RESEARCH ARTICLE Synergistic co-regulation and competition by a SOX9-GLI-FOXA phasic transcriptional network coordinate chondrocyte differentiation transitions Zhijia Tan1☯, Ben Niu1☯, Kwok Yeung Tsang1, Ian G. Melhado1, Shinsuke Ohba2¤a, Xinjun He2, Yongheng Huang3¤b, Cheng Wang1, Andrew P. McMahon2, Ralf Jauch3, Danny Chan1, Michael Q. Zhang4,5, Kathryn S. E. Cheah1* a1111111111 a1111111111 1 School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong, 2 Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center a1111111111 for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of a1111111111 Southern California, Los Angeles, California, United States of America, 3 Genome Regulation Laboratory, a1111111111 Guangzhou Institutes of Biomedicine and Health, Guangzhou, China, 4 Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Dallas, Texas, United States of America, 5 MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, TNLIST, Tsinghua University, Beijing, China ☯ These authors contributed equally to this work. OPEN ACCESS ¤a Current address: Department of Bioengineering, the University of Tokyo, Tokyo, Japan; Citation: Tan Z, Niu B, Tsang KY, Melhado IG, ¤b Current address: Group Structure Biochemistry, Institute for Chemistry and Biochemistry, Free University Berlin, Berlin, Germany Ohba S, He X, et al. (2018) Synergistic co- *
[email protected] regulation and competition by a SOX9-GLI-FOXA phasic transcriptional network coordinate chondrocyte differentiation transitions. PLoS Genet 14(4): e1007346. https://doi.org/10.1371/journal. Abstract pgen.1007346 The growth plate mediates bone growth where SOX9 and GLI factors control chondrocyte Editor: Gregory S.