Lufengpithecus Is Known from a Number of Late Although YV0999 Was Recovered in 1988 (18) and Has Been the Miocene Sites in Yunnan Province in Southern China

Total Page:16

File Type:pdf, Size:1020Kb

Lufengpithecus Is Known from a Number of Late Although YV0999 Was Recovered in 1988 (18) and Has Been the Miocene Sites in Yunnan Province in Southern China Juvenile hominoid cranium from the late Miocene of southern China and hominoid diversity in Asia Jay Kelleya,1 and Feng Gaob aInstitute of Human Origins and School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287; and bDepartment of Paleoanthropology, Yunnan Institute of Cultural Relics and Archaeology, Kunming, Yunnan 650118, China Edited by Erik Trinkaus, Washington University, St. Louis, MO, and approved March 23, 2012 (received for review January 24, 2012) The fossil ape Lufengpithecus is known from a number of late Although YV0999 was recovered in 1988 (18) and has been the Miocene sites in Yunnan Province in southern China. Along with subject of a preliminary analysis (20), it has not been analyzed other fossil apes from South and Southeast Asia, it is widely con- within an adequate comparative framework of similarly aged sidered to be a relative of the extant orangutan, Pongo pygmaeus. juveniles of extant great apes. Therefore, a database was assem- It is best represented at the type site of Shihuiba (Lufeng) by bled of measurements and discrete, nonmetric characters from several partial to nearly complete but badly crushed adult crania. extant great ape individuals, representing Gorilla gorilla, Pan There is, however, an additional, minimally distorted cranium of a troglodytes and Pongo pygmaeus (each species sample comprising young juvenile from a nearly contemporaneous site in the Yuan- a single subspecies), at approximately the same stage of dental mou Basin, which affords the opportunity to better assess the rela- development as YV0999. The measurements reflect general shape tionships between Lufengpithecus and Pongo. Comparison with and proportional relationships of the facial skeleton and were similarly aged juvenile skulls of extant great apes reveals no fea- evaluated using both cluster analysis and discriminant analysis tures suggesting clear affinities to orangutans, and instead reveals (Materials and Methods and SI Text) to determine the overall a morphological pattern largely consistent with a stem member of phenetic resemblance of YV0999 with respect to the extant great the hominid (great ape and human) clade. The existence at this ape crania. The nonmetric characters reflect consensus or near time of other hominids in South Asia (Sivapithecus) and Southeast consensus cranial apomorphies of each of the extant great apes fi Asia (Khoratpithecus) with clear craniofacial af nities to Pongo (21) that were found to be at least incipiently expressed at a stage suggests both more diversity among Asian Late Miocene apes of development equivalent to that of YV0999. YV0999 was scored and more complex patterns of dispersal than previously supposed. for these characters, which were evaluated individually rather Major differences in the associated mammal faunas from the south- than by formal, computational cladistic analysis. ern China sites and those from South and Southeast Asia are con- sistent with these findings and suggest more than one dispersal Results route of apes into East Asia earlier in the Miocene. Results of the cluster analysis are shown in Fig. 2. YV0999 groups as an outlier to the majority of the Pan crania. Interestingly, Pan he hominoid Lufengpithecus from the late Miocene of clusters with Pongo rather than with its sister taxon, Gorilla, Tsouthern China is known mostly from hundreds of isolated highlighting the distinctiveness of the proportions and overall teeth, principally from the sites of Shihuiba (Lufengpithecus shape of the gorilla facial skeleton at this stage of development. lufengensis; ca. 6–7 Ma) (1, 2) and several somewhat older sites in Although most of the great ape crania group with their con- the Yuanmou Basin (Lufengpithecus hudienensis; ca. 7–8 Ma) (2– specifics, there is a fourth, taxonomically heterogeneous cluster 4). The molar teeth are strikingly similar to the highly distinctive that includes crania of all three taxa, but primarily Pongo, and that teeth of the modern orangutan, with intricately wrinkled enamel is linked to the Pan plus Pongo cluster (Fig. 2). This cluster reveals over relatively flattened occlusal