Evidence for Surface Water Ice in the Lunar Polar
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
N98-L7433 World Space Foundation P.O
175 A LUNAR POLAR EXPEDITION Richard Dowling, Robert L. Staehle, and Tomas Svitek N98-l7433 World Space Foundation P.O. Box Y South Pasadena CA 91031 Advanced exploration and development in harsh environments require mastery of basic human suroival skills. F.xpeditions into the lethal climates of Earth's polar regions offer useful lessons for tommrow's lunar pioneers. In Arctic and Antarctic exploration, "wintering over" was a cruciaJ milestone. 7be ability to establish a supply base and suroive months of polar cold and da1*ness made extensive travel and exploration possible. Because of the possibility of near-constant solar illumination, the lunar polar regions, unlike Earth's, may offer the most hospitable site for habitation. 7be World space Foundation ts examining a scenario for establishing a .five.person expeditionary team on the lunar north pole for one year. 1bi.s paper ts a status report on a point design addressing site selection, transportation, power, and life support requirements. POLAR EXPWRATION AND North Pole on 6 April, 1909, and Roald Amundson's magnificently LUNAR OBJECl1VFS planned expedition reaching the South Pole on 14 December, 1911. Today there are permanent residents in both the Arctic and In March 1899, almost one hundred years ago, the explorer Antarctic pursuing commercial and scientific activities. Indeed, the Carsten E. Borchgrevnik established the first winter camp on the International Antarctic Treaty may prove a useful example for "white continent," Antarctica. Unlike the north polar regions, those trying to determine who "owns" the Moon. Antarctica had never been inhabited by man. Though marine birds Unlike Earth's polar regions, the lunar poles may be the most and animals visit the coastal regions, only primitive mo.....s and hospitable locations for early long-term human habitats, so we do lichen can survive the polar deserts of ice and snow. -
LCROSS (Lunar Crater Observation and Sensing Satellite) Observation Campaign: Strategies, Implementation, and Lessons Learned
Space Sci Rev DOI 10.1007/s11214-011-9759-y LCROSS (Lunar Crater Observation and Sensing Satellite) Observation Campaign: Strategies, Implementation, and Lessons Learned Jennifer L. Heldmann · Anthony Colaprete · Diane H. Wooden · Robert F. Ackermann · David D. Acton · Peter R. Backus · Vanessa Bailey · Jesse G. Ball · William C. Barott · Samantha K. Blair · Marc W. Buie · Shawn Callahan · Nancy J. Chanover · Young-Jun Choi · Al Conrad · Dolores M. Coulson · Kirk B. Crawford · Russell DeHart · Imke de Pater · Michael Disanti · James R. Forster · Reiko Furusho · Tetsuharu Fuse · Tom Geballe · J. Duane Gibson · David Goldstein · Stephen A. Gregory · David J. Gutierrez · Ryan T. Hamilton · Taiga Hamura · David E. Harker · Gerry R. Harp · Junichi Haruyama · Morag Hastie · Yutaka Hayano · Phillip Hinz · Peng K. Hong · Steven P. James · Toshihiko Kadono · Hideyo Kawakita · Michael S. Kelley · Daryl L. Kim · Kosuke Kurosawa · Duk-Hang Lee · Michael Long · Paul G. Lucey · Keith Marach · Anthony C. Matulonis · Richard M. McDermid · Russet McMillan · Charles Miller · Hong-Kyu Moon · Ryosuke Nakamura · Hirotomo Noda · Natsuko Okamura · Lawrence Ong · Dallan Porter · Jeffery J. Puschell · John T. Rayner · J. Jedadiah Rembold · Katherine C. Roth · Richard J. Rudy · Ray W. Russell · Eileen V. Ryan · William H. Ryan · Tomohiko Sekiguchi · Yasuhito Sekine · Mark A. Skinner · Mitsuru Sôma · Andrew W. Stephens · Alex Storrs · Robert M. Suggs · Seiji Sugita · Eon-Chang Sung · Naruhisa Takatoh · Jill C. Tarter · Scott M. Taylor · Hiroshi Terada · Chadwick J. Trujillo · Vidhya Vaitheeswaran · Faith Vilas · Brian D. Walls · Jun-ihi Watanabe · William J. Welch · Charles E. Woodward · Hong-Suh Yim · Eliot F. Young Received: 9 October 2010 / Accepted: 8 February 2011 © The Author(s) 2011. -
Glossary Glossary
Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts. -
Project Selene: AIAA Lunar Base Camp
