The Meteor Crater, Arizona: a Century of Exploration and Debates
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cross-References ASTEROID IMPACT Definition and Introduction History of Impact Cratering Studies
18 ASTEROID IMPACT Tedesco, E. F., Noah, P. V., Noah, M., and Price, S. D., 2002. The identification and confirmation of impact structures on supplemental IRAS minor planet survey. The Astronomical Earth were developed: (a) crater morphology, (b) geo- 123 – Journal, , 1056 1085. physical anomalies, (c) evidence for shock metamor- Tholen, D. J., and Barucci, M. A., 1989. Asteroid taxonomy. In Binzel, R. P., Gehrels, T., and Matthews, M. S. (eds.), phism, and (d) the presence of meteorites or geochemical Asteroids II. Tucson: University of Arizona Press, pp. 298–315. evidence for traces of the meteoritic projectile – of which Yeomans, D., and Baalke, R., 2009. Near Earth Object Program. only (c) and (d) can provide confirming evidence. Remote Available from World Wide Web: http://neo.jpl.nasa.gov/ sensing, including morphological observations, as well programs. as geophysical studies, cannot provide confirming evi- dence – which requires the study of actual rock samples. Cross-references Impacts influenced the geological and biological evolu- tion of our own planet; the best known example is the link Albedo between the 200-km-diameter Chicxulub impact structure Asteroid Impact Asteroid Impact Mitigation in Mexico and the Cretaceous-Tertiary boundary. Under- Asteroid Impact Prediction standing impact structures, their formation processes, Torino Scale and their consequences should be of interest not only to Earth and planetary scientists, but also to society in general. ASTEROID IMPACT History of impact cratering studies In the geological sciences, it has only recently been recog- Christian Koeberl nized how important the process of impact cratering is on Natural History Museum, Vienna, Austria a planetary scale. -
Glossary Glossary
Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts. -
Destination Moon
Ill ".=\'.\, . : t.\ i...ii. 4'i.' --- v 1, 2*..- e> . 1.... ...*f. - .. .. .../C-'.»i.:5.1:• \ I: .. ...: ... ':4r-... - i.. ·.· I . I ·#. - I, :P.k 0 1 '. -1-3:Z:,ile<52.4 -2. .3••••4 - ....., 1 - I ..... 3/4 I <:.9, . /•/f••94*/ ,,iS· .... I ... ....... 9492./i- ..·,61« 4/.th_ r-*- .. -I,r * 116.-452*:••:il-.--•• . .....a• 1 --, •.11:E I . ".59/.-R:&6.Aidillizatu:ill'Illrclilllll 9 St" "' 4.... ... 'Ablf*liE•*.0/8/49/18•09#J'£• .-t-i «, ...' '-t ---- ·· -.t-:.:.'• --,•1*4*14-=..»r,3.hk= 4-lk/ *7·· •-,·:s - '' 21:1 . -0.6..ts-9....4559*"4914*Em'6rt'" .. « 036 ·.. '.... ..'·2&4:i•#+,M/ri:.1*-%,TYRf/036B.e... - ....2:'. .. *... '. '!..i. '':3..i-,f....35"ti F:Y.'..t•: &.....:. 39•'.•........ - ..., ..7. .- P 036.1..' -.Zi - , 93327 . « tr. 1 '. .- I . '.. I ... .'... 'SS> <13· '9•25 ."'t-·,·:·- " :· •t :Ali.•'.'; • - 'r ...• r..... ' ... .... .. " .4 4 ..2- -.*.. 3. .. : , _sry»5433.5.,+· i<29*643, W5• ./'..'r· -. 4-··./.-i--fR...1-L...'.te....bkir.i<Ativi•haRN,1.254i'*"*61»4-=•• 6.... 61 . 31 /'- 5 301... ....•L . , . - - . '2.1 . ' -' »4 /2/323#9/44 ZEIII:ill)*lill//Il/6,1-'.cri:rre I. p ·: , 4 ·,.3*4,·to.4.-•44 4 .,I-tS••7•,<•.•·:L,4..'::....,i... ..I·."i271/Ve;*m#6:d 54.... .. -,•....- . I..,418'I.,4I.,•....6..#i r:'.,:•St»1.·:·'7· ···- . t'-.,jit- 1-6#.19.-'*-. ' -e - .c, .•.. C'!•-042,.-• .... -I ./- =r- . 2 2. -" ' .t. · '., -042,,. ' '/.9. •SS ..2.. 11•11•»..••...qwGILLET+*frs'.. :. " . .... I .- , .. - ....,.k.... -< 3.5*«· ·: . ' i.1., li-, f 20- PR :21 . 0• . c. .Fh: ---, 1.4':. '•,. -,-t.Z:ft,•• •'r,4.4, 4 r • . -
Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography on the Occasion of the 50Th Anniversary of Apollo 11 Moon Landing
Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography On the occasion of the 50th anniversary of Apollo 11 moon landing Please note: A specific item in this catalogue may be sold or is on hold if the provided link to our online inventory (by clicking on the blue-highlighted author name) doesn't work! Milestones of Science Books phone +49 (0) 177 – 2 41 0006 www.milestone-books.de [email protected] Member of ILAB and VDA Catalogue 07-2019 Copyright © 2019 Milestones of Science Books. All rights reserved Page 2 of 71 Authors in Chronological Order Author Year No. Author Year No. BIRT, William 1869 7 SCHEINER, Christoph 1614 72 PROCTOR, Richard 1873 66 WILKINS, John 1640 87 NASMYTH, James 1874 58, 59, 60, 61 SCHYRLEUS DE RHEITA, Anton 1645 77 NEISON, Edmund 1876 62, 63 HEVELIUS, Johannes 1647 29 LOHRMANN, Wilhelm 1878 42, 43, 44 RICCIOLI, Giambattista 1651 67 SCHMIDT, Johann 1878 75 GALILEI, Galileo 1653 22 WEINEK, Ladislaus 1885 84 KIRCHER, Athanasius 1660 31 PRINZ, Wilhelm 1894 65 CHERUBIN D'ORLEANS, Capuchin 1671 8 ELGER, Thomas Gwyn 1895 15 EIMMART, Georg Christoph 1696 14 FAUTH, Philipp 1895 17 KEILL, John 1718 30 KRIEGER, Johann 1898 33 BIANCHINI, Francesco 1728 6 LOEWY, Maurice 1899 39, 40 DOPPELMAYR, Johann Gabriel 1730 11 FRANZ, Julius Heinrich 1901 21 MAUPERTUIS, Pierre Louis 1741 50 PICKERING, William 1904 64 WOLFF, Christian von 1747 88 FAUTH, Philipp 1907 18 CLAIRAUT, Alexis-Claude 1765 9 GOODACRE, Walter 1910 23 MAYER, Johann Tobias 1770 51 KRIEGER, Johann 1912 34 SAVOY, Gaspare 1770 71 LE MORVAN, Charles 1914 37 EULER, Leonhard 1772 16 WEGENER, Alfred 1921 83 MAYER, Johann Tobias 1775 52 GOODACRE, Walter 1931 24 SCHRÖTER, Johann Hieronymus 1791 76 FAUTH, Philipp 1932 19 GRUITHUISEN, Franz von Paula 1825 25 WILKINS, Hugh Percy 1937 86 LOHRMANN, Wilhelm Gotthelf 1824 41 USSR ACADEMY 1959 1 BEER, Wilhelm 1834 4 ARTHUR, David 1960 3 BEER, Wilhelm 1837 5 HACKMAN, Robert 1960 27 MÄDLER, Johann Heinrich 1837 49 KUIPER Gerard P. -
Effect of Target Properties on the Impact Cratering Process
WORKSHOP PROGRAM AND ABSTRACTS LPI Contribution No. 1360 BRIDGING THE GAP II: EFFECT OF TARGET PROPERTIES ON THE IMPACT CRATERING PROCESS September 22–26, 2007 Saint-Hubert, Canada SPONSORS Canadian Space Agency Lunar and Planetary Institute Barringer Crater Company NASA Planetary Geology and Geophysics Program CONVENERS Robert Herrick, University of Alaska Fairbanks Gordon Osinski, Canadian Space Agency Elisabetta Pierazzo, Planetary Science Institute SCIENTIFIC ORGANIZING COMMITTEE Mark Burchell, University of Kent Gareth Collins, Imperial College London Michael Dence, Canadian Academy of Science Kevin Housen, Boeing Corporation Jay Melosh, University of Arizona John Spray, University of New Brunswick Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI Contribution No. 1360 Compiled in 2007 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the Universities Space Research Association under Agreement No. NCC5-679 issued through the Solar System Exploration Division of the National Aeronautics and Space Administration. Any opinions, findings, and conclusions or recommendations expressed in this volume are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. Abstracts in this volume may be cited as Author A. B. (2007) Title of abstract. In Bridging the Gap II: Effect of Target Properties on the Impact Cratering Process, p. XX. LPI Contribution No. 1360, Lunar and Planetary Institute, Houston. -
March 21–25, 2016
FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk, -
DMAAC – February 1973
LUNAR TOPOGRAPHIC ORTHOPHOTOMAP (LTO) AND LUNAR ORTHOPHOTMAP (LO) SERIES (Published by DMATC) Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Scale: 1:250,000 Projection: Transverse Mercator Sheet Size: 25.5”x 26.5” The Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Series are the first comprehensive and continuous mapping to be accomplished from Apollo Mission 15-17 mapping photographs. This series is also the first major effort to apply recent advances in orthophotography to lunar mapping. Presently developed maps of this series were designed to support initial lunar scientific investigations primarily employing results of Apollo Mission 15-17 data. Individual maps of this series cover 4 degrees of lunar latitude and 5 degrees of lunar longitude consisting of 1/16 of the area of a 1:1,000,000 scale Lunar Astronautical Chart (LAC) (Section 4.2.1). Their apha-numeric