basins. There are also several that possession by some individuals of certain metric character- badly crushed crania from Shihuiba (5–7). Restoration has been istics that are more typical of one of the other genera was enough attempted for one of these (8), but some of the morphology to create a separate grouping of these somewhat anomalous remains ambiguous or is clearly still distorted. The condition of individuals. It also highlights the fact that, although the juvenile fi these crania has allowed for different interpretations of their crania of each genus largely express their genus-speci c metric morphology and, consequently, different opinions regarding the characteristics, there is greater similarity in the shape of the facial phylogenetic position of Lufengpithecus (4, 8–11). Nevertheless, skeleton among the three great ape genera at the early juvenile stage than as adults. most recent analyses propose a relationship to the Pongo clade, fi as either its nearest relative or as a stem member of the clade The discriminant analysis was more de nitive. The results are – highly significant (Wilk’s lambda P value, <0.001), and all 30 (12 17). fi The cranium of L. hudienensis from Yuanmou, YV0999, pre- extant great ape crania were correctly classi ed. YV0999 was entered as an unknown and did not, therefore, contribute to the serves nearly the entire facial skeleton, the palate with partial computation. Among the three extant great ape group means, dentition, and most of the frontal bone. In contrast to the Shihuiba YV0999 is closest to Pan (Mahalanobis D2 values to the group crania, it is remarkably well preserved and minimally distorted, means of, respectively, Pan, Gorilla, and Pongo: 73.26, 119.13, with the right side being almost completely free of distortion (Fig. and 155.64), and in a forced classification, it was grouped with 1, Fig. S1,andSI Text) (18, 19). Because of its preservation, this Pan (P > 0.999). cranium can be more informative about the phylogenetic rela- tionships of Lufengpithecus than are the damaged adult crania fi from Shihuiba. However, its juvenile status ( rst molar just coming Author contributions: J.K. designed research; J.K. performed research; J.K. and F.G. ana- into occlusion) introduces an additional challenge for interpre- lyzed data; and J.K. wrote the paper. tation because there are no other relatively complete juvenile The authors declare no conflict of interest. crania, and even few juvenile cranial fragments, known for other This article is a PNAS Direct Submission. Miocene anthropoids. Additionally, little has been done to identify 1To whom correspondence should be addressed. E-mail: [email protected]. the developmental stages at which the derived features (apomor- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. phies) characteristic of adult great ape crania first become evident. 1073/pnas.1201330109/-/DCSupplemental. 6882–6885 | PNAS | May 1, 2012 | vol. 109 | no. 18 www.pnas.org/cgi/doi/10.1073/pnas.1201330109 Downloaded by guest on September 28, 2021 S2), minimal offset from the nasoalveolar clivus to the palate in- tranasally with a highly constricted incisive canal, a continuously concave midfacial profile, and lack of a frontal sinus (21, 22). In these, YV0999 is decidedly unlike Pongo and more closely resem- bles Pan and Gorilla, especially the former, which both express variants of the ancestral hominid condition for these features (21). In most features of facial morphology, YV0999 most closely resembles Pan, arguably the least derived of the extant great apes in terms of cranial morphology. The principal differences are in the relatively large orbits of YV0999 and their influence on widening the upper face and the absence of the most clearly de- rived features of Pan, a supraorbital torus and sulcus and a sharply posteriorly inflected malar region. YV0999 also has a shorter, flatter, and more steeply inclined premaxilla, a premaxillary su- ture that is completely fused over its entire extent (in none of the extant ape crania is this suture completely fused at this stage of development, and it is mostly fused in only five of the 30 indi- viduals in the sample), and two distinct, large incisive foramina palatally, indicating a fully partitioned incisive canal. The incisive Fig. 1. Oblique frontal view (Left) and lateral view (Right) of YV0999, canal is at most only partly partitioned at this stage of de- Lufengpithecus hudienensis. Note the missing bone at the inferior