Project Selene: AIAA Lunar Base Camp AIAA Space Mission System 2019-2020 Virginia Tech Aerospace Engineering Faculty Advisor : Dr. Kevin Shinpaugh Team Members : Olivia Arthur, Bobby Aselford, Michel Becker, Patrick Crandall, Heidi Engebreth, Maedini Jayaprakash, Logan Lark, Nico Ortiz, Matthew Pieczynski, Brendan Ventura Member AIAA Number Member AIAA Number And Signature And Signature Faculty Advisor 25807 Dr. Kevin Shinpaugh Brendan Ventura 1109196 Matthew Pieczynski 936900 Team Lead/Operations Logan Lark 902106 Heidi Engebreth 1109232 Structures & Environment Patrick Crandall 1109193 Olivia Arthur 999589 Power & Thermal Maedini Jayaprakash 1085663 Robert Aselford 1109195 CCDH/Operations Michel Becker 1109194 Nico Ortiz 1109533 Attitude, Trajectory, Orbits and Launch Vehicles Contents 1 Symbols and Acronyms 8 2 Executive Summary 9 3 Preface and Introduction 13 3.1 Project Management . 13 3.2 Problem Definition . 14 3.2.1 Background and Motivation . 14 3.2.2 RFP and Description . 14 3.2.3 Project Scope . 15 3.2.4 Disciplines . 15 3.2.5 Societal Sectors . 15 3.2.6 Assumptions . 16 3.2.7 Relevant Capital and Resources . 16 4 Value System Design 17 4.1 Introduction . 17 4.2 Analytical Hierarchical Process . 17 4.2.1 Longevity . 18 4.2.2 Expandability . 19 4.2.3 Scientific Return . 19 4.2.4 Risk . 20 4.2.5 Cost . 21 5 Initial Concept of Operations 21 5.1 Orbital Analysis . 22 5.2 Launch Vehicles . 22 6 Habitat Location 25 6.1 Introduction . 25 6.2 Region Selection . 25 6.3 Locations of Interest . 26 6.4 Eliminated Locations . 26 6.5 Remaining Locations . 27 6.6 Chosen Location . -
Lunar Water ISRU Measurement Study (LWIMS): Establishing a Measurement Plan for Identifi Cation and Characterization of a Water Reserve
NASA/TM-20205008626 Lunar Water ISRU Measurement Study (LWIMS): Establishing a Measurement Plan for Identifi cation and Characterization of a Water Reserve Julie Kleinhenz Glenn Research Center, Cleveland, Ohio Amy McAdam Goddard Space Flight Center, Greenbelt, Maryland Anthony Colaprete Ames Research Center, Moff ett Field, California David Beaty Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California Barbara Cohen Goddard Space Flight Center, Greenbelt, Maryland Pamela Clark Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California John Gruener Johnson Space Center, Houston, Texas Jason Schuler Kennedy Space Center, Kennedy Space Center, Florida Kelsey Young Goddard Space Flight Center, Greenbelt, Maryland October 2020 NASA STI Program . in Profi le Since its founding, NASA has been dedicated • CONTRACTOR REPORT. Scientifi c and to the advancement of aeronautics and space science. technical fi ndings by NASA-sponsored The NASA Scientifi c and Technical Information (STI) contractors and grantees. Program plays a key part in helping NASA maintain this important role. • CONFERENCE PUBLICATION. Collected papers from scientifi c and technical conferences, symposia, seminars, or other The NASA STI Program operates under the auspices meetings sponsored or co-sponsored by NASA. of the Agency Chief Information Offi cer. It collects, organizes, provides for archiving, and disseminates • SPECIAL PUBLICATION. Scientifi c, NASA’s STI. The NASA STI Program provides access technical, or historical information from to the NASA Technical Report Server—Registered NASA programs, projects, and missions, often (NTRS Reg) and NASA Technical Report Server— concerned with subjects having substantial Public (NTRS) thus providing one of the largest public interest. collections of aeronautical and space science STI in the world. -
Untangling the Formation and Liberation of Water in the Lunar Regolith
Untangling the formation and liberation of water in the lunar regolith Cheng Zhua,b,1, Parker B. Crandalla,b,1, Jeffrey J. Gillis-Davisc,2, Hope A. Ishiic, John P. Bradleyc, Laura M. Corleyc, and Ralf I. Kaisera,b,2 aDepartment of Chemistry, University of Hawai‘iatManoa, Honolulu, HI 96822; bW. M. Keck Laboratory in Astrochemistry, University of Hawai‘iatManoa, Honolulu, HI 96822; and cHawai‘i Institute of Geophysics and Planetology, University of Hawai‘iatManoa, Honolulu, HI 96822 Edited by Mark H. Thiemens, University of California at San Diego, La Jolla, CA, and approved April 24, 2019 (received for review November 15, 2018) −8 −6 The source of water (H2O) and hydroxyl radicals (OH), identified between 10 and 10 torr observed either an ν(O−H) stretching − − on the lunar surface, represents a fundamental, unsolved puzzle. mode in the 2.70 μm (3,700 cm 1) to 3.33 μm (3,000 cm 1) region The interaction of solar-wind protons with silicates and oxides has exploiting infrared spectroscopy (7, 25, 26) or OH/H2Osignature been proposed as a key mechanism, but laboratory experiments using secondary-ion mass spectrometry (27) and valence electron yield conflicting results that suggest that proton implantation energy loss spectroscopy (VEEL) (28). However, contradictory alone is insufficient to generate and liberate water. Here, we dem- studies yielded no evidence of H2O/OH in proton-bombarded onstrate in laboratory simulation experiments combined with minerals in experiments performed under ultrahigh vacuum − − imaging studies that water can be efficiently generated and re- (UHV) (10 10 to 10 9 torr) (29). -
