Untangling the Formation and Liberation of Water in the Lunar Regolith

Total Page:16

File Type:pdf, Size:1020Kb

Untangling the Formation and Liberation of Water in the Lunar Regolith Untangling the formation and liberation of water in the lunar regolith Cheng Zhua,b,1, Parker B. Crandalla,b,1, Jeffrey J. Gillis-Davisc,2, Hope A. Ishiic, John P. Bradleyc, Laura M. Corleyc, and Ralf I. Kaisera,b,2 aDepartment of Chemistry, University of Hawai‘iatManoa, Honolulu, HI 96822; bW. M. Keck Laboratory in Astrochemistry, University of Hawai‘iatManoa, Honolulu, HI 96822; and cHawai‘i Institute of Geophysics and Planetology, University of Hawai‘iatManoa, Honolulu, HI 96822 Edited by Mark H. Thiemens, University of California at San Diego, La Jolla, CA, and approved April 24, 2019 (received for review November 15, 2018) −8 −6 The source of water (H2O) and hydroxyl radicals (OH), identified between 10 and 10 torr observed either an ν(O−H) stretching − − on the lunar surface, represents a fundamental, unsolved puzzle. mode in the 2.70 μm (3,700 cm 1) to 3.33 μm (3,000 cm 1) region The interaction of solar-wind protons with silicates and oxides has exploiting infrared spectroscopy (7, 25, 26) or OH/H2Osignature been proposed as a key mechanism, but laboratory experiments using secondary-ion mass spectrometry (27) and valence electron yield conflicting results that suggest that proton implantation energy loss spectroscopy (VEEL) (28). However, contradictory alone is insufficient to generate and liberate water. Here, we dem- studies yielded no evidence of H2O/OH in proton-bombarded onstrate in laboratory simulation experiments combined with minerals in experiments performed under ultrahigh vacuum − − imaging studies that water can be efficiently generated and re- (UHV) (10 10 to 10 9 torr) (29). Orlando et al. proposed that leased through rapid energetic heating like micrometeorite impacts proton bombardment of lunar regolith simulants produces chemi- into anhydrous silicates implanted with solar-wind protons. These cally bound hydroxyl (−OH) groups as potential precursors to water synergistic effects of solar-wind protons and micrometeorites liber- at elevated temperatures of at least 450 K (30)—well above the ate water at mineral temperatures from 10 to 300 K via vesicles, equilibrium noon-time temperature of the Moon of 400 K. The thus providing evidence of a key mechanism to synthesize water in authors concluded that solar proton irradiation of regolith does not silicates and advancing our understanding on the origin of water as contribute significantly to the origin of water. Therefore, despite detected on the Moon and other airless bodies in our solar system compelling evidence of the presence of water and/or hydroxyl such as Mercury and asteroids. radicals in the lunar soil, an intimate understanding of the under- EARTH, ATMOSPHERIC, lying pathways to form and release water from silicates and how its AND PLANETARY SCIENCES solar wind | water | Moon abundance might vary on diurnal timescales is still in its infancy. In this article, we use laboratory simulation experiments com- he unraveling of the formation and liberation of water in bined with imaging analysis to uncover an efficient and versatile Tlunar silicates is critical in aiding our fundamental un- pathway to generate and liberate water in lunar silicates. This is derstanding of the potential, but hitherto-elusive, water cycle on accomplished by synergistic effects of solar-wind proton implan- the Moon—in particular whether lunar water ices are primordial tation combined with thermal excursion events such as microme- water expelled from the interior of the Moon by geologic pro- teorite impacts, but not by proton implantation alone. We exploit cesses (1, 2), delivered via comets and water-rich asteroids (3–6), deuterium ions as a proxy of hydrogen ions of the solar wind or produced in situ in the regolith by bombardment of oxygen- + to simulate the interaction with nominally anhydrous olivine rich silicate minerals by solar-wind protons (H ) at energies of [(Mg,Fe)2SiO4]—a typical surrogate of the lunar material that about 1–2 keV (7). Although the origin of water on the Moon is has been widely used to simulate space weathering effects on still elusive, during the past two decades, the presence of lunar water ice was suggested based on radar (8, 9) (Clementine, Significance Arecibo) and neutron spectrometer data (Lunar Prospector) (10). The identification of lunar water culminated in the Lunar Observational evidence collected over the past two decades Crater Observation and Sensing Satellite excavation of water ice supports the existence of water on the Moon. However, the from the permanently shadowed crater Cabeus (11) along with sources and chemical and/or physical processes responsible for the first spectroscopic observation of surface exposed water ice the production of the lunar water are still unknown. Here, we (Chandrayaan-1) (12). Furthermore, three independent space- provide evidence via laboratory simulation experiments that craft instruments exploited absorption bands at 3 μm to identify 3 