nasal velopment in the African ape crania, whereas it is unpartitioned in margin in the frontal view. In the lateral view, the actual facial contour is Pongo and remains so in adulthood. somewhat obscured by the broken and everted left nasal margin, but the slight anterior projection of the inferior nasal bones, resulting in a biconcave Discussion facial profile, is nonetheless evident. (Scale bar: 1 cm.) Assuming that YV0999 is representative of cranial morphology in other Lufengpithecus species (SI Text), we consider it most Despite the small, taxonomically heterogeneous group in the probable that Lufengpithecus represents a stem hominid lineage cluster analysis, the results from the cluster and discriminant that also expresses a small suite of uniquely derived features (4, analyses together affirm the distinctiveness of facial form among 9, 23). It is also possible given the general resemblance
Recommended publications
  • (Anacardiaceae) from the Miocene of Yunnan, China Ye-Ming
    IAWA Journal, Vol. 33 (2), 2012: 197–204 A NEW SPECIES OF PISTACIOXYLON (ANACARDIACEAE) FROM THE MIOCENE OF YUNNAN, CHINA Ye-Ming Cheng1,*, R.C. Mehrotra2, Yue-Gao Jin1, Wei Yang1 and Cheng-Sen Li3,* SUMMARY A new species of Pistacioxylon, Pistacioxylon leilaoensis Cheng et al., showing affinities withPistacia of the Anacardiaceae is described from the Miocene of Leilao, Yuanmou Basin, Yunnan Province, southwest China. It provides data for reconstructing the phytogeographic history of Pistacia and the paleoenvironment of the Yuanmou Basin. This fossil suggests a long history of exchange of various taxa including Pistacia between Europe and East Asia during the Tertiary. Key words: Pistacia, fossil wood, phytogeography, Xiaohe Formation, Southwest China. INTRODUCTION The Yuanmou Basin of Yunnan Province, southwest China, is well known for its Yuanmou Man (Homo erectus) (Qian 1985) and hominoid fauna fossils (He 1997). Abundant hominoid and mammal fossils have been reported since 1980 from the Late Miocene Xiaohe Formation of Leilao and Xiaohe, Yuanmou Basin, Yunnan (Pan & Zong 1991; He 1997; Harrison et al. 2002; Liu & Pan 2003; Yue et al. 2003; Qi et al. 2006). The age and character of the Xiaohe fauna are similar to those of the Late Miocene Siwalik fauna of Pakistan (Pan & Zong 1991). The Yuanmou Basin might have been an important refuge for hominoids when they became extinct in the rest of Eurasia (Zhu et al. 2005). The Late Miocene Xiaohe Formation of Leilao, Yuanmou Basin, also contains fossil woods (Zhang et al. 2002) and their study can provide important information for the reconstruction of the paleoenvironment of the basin.
    [Show full text]
  • Report on Domestic Animal Genetic Resources in China
    Country Report for the Preparation of the First Report on the State of the World’s Animal Genetic Resources Report on Domestic Animal Genetic Resources in China June 2003 Beijing CONTENTS Executive Summary Biological diversity is the basis for the existence and development of human society and has aroused the increasing great attention of international society. In June 1992, more than 150 countries including China had jointly signed the "Pact of Biological Diversity". Domestic animal genetic resources are an important component of biological diversity, precious resources formed through long-term evolution, and also the closest and most direct part of relation with human beings. Therefore, in order to realize a sustainable, stable and high-efficient animal production, it is of great significance to meet even higher demand for animal and poultry product varieties and quality by human society, strengthen conservation, and effective, rational and sustainable utilization of animal and poultry genetic resources. The "Report on Domestic Animal Genetic Resources in China" (hereinafter referred to as the "Report") was compiled in accordance with the requirements of the "World Status of Animal Genetic Resource " compiled by the FAO. The Ministry of Agriculture" (MOA) has attached great importance to the compilation of the Report, organized nearly 20 experts from administrative, technical extension, research institutes and universities to participate in the compilation team. In 1999, the first meeting of the compilation staff members had been held in the National Animal Husbandry and Veterinary Service, discussed on the compilation outline and division of labor in the Report compilation, and smoothly fulfilled the tasks to each of the compilers.
