ai†† *Department of Medicine, Children’s Hospital Boston and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts; †Institute of Human Genetics, University of Du¨sseldorf, Du¨sseldorf, Germany; ‡Department of Ophthalmology and **Institute for Pathology, University of Erlangen-Nu¨rnberg, Nu¨rnberg, Germany; §Beth Israel ʈ Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Department of Biochemistry and ††The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts; and ¶Department of Medicine D, University of Mu¨nster, Mu¨nster, Germany ABSTRACT Paracrine signaling between podocytes and glomerular endothelial cells through vascular endothelial growth factor A (VEGFA) maintains a functional glomerular filtration barrier. Heparan sulfate proteogly- cans (HSPGs), located on the cell surface or in the extracellular matrix, bind signaling molecules such as VEGFA and affect their local concentrations, but whether modulation of these moieties promotes normal crosstalk between podocytes and endothelial cells is unknown. Here, we found that the transcription factor Wilms’ Tumor 1 (WT1) modulates VEGFA and FGF2 signaling by increasing the expression of the 6-O-endosulfatases Sulf1 and Sulf2, which remodel the heparan sulfate 6-O-sulfation pattern in the extracellular matrix. Mice deficient in both Sulf1 and Sulf2 developed age-dependent proteinuria as a result of ultrastructural abnormalities in podocytes and endothelial cells, a phenotype similar to that ϩ/Ϫ observed in children with WT1 mutations and in Wt1 mice.
    [Show full text]