water can be generated and liberated through thermal shocks H2O/OH in polar regions [Moon Mineralogy Mapper (M ), induced by micrometeorite impacts on solar-wind proton- Chandrayaan-1 (13–15); visual and infrared mapping spectrom- – implanted anhydrous silicates. Our findings are of fundamental eter, Cassini (16); high resolution instrument infrared spec- importance for explaining the origin of water on the Moon as trometer, Deep Impact (17)]. Recent Earth-based telescopic well as on other airless bodies such as Ceres and for untangling observations of lunar surface water (18) revealed fascinating the present distribution of water in our solar system. latitude and time-of-day systematics consistent with measure- ments by Cassini (16) and Deep Impact (17). The neutral mass Author contributions: J.J.G.-D. and R.I.K. designed research; C.Z., P.B.C., H.A.I., J.P.B., and spectrometer on board the Lunar Atmosphere and Dust Envi- L.M.C. performed research; C.Z., P.B.C., H.A.I., and J.P.B. analyzed data; and C.Z., J.J.G.-D., ronment Explorer spacecraft has detected sporadic water signal H.A.I., and R.I.K. wrote the paper. in the exosphere of the Moon (19–22) with occurrence rate co- The authors declare no conflict of interest. inciding with periods of major annual meteoroid events (23). This article is a PNAS Direct Submission. 3 Data from the M mission reveal that H2O/OH is present on Published under the PNAS license. the Moon at all latitudes at a given local time and terrain type 1C.Z. and P.B.C. contributed equally to this work. (14, 18, 24) and strongly implicate the involvement of solar-wind 2To whom correspondence may be addressed. Email: [email protected] or ralfk@ protons in the production of water (14, 24). However, laboratory hawaii.edu. experiments, which attempted to unravel the solar-wind–induced This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. synthesis of H2O/OH in lunar silicates, have yielded conflicting 1073/pnas.1819600116/-/DCSupplemental. findings. Experiments conducted under high-vacuum conditions Published online May 20, 2019. www.pnas.org/cgi/doi/10.1073/pnas.1819600116 PNAS | June 4, 2019 | vol. 116 | no. 23 | 11165–11170 Downloaded by guest on September 28, 2021 the Moon (27, 31, 32)—over a temperature range of 10 to 300 irradiation of the minerals—did not detect any ion counts at m/z = + K followed by rapid thermal processing of the irradiated sili- 4(D2 ). Consequently, the molecular deuterium detected in the cates to mimic heating effect of micrometeorite impacts under TPD phase of the irradiated olivine is clearly linked to the ion im- UHV conditions (Materials and Methods). This systematic study plantation demonstrating the capability of olivine to store deuterium. reveals the capability of lunar silicates to first efficiently store (precursors to) water from solar-wind ion implantation over a Lunar Environment Simulations Phase II. Considering the non- broad temperature range from 10 to 300 K and the key role of a detection of D2-water in the aforementioned studies, alternative subsequent rapid energetic heating of the irradiated silicates to energy sources might assist in the formation and liberation of release water into the gas phase. The results provide compelling D2-water molecules and/or D1-hydroxyl radicals potentially evidence of the significance of thermal impulse on liberating water stored in the silicates. This processing might also lead to the from solar-wind–implanted minerals, thus revolutionizing our formation of D2-water via condensation of two silicon-bound understanding of the origin and distribution of water on the Moon D1-hydroxyl groups (−Si−O−D) leading to D2-water along with and on airless bodies such as Mercury and asteroids. an oxygen bridged −Si−O−Si− moiety (39). To verify this hy- pothesis, anhydrous olivine samples were prepared and exposed Results + to a D2 ion beam under identical conditions as documented in Lunar Environment Simulations Phase I. To mimic the interaction of the aforementioned section. After the ion exposure, the sample solar-wind protons with regolith in laboratory experiments, was irradiated at 10 K by a pulsed infrared laser followed by powdered samples of anhydrous olivine [(Mg,Fe)2SiO4] were TPD. Laser pulses can create intense heating events reaching + held at 10 K and exposed to a 5-keV D2 molecular ion beam for temperatures higher than 1,400 K well above maximum diurnal − a total fluence of (1.0 ± 0.1) × 1018 deuterium nuclei cm 2, temperatures of 400 K (SI Appendix), but close to temperatures equivalent to 300 ± 30 y of irradiation at the lunar surface on produced by micrometeorite impacts (31, 40, 41). After the TPD − average, under UHV conditions at base pressures of 1 × 10 10 torr phase, the sample was exposed to the laser twice to examine (SI Appendix) (33). The use of deuterium is driven by the neces- whether water could still be generated via micrometeorite impact sity to distinguish between products formed as a result of the at surface temperatures closely approximating lunar daytime irradiation like D2-water (D2O) in contrast to possible trace temperatures.