    [Show full text]
  • Juvenile Hominoid Cranium from the Terminal Miocene of Yunnan, China
    Article Geology November 2013 Vol.58 No.31: 37713779 doi: 10.1007/s11434-013-6021-x Juvenile hominoid cranium from the terminal Miocene of Yunnan, China JI XuePing1,2, JABLONSKI Nina G3, SU Denise F4, DENG ChengLong5, FLYNN Lawrence J6, YOU YouShan7 & KELLEY Jay8* 1 Department of Paleoanthropology, Yunnan Institute of Cultural Relics and Archaeology, Kunming 650118, China; 2 Yunnan Key Laboratory for Paleobiology, Yunnan University, Kunming 650091, China; 3 Department of Anthropology, The Pennsylvania State University, University Park, PA 16802, USA; 4 Department of Paleobotany and Paleoecology, Cleveland Museum of Natural History, Cleveland, OH 44106, USA; 5 State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; 6 Peabody Museum of Archaeology and Ethnology, Harvard University, Cambridge, MA 02138, USA; 7 Zhaotong Institute of Cultural Relics, Zhaotong 657000, China; 8 Institute of Human Origins and School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA Received May 28, 2013; accepted July 8, 2013; published online August 7, 2013 Fossil apes are known from several late Miocene localities in Yunnan Province, southwestern China, principally from Shihuiba (Lufeng) and the Yuanmou Basin, and represent three species of Lufengpithecus. They mostly comprise large samples of isolated teeth, but there are also several partial or complete adult crania from Shihuiba and a single juvenile cranium from Yuanmou. Here we describe a new, relatively complete and largely undistorted juvenile cranium from the terminal Miocene locality of Shuitangba, also in Yunnan. It is only the second ape juvenile cranium recovered from the Miocene of Eurasia and it is provisionally assigned to the species present at Shihuiba, Lufengpithecus lufengensis.
    [Show full text]
  • Alternative Models for Evaluating Variation and Sexual Dimorphism in Fossil Hominoid Samples Jeremiah E
    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 140:253–264 (2009) Beyond Gorilla and Pongo: Alternative Models for Evaluating Variation and Sexual Dimorphism in Fossil Hominoid Samples Jeremiah E. Scott,1* Caitlin M. Schrein,1 and Jay Kelley2 1School of Human Evolution and Social Change, Institute of Human Origins, Arizona State University, Tempe, AZ 85287-4101 2Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612 KEY WORDS bootstrap; dental variation; Lufengpithecus; Ouranopithecus; Sivapithecus ABSTRACT Sexual size dimorphism in the postca- cies. Using these samples, we also evaluated molar dimor- nine dentition of the late Miocene hominoid Lufengpithe- phism and taxonomic composition in two other Miocene cus lufengensis exceeds that in Pongo pygmaeus, demon- ape samples—Ouranopithecus macedoniensis from strating that the maximum degree of molar size dimor- Greece, specimens of which can be sexed based on associ- phism in apes is not represented among the extant ated canines and P3s, and the Sivapithecus sample from Hominoidea. It has not been established, however, that Haritalyangar, India. Ouranopithecus is more dimorphic the molars of Pongo are more dimorphic than those of than the extant taxa but is similar to Lufengpithecus, any other living primate. In this study, we used resam- demonstrating that the level of molar dimorphism pling-based methods to compare molar dimorphism in required for the Greek fossil sample under the single-spe- Gorilla, Pongo,andLufengpithecus to that in the papio- cies taxonomy is not unprecedented when the compara- nin Mandrillus leucophaeus to test two hypotheses: tive framework is expanded to include extinct primates. (1) Pongo possesses the most size-dimorphic molars In contrast, the Haritalyangar Sivapithecus sample, if among living primates and (2) molar size dimorphism in it represents a single species, exhibits substantially Lufengpithecus is greater than that in the most dimorphic greater molar dimorphism than does Lufengpithecus.