identification (example – LTO38B1) consists of the designator LTO for topographic orthophoto editions or LO for orthophoto editions followed by the LAC number in which they fall, followed by an A, B, C or D designator defining the pertinent LAC quadrant and a 1, 2, 3, or 4 designator defining the specific sub-quadrant actually covered. The following designation (250) identifies the sheets as being at 1:250,000 scale. The LTO editions display 100-meter contours, 50-meter supplemental contours and spot elevations in a red overprint to the base, which is lithographed in black and white. LO editions are identical except that all relief information is omitted and selenographic graticule is restricted to border ticks, presenting an umencumbered view of lunar features imaged by the photographic base. -
Naval Juniorreserve ()Hiders
DOCUMENT RESUME ED 219 280 SE 038 787 e $ . AUTHOR ' Omans, S. E.; And Others TITLE Workbook for Naval Science 3: An Illustrated Workbook for the NJROTC Sjudent. Focus. on the Trained Person. Technical Report 124. INSTITUTION University of Central Florida, Orlando.. -, SPONS AGENCY Naval %Training Analysis and Evaluation Group, Orlando, Fla. PUB DATE May f2 GRANT N61339-79-D-0105 4 NOTE if 348p.- 4 ,EDRS PRICE MF01/PC14 Plus Postage. DESCRIPTORS Astronomy; Electricity; High Schools; Instructional -Materials; *Leadership; Meteotiology; Military Science; *Military Training; *Physical Sciences; ( *Remedial Reading; *Secondary School Science; Workbooks' _ IDENTIFIERS Navaleistory; *Naval JuniorReserve ()Hiders . ,-..\ Traiffing torps , '-'--..... ..,. ABSTRACT This workbook (first in a series of three) - supplements the textbook of the third year Naval Junior Reserve Officers Training Corps (NJROTC),program and is designed for NJROTC students who do not have the reading skillsOlecessary to fully benefit from the regular curriculum materidls. The workbook is written at the eighth-grade readability level as detprmined by a Computer Readability Editing System'analysis. In addition to its use in the NJROTC program, the wdrkbook may be useful in 'several remedial programs such as Academic Remedial Training(ART) and;the Verbal' Skills Curriculum,\Jzoth of which are offered at each 'of the three . RecruitTraining Com?nands to recruits deficient in reading or oral English skills.' Topics' in the workbook include naval history (1920-1945), leadership.characteristiCs, meteorology, astronomy, sand introductory electricity.'Exercises-include'vocabulary development, matching, concept application, and -extending Yearning actrties. (Author/JN) V 1' ****************************.0***,*************************************** * * Reproductions suppled'bi EDRS are the best that can be made. from- the oryiginal% document. -
FALLING SKYE Simon Drake and Andy Beard on Discovering a Paleocene Meteorite Hit
SCIENTISTVOLUME 28 No. 03 ◆ APRIL 2018 ◆ WWW.GEOLSOC.ORG.UK/GEOSCIENTIST GEOThe Fellowship Magazine of the Geological Society of London UK / Overseas where sold to individuals: £3.95 FOLLOW US ON TWITTER @GEOSCIENTISTMAG FALLING SKYE Simon Drake and Andy Beard on discovering a Paleocene meteorite hit BUFFON THE GEOLOGIST WHY MINE GOLD? ONLINE SPECIAL Jan Zalasiewicz discovers a There must be better things IPCC reports have the new side to the great Frenchman we could be doing bloats says Jonathan Cowie GE L DATES FOR YOUR DIARY PESGB GEOLiteracy TOUR 2018 LONDON The Chicxulub Tuesday 15 May, 18.00 Cavendish Conference Centre Public event Impact £15 @Barcroft The End of an Era BIRMINGHAM With Professor Joanna Morgan Wednesday 16 May, 17.30 Lyttelton Theatre, Professor of Geophysics, The Birmingham & Midland Department of Earth Science & Engineering, Institute Imperial College London Public event Free In 1980 Luis Alvarez and his co-workers published an article asserting that a large body hit Earth ~66 million years ago and caused the most recent mass extinction, which notably included ABERDEEN AD SPACEthe dinosaurs. Thursday 17 May, 18.00 The evidence for impact was the extraterrestrial composition Aberdeen Science Centre of a thin clay layer at the boundary between the Mesozoic and Cenozoic Eras. This became known as the “Impact hypothesis”, Public event and was categorically dismissed by many geologists at the time, £10 on the grounds that only two locations had been studied and the clay layer at these sites might be atypical or just unusual but terrestrial, and that the extinction was gradual and started NORTH WEST HIGHLANDS before the impactor hit Earth. -