March 21–25, 2016
FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk, -
PDF Program Book
46th Meeting of the Division for Planetary Sciences with Historical Astronomy Division (HAD) 9-14 November 2014 | Tucson, AZ OFFICERS AND MEMBERS ........ 2 SPONSORS ............................... 2 EXHIBITORS .............................. 3 FLOOR PLANS ........................... 5 ATTENDEE SERVICES ................. 8 Session Numbering Key SCHEDULE AT-A-GLANCE ........ 10 100s Monday 200s Tuesday SUNDAY ................................. 20 300s Wednesday 400s Thursday MONDAY ................................ 23 500s Friday TUESDAY ................................ 44 Sessions are numbered in the program book by day and time. WEDNESDAY .......................... 75 All posters will be on display Monday - Friday THURSDAY.............................. 85 FRIDAY ................................. 119 Changes after 1 October are included only in the online program materials. AUTHORS INDEX .................. 137 1 DPS OFFICERS AND MEMBERS Current DPS Officers Heidi Hammel Chair Bonnie Buratti Vice-Chair Athena Coustenis Secretary Andrew Rivkin Treasurer Nick Schneider Education and Public Outreach Officer Vishnu Reddy Press Officer Current DPS Committee Members Rosaly Lopes Term Expires November 2014 Robert Pappalardo Term Expires November 2014 Ralph McNutt Term Expires November 2014 Ross Beyer Term Expires November 2015 Paul Withers Term Expires November 2015 Julie Castillo-Rogez Term Expires October 2016 Jani Radebaugh Term Expires October 2016 SPONSORS 2 EXHIBITORS Platinum Exhibitor Silver Exhibitors 3 EXHIBIT BOOTH ASSIGNMENTS 206 Applied -
Technology Today Spring 2013
Spring 2012 TECHNOLOGY® today Southwest Research Institute® San Antonio, Texas Spring 2012 • Volume 33, No. 1 TECHNOLOGY today COVER Director of Communications Craig Witherow Editor Joe Fohn TECHNOLOGY Assistant Editor today Deborah Deffenbaugh D018005-5651 Contributing Editors Tracey Whelan Editorial Assistant Kasey Chenault Design Scott Funk Photography Larry Walther Illustrations Andrew Blanchard, Frank Tapia Circulation Southwest Research Institute San Antonio, Texas Gina Monreal About the cover Full-scale fire tests were performed on upholstered furniture Technology Today (ISSN 1528-431X) is published three times as part of a project to reduce uncertainty in determining the each year and distributed free of charge. The publication cause of fires. discusses some of the more than 1,000 research and develop- ment projects under way at Southwest Research Institute. The materials in Technology Today may be used for educational and informational purposes by the public and the media. Credit to Southwest Research Institute should be given. This authorization does not extend to property rights such as patents. Commercial and promotional use of the contents in Technology Today without the express written consent of Southwest Research Institute is prohibited. The information published in Technology Today does not necessarily reflect the position or policy of Southwest Research Institute or its clients, and no endorsements should be made or inferred. Address correspondence to the editor, Department of Communications, Southwest Research Institute, P.O. Drawer 28510, San Antonio, Texas 78228-0510, or e-mail [email protected]. To be placed on the mailing list or to make address changes, call (210) 522-2257 or fax (210) 522-3547, or visit update.swri.org. -
South Pole-Aitken Basin
Feasibility Assessment of All Science Concepts within South Pole-Aitken Basin INTRODUCTION While most of the NRC 2007 Science Concepts can be investigated across the Moon, this chapter will focus on specifically how they can be addressed in the South Pole-Aitken Basin (SPA). SPA is potentially the largest impact crater in the Solar System (Stuart-Alexander, 1978), and covers most of the central southern farside (see Fig. 8.1). SPA is both topographically and compositionally distinct from the rest of the Moon, as well as potentially being the oldest identifiable structure on the surface (e.g., Jolliff et al., 2003). Determining the age of SPA was explicitly cited by the National Research Council (2007) as their second priority out of 35 goals. A major finding of our study is that nearly all science goals can be addressed within SPA. As the lunar south pole has many engineering advantages over other locations (e.g., areas with enhanced illumination and little temperature variation, hydrogen deposits), it has been proposed as a site for a future human lunar outpost. If this were to be the case, SPA would be the closest major geologic feature, and thus the primary target for long-distance traverses from the outpost. Clark et al. (2008) described four long traverses from the center of SPA going to Olivine Hill (Pieters et al., 2001), Oppenheimer Basin, Mare Ingenii, and Schrödinger Basin, with a stop at the South Pole. This chapter will identify other potential sites for future exploration across SPA, highlighting sites with both great scientific potential and proximity to the lunar South Pole. -
The Illumination Conditions of the South Pole Region of the Moon
EPSC Abstracts, Vol. 4, EPSC2009-314, 2009 European Planetary Science Congress, © Author(s) 2009 The Illumination Conditions of the South Pole Region Of The Moon E.A.Kozlova. (1) Sternberg State Astronomical Institute, Moscow State University. [email protected] The “Lunar Prospector” spacecraft, horizon during only 24% time of diurnal period for launched by NASA toward the Moon in 1998, this point. revealed the areas of high hydrogen content near Fig.2. shows the topographic profile of the both poles of the Moon. The South Pole of the crater Shoemaker (88º S, 38º E, D = 51 km) Moon is located in the southern part of the giant accordingly to date from KAGUYA (SELENE). topographic depression – the South Pole - Aitken The average depth of a crater has made 3,1 kms, basin. This region is heavily cratered and some an inclination of walls - 13º. The small crater is in craters at the poles are never exposed to direct the central part of the flat floor of Shoemaker. sunlight. High hydrogen content was found in the Earlier, we computed the permanently areas coinciding with such craters as Shoemaker shadowed area in the polar regions of the Moon (88º S, 38º E) and Faustini (87,2º S, 75,8º E) and for the real distribution of craters taking into other craters [1]. These craters can presumably be account the variations of the elevation of the Sun considered as "cold traps" in the South Polar during the 230 solar days that make up the period region of the Moon. of regression of the nodes of the lunar orbit [3]. -
Constraining the Evolutionary History of the Moon and the Inner Solar System: a Case for New Returned Lunar Samples
Space Sci Rev (2019) 215:54 https://doi.org/10.1007/s11214-019-0622-x Constraining the Evolutionary History of the Moon and the Inner Solar System: A Case for New Returned Lunar Samples Romain Tartèse1 · Mahesh Anand2,3 · Jérôme Gattacceca4 · Katherine H. Joy1 · James I. Mortimer2 · John F. Pernet-Fisher1 · Sara Russell3 · Joshua F. Snape5 · Benjamin P. Weiss6 Received: 23 August 2019 / Accepted: 25 November 2019 / Published online: 2 December 2019 © The Author(s) 2019 Abstract The Moon is the only planetary body other than the Earth for which samples have been collected in situ by humans and robotic missions and returned to Earth. Scien- tific investigations of the first lunar samples returned by the Apollo 11 astronauts 50 years ago transformed the way we think most planetary bodies form and evolve. Identification of anorthositic clasts in Apollo 11 samples led to the formulation of the magma ocean concept, and by extension the idea that the Moon experienced large-scale melting and differentiation. This concept of magma oceans would soon be applied to other terrestrial planets and large asteroidal bodies. Dating of basaltic fragments returned from the Moon also showed that a relatively small planetary body could sustain volcanic activity for more than a billion years after its formation. Finally, studies of the lunar regolith showed that in addition to contain- ing a treasure trove of the Moon’s history, it also provided us with a rich archive of the past 4.5 billion years of evolution of the inner Solar System. Further investigations of samples returned from the Moon over the past five decades led to many additional discoveries, but also raised new and fundamental questions that are difficult to address with currently avail- able samples, such as those related to the age of the Moon, duration of lunar volcanism, the Role of Sample Return in Addressing Major Questions in Planetary Sciences Edited by Mahesh Anand, Sara Russell, Yangting Lin, Meenakshi Wadhwa, Kuljeet Kaur Marhas and Shogo Tachibana B R.