    [Show full text]
  • Table of Codes for Each Court of Each Level
    Table of Codes for Each Court of Each Level Corresponding Type Chinese Court Region Court Name Administrative Name Code Code Area Supreme People’s Court 最高人民法院 最高法 Higher People's Court of 北京市高级人民 Beijing 京 110000 1 Beijing Municipality 法院 Municipality No. 1 Intermediate People's 北京市第一中级 京 01 2 Court of Beijing Municipality 人民法院 Shijingshan Shijingshan District People’s 北京市石景山区 京 0107 110107 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Haidian District of Haidian District People’s 北京市海淀区人 京 0108 110108 Beijing 1 Court of Beijing Municipality 民法院 Municipality Mentougou Mentougou District People’s 北京市门头沟区 京 0109 110109 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Changping Changping District People’s 北京市昌平区人 京 0114 110114 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Yanqing County People’s 延庆县人民法院 京 0229 110229 Yanqing County 1 Court No. 2 Intermediate People's 北京市第二中级 京 02 2 Court of Beijing Municipality 人民法院 Dongcheng Dongcheng District People’s 北京市东城区人 京 0101 110101 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Xicheng District Xicheng District People’s 北京市西城区人 京 0102 110102 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Fengtai District of Fengtai District People’s 北京市丰台区人 京 0106 110106 Beijing 1 Court of Beijing Municipality 民法院 Municipality 1 Fangshan District Fangshan District People’s 北京市房山区人 京 0111 110111 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Daxing District of Daxing District People’s 北京市大兴区人 京 0115
    [Show full text]
  • Yunnan Provincial Highway Bureau
    IPP740 REV World Bank-financed Yunnan Highway Assets management Project Public Disclosure Authorized Ethnic Minority Development Plan of the Yunnan Highway Assets Management Project Public Disclosure Authorized Public Disclosure Authorized Yunnan Provincial Highway Bureau July 2014 Public Disclosure Authorized EMDP of the Yunnan Highway Assets management Project Summary of the EMDP A. Introduction 1. According to the Feasibility Study Report and RF, the Project involves neither land acquisition nor house demolition, and involves temporary land occupation only. This report aims to strengthen the development of ethnic minorities in the project area, and includes mitigation and benefit enhancing measures, and funding sources. The project area involves a number of ethnic minorities, including Yi, Hani and Lisu. B. Socioeconomic profile of ethnic minorities 2. Poverty and income: The Project involves 16 cities/prefectures in Yunnan Province. In 2013, there were 6.61 million poor population in Yunnan Province, which accounting for 17.54% of total population. In 2013, the per capita net income of rural residents in Yunnan Province was 6,141 yuan. 3. Gender Heads of households are usually men, reflecting the superior status of men. Both men and women do farm work, where men usually do more physically demanding farm work, such as fertilization, cultivation, pesticide application, watering, harvesting and transport, while women usually do housework or less physically demanding farm work, such as washing clothes, cooking, taking care of old people and children, feeding livestock, and field management. In Lijiang and Dali, Bai and Naxi women also do physically demanding labor, which is related to ethnic customs. Means of production are usually purchased by men, while daily necessities usually by women.
    [Show full text]
  • Age at First Molar Emergence in Early Miocene Afropithecus Turkanensis
    Journal of Human Evolution 44 (2003) 307–329 Age at first molar emergence in early Miocene Afropithecus turkanensis and life-history evolution in the Hominoidea Jay Kelley1*, Tanya M. Smith2 1 Department of Oral Biology (m/c 690), College of Dentistry, University of Illinois at Chicago, 801 S. Paulina, Chicago, IL 60612, USA 2 Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY 11794, USA Received 12 July 2002; accepted 7 January 2003 Abstract Among primates, age at first molar emergence is correlated with a variety of life history traits. Age at first molar emergence can therefore be used to broadly infer the life histories of fossil primate species. One method of determining age at first molar emergence is to determine the age at death of fossil individuals that were in the process of erupting their first molars. This was done for an infant partial mandible of Afropithecus turkanensis (KNM-MO 26) from the w17.5 Ma site of Moruorot in Kenya. A range of estimates of age at death was calculated for this individual using the permanent lateral incisor germ preserved in its crypt, by combining the number and periodicity of lateral enamel perikymata with estimates of the duration of cuspal enamel formation and the duration of the postnatal delay in the inception of crown mineralization. Perikymata periodicity was determined using daily cross striations between adjacent Retzius lines in thin sections of two A. turkanensis molars from the nearby site of Kalodirr. Based on the position of the KNM-MO 26 M1 in relation to the mandibular alveolar margin, it had not yet undergone gingival emergence.