Appendix I Lunar and Martian Nomenclature
APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei -
The Scientific Method an Investigation of Impact Craters
National Aeronautics and Space Administration The Scientific Method: An Investigation of Impact Craters Recommended for Grades 5,6,7 www.nasa.gov Table of Contents Digital Learning Network (DLN) .................................................................................................... 3 Overview................................................................................................................................................. 3 National Standards............................................................................................................................. 4 Sequence of Events........................................................................................................................... 5 Videoconference Outline ................................................................................................................. 6 Videoconference Event .................................................................................................................... 7 Vocabulary...........................................................................................................................................10 Videoconference Guidelines........................................................................................................11 Pre- and Post-Assessment ...........................................................................................................12 Post-Conference Activity...............................................................................................................14 -
19. Near-Earth Objects Chelyabinsk Meteor: 2013 ~0.5 Megaton Airburst ~1500 People Injured
Astronomy 241: Foundations of Astrophysics I 19. Near-Earth Objects Chelyabinsk Meteor: 2013 ~0.5 megaton airburst ~1500 people injured (C) Don Davis Asteroids 101 — B612 Foundation Great Daylight Fireball: 1972 Earthgrazer: The Great Daylight Fireball of 1972 Tunguska Meteor: 1908 Asteroid or comet: D ~ 40 m ~10 megaton airburst ~40 km destruction radius The Tunguska Impact Tunguska: The Largest Recent Impact Event Barringer Crater: ~50 ky BP M-type asteroid: D ~ 50 m ~10 megaton impact 1.2 km crater diameter Meteor Crater — Wikipedia Chicxulub Crater: ~65 My BP Asteroid: D ~ 10 km 180 km crater diameter Chicxulub Crater— Wikipedia Comets and Meteor Showers Comets shed dust and debris which slowly spread out as they move along the comet’s orbit. If the Earth encounters one of these trails, we get a Breakup of a Comet meteor shower. Meteor Stream Perseid Meteor Shower Raining Perseids Major Meteor Showers Forty Thousand Meteor Origins Across the Sky Known Potentially-Hazardous Objects Near-Earth object — Wikipedia Near-Earth object — Wikipedia Origin of Near-Earth Objects (NEOs) ! WHAM Mars Some fragments wind up on orbits which are resonant with Jupiter. Their orbits grow more elliptical, finally entering the inner solar system. Wikipedia: Asteroid belt Asteroid Families Many asteroids are members of families; they have similar orbits and compositions (indicated by colors). Asteroid Belt Populations Inner belt asteroids (left) and families (right). Origin of Key Stages in the Evolution of the Asteroid Vesta Processed Family Members Crust Surface Magnesium-Sliicate Lavas Meteorites Mantle (Olivine) Iron-Nickle Core Stony Irons? As smaller bodies in the early Solar System Heavier elements sink to the Occasional impacts with other bodies fall together, the asteroid agglomerates.