Recommended publications
  • Ice& Stone 2020
    Ice & Stone 2020 WEEK 34: AUGUST 16-22 Presented by The Earthrise Institute # 34 Authored by Alan Hale This week in history AUGUST 16 17 18 19 20 21 22 AUGUST 16, 1898: DeLisle Stewart at Harvard College Observatory’s Boyden Station in Arequipa, Peru, takes photographs on which Saturn’s outer moon Phoebe is discovered, although the images of Phoebe were not noticed until the following March by William Pickering. Phoebe was the first planetary moon to be discovered via photography, and it and other small planetary moons are discussed in last week’s “Special Topics” presentation. AUGUST 16, 2009: A team of scientists led by Jamie Elsila of the Goddard Space Flight Center in Maryland announces that they have detected the presence of the amino acid glycine in coma samples of Comet 81P/ Wild 2 that were returned to Earth by the Stardust mission 3½ years earlier. Glycine is utilized by life here on Earth, and the presence of it and other organic substances in the solar system’s “small bodies” is discussed in this week’s “Special Topics” presentation. AUGUST 16 17 18 19 20 21 22 AUGUST 17, 1877: Asaph Hall at the U.S. Naval Observatory in Washington, D.C. discovers Mars’ larger, inner moon, Phobos. Mars’ two moons, and the various small moons of the outer planets, are the subject of last week’s “Special Topics” presentation. AUGUST 17, 1989: In its monthly batch of Minor Planet Circulars (MPCs), the IAU’s Minor Planet Center issues MPC 14938, which formally numbers asteroid (4151), later named “Alanhale.” I have used this asteroid as an illustrative example throughout “Ice and Stone 2020” “Special Topics” presentations.
    [Show full text]
  • Lunar Water ISRU Measurement Study (LWIMS): Establishing a Measurement Plan for Identifi Cation and Characterization of a Water Reserve
    NASA/TM-20205008626 Lunar Water ISRU Measurement Study (LWIMS): Establishing a Measurement Plan for Identifi cation and Characterization of a Water Reserve Julie Kleinhenz Glenn Research Center, Cleveland, Ohio Amy McAdam Goddard Space Flight Center, Greenbelt, Maryland Anthony Colaprete Ames Research Center, Moff ett Field, California David Beaty Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California Barbara Cohen Goddard Space Flight Center, Greenbelt, Maryland Pamela Clark Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California John Gruener Johnson Space Center, Houston, Texas Jason Schuler Kennedy Space Center, Kennedy Space Center, Florida Kelsey Young Goddard Space Flight Center, Greenbelt, Maryland October 2020 NASA STI Program . in Profi le Since its founding, NASA has been dedicated • CONTRACTOR REPORT. Scientifi c and to the advancement of aeronautics and space science. technical fi ndings by NASA-sponsored The NASA Scientifi c and Technical Information (STI) contractors and grantees. Program plays a key part in helping NASA maintain this important role. • CONFERENCE PUBLICATION. Collected papers from scientifi c and technical conferences, symposia, seminars, or other The NASA STI Program operates under the auspices meetings sponsored or co-sponsored by NASA. of the Agency Chief Information Offi cer. It collects, organizes, provides for archiving, and disseminates • SPECIAL PUBLICATION. Scientifi c, NASA’s STI. The NASA STI Program provides access technical, or historical information from to the NASA Technical Report Server—Registered NASA programs, projects, and missions, often (NTRS Reg) and NASA Technical Report Server— concerned with subjects having substantial Public (NTRS) thus providing one of the largest public interest. collections of aeronautical and space science STI in the world.
    [Show full text]
  • Scientists Finds Evidence of Water Ice on Asteroid's Surface 28 April 2010
    Scientists finds evidence of water ice on asteroid's surface 28 April 2010 Johns Hopkins University in Laurel, Md., examined the surface of 24 Themis, a 200-kilometer wide asteroid that sits halfway between Mars and