    [Show full text]
  • The History of the History of the Yi, Part II
    MODERNHarrell, Li CHINA/ HISTORY / JULY OF 2003THE YI, PART II REVIEW10.1177/0097700403253359 Review Essay The History of the History of the Yi, Part II STEVAN HARRELL LI YONGXIANG University of Washington MINORITY ETHNIC CONSCIOUSNESS IN THE 1980S AND 1990S The People’s Republic of China (PRC) is, according to its constitution, “a unified country of diverse nationalities” (tongyide duominzu guojia; see Wang Guodong, 1982: 9). The degree to which this admirable political ideal has actually been respected has varied throughout the history of the PRC: taken seriously in the early and mid-1950s, it was systematically ignored dur- ing the twenty years of High Socialism from the late 1950s to the early 1980s and then revived again with the Opening and Reform policies of the past two decades (Heberer, 1989: 23-29). The presence of minority “autonomous” ter- ritories, preferential policies in school admissions, and birth quotas (Sautman, 1998) and the extraordinary emphasis on developing “socialist” versions of minority visual and performing arts (Litzinger, 2000; Schein, 2000; Oakes, 1998) all testify to serious attention to multinationalism in the cultural and administrative realms, even if minority culture is promoted in a homogenized socialist version and even if everybody knows that “autono- mous” territories are far less autonomous, for example, than an American state or a Swiss canton. But although the party state now preaches multinationalism and allows limited expression of ethnonational autonomy, it also preaches and promotes progress—and thus runs straight into a paradox: progress is defined in objectivist, modernist terms, which relegate minority cultures to a more MODERN CHINA, Vol.
    [Show full text]
  • Tapirus Yunnanensis from Shuitangba, a Terminal Miocene Hominoid Site in Zhaotong, Yunnan Province of China JI Xue-Ping1 Nina G
    第53卷 第3期 古 脊 椎 动 物 学 报 pp. 177-192 2015年7月 VERTEBRATA PALASIATICA figs. 1-7 Tapirus yunnanensis from Shuitangba, a terminal Miocene hominoid site in Zhaotong, Yunnan Province of China JI Xue-Ping1 Nina G. JABLONSKI2 TONG Hao-Wen3* Denise F. SU4 Jan Ove R. EBBESTAD5 LIU Cheng-Wu6 YU Teng-Song7 (1 Yunnan Institute of Cultural Relics and Archaeology & Research Center for Southeast Asian Archeology Kunming 650118, China) (2 Department of Anthropology, the Pennsylvania State University University Park, PA 16802, USA) (3 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044, China *Corresponding author: [email protected]) (4 Department of Paleobotany and Paleoecology, Cleveland Museum of Natural History Cleveland, OH 44106, USA) (5 Museum of Evolution, Uppsala University Norbyvägen 16, SE-75236 Uppsala, Sweden) (6 Qujing Institute of Cultural Relics Qujing 655000, Yunnan, China) (7 Zhaotong Institute of Cultural Relics Zhaotong, 657000, Yunnan, China) Abstract The fossil tapirid records of Late Miocene and Early Pliocene were quite poor in China as before known. The recent excavations of the terminal Miocene hominoid site (between 6 and 6.5 Ma) at Shuitangba site, Zhaotong in Yunnan Province resulted in the discovery of rich tapir fossils, which include left maxilla with P2-M2 and mandibles with complete lower dentitions. The new fossil materials can be referred to Tapirus yunnanensis, which represents a quite small species of the genus Tapirus. But T. yunnanensis is slightly larger than another Late Miocene species T. hezhengensis from Gansu, northwest China, both of which are remarkably smaller than the Plio-Pleistocene Tapirus species in China.
    [Show full text]
  • Human Paleodiet and Animal Utilization Strategies During the Bronze Age in Northwest Yunnan Province, Southwest China
    RESEARCH ARTICLE Human paleodiet and animal utilization strategies during the Bronze Age in northwest Yunnan Province, southwest China Lele Ren1, Xin Li2, Lihong Kang3, Katherine Brunson4, Honggao Liu1,5, Weimiao Dong6, Haiming Li1, Rui Min3, Xu Liu3, Guanghui Dong1* 1 MOE Key Laboratory of Western China's Environmental System, College of Earth Environmental Sciences, Lanzhou University, Lanzhou, Gansu Province, China, 2 School of Public Health, Lanzhou University, Lanzhou, Gansu Province, China, 3 Yunnan Provincial Institute of Cultural Relics and Archaeology, Kunming, China, 4 Joukowsky Institute for Archaeology and the Ancient World, Brown University, Providence, Rhode a1111111111 Island, United States of America, 5 College of Agronomy and Biotechnology, Yunnan Agricultural University, a1111111111 Kunming, China, 6 Department of Cultural Heritage and Museology, Fudan University, Shanghai, China a1111111111 * [email protected] a1111111111 a1111111111 Abstract Reconstructing ancient diets and the use of animals and plants augment our understanding OPEN ACCESS of how humans adapted to different environments. Yunnan Province in southwest China is Citation: Ren L, Li X, Kang L, Brunson K, Liu H, ecologically and environmentally diverse. During the Neolithic and Bronze Age periods, this Dong W, et al. (2017) Human paleodiet and animal region was occupied by a variety of local culture groups with diverse subsistence systems utilization strategies during the Bronze Age in and material culture. In this paper, we obtained carbon (δ13C) and nitrogen (δ15N) isotopic northwest Yunnan Province, southwest China. ratios from human and faunal remains in order to reconstruct human paleodiets and strate- PLoS ONE 12(5): e0177867. https://doi.org/ 10.1371/journal.pone.0177867 gies for animal exploitation at the Bronze Age site of Shilinggang (ca.
    [Show full text]
  • Abrupt Shifts in the Indian Monsoon During the Pliocene Marked by High-Resolution Terrestrial Records from the Yuanmou Basin in Southwest China
    Journal of Asian Earth Sciences 37 (2010) 166–175 Contents lists available at ScienceDirect Journal of Asian Earth Sciences journal homepage: www.elsevier.com/locate/jseaes Abrupt shifts in the Indian monsoon during the Pliocene marked by high-resolution terrestrial records from the Yuanmou Basin in southwest China Zhigang Chang, Jule Xiao *, Lianqing Lü, Haitao Yao Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China article info abstract Article history: A 650-m-thick sequence of fluvio-lacustrine sediments from the Yuanmou Basin in southwest China was Received 19 January 2009 analyzed at 20-cm intervals for grain-size distribution to provide a high-resolution terrestrial record of Received in revised form 29 June 2009 Indian summer monsoon variations during the Pliocene. The concentrations of the clay and clay-plus- Accepted 12 August 2009 fine-silt fractions are inferred to reflect the water-level status of the lake basin related to the intensity of the Indian summer monsoon and high concentrations reflect high lake levels resulting from the inten- sified summer monsoon. The frequency of individual lacustrine mud beds is considered to reveal the fre- Keywords: quency of the lakes developed in the basin associated with the variability of the Indian summer monsoon Yuanmou Basin and an increased frequency of the lakes reveals an increased variability of the summer monsoon. The Fluvio-lacustrine sequence Abrupt shifts proxy data indicate that the Indian summer monsoon experienced two major shifts at 3.57 and Indian monsoon 2.78 Ma and two secondary shifts at 3.09 and 2.39 Ma during the Pliocene.
    [Show full text]
  • Orangutans in Perspective 291
    290 PARTTWO ThePrimates Knott, C.D., and Kahlenberg,S. (2007).In Primatesin Perspective,S. Bearder. C.J.Campbell, A. Fuentes,K.C. MacKinnon and M. Panger,eds. Oxford: Oxford University Press,pp. 290-305. 4*? ad Orangutansin Perspective ForcedCopulations and Female Mating Resistance CherylD, Knott and Sonya M. Kohlenberg INTRODUCTION Though intriguing, this suite of features has proven dif- ficult for researchersto fully understand.The semi-solitary Orangutans (genus Pongo) represent the extreme of many lifestyle of orangutanscombined with their slow life histor- biological para"rneters.Among mammals they have the ies and large ranges means that data accumulate slowly. longest interbirth interval (up to 9 years) and are the largest Also, rapid habitat destruction and political instability in of those that are primarily arboreal. They are the most soli- SoutheastAsia have left only a handful of field sites cur- tary of the diurnal primates and the most sexually dimorphic rently in operation (Fig. 17.1). Despite these difficulties, of the great apes. They range over large areas and do not long-term behavioral studies and recent genetic and hor- have obviously distinct communities. Additionally, adult monal data enable us to begin answering some of the most male orangutanscome in two morphologically distinct types, theoretically interesting questions about this endangered an unusual phenomenonknown as bimaturisnt The smaller great ape. In this chapter, we summarize what is currently of the two male morphs also pursue a mating strategythat is known about the taxonomy and distribution, ecology, social rare among mammals: they obtain a large proportion of organization, reproductive parameters,and conservation of copulations by force.
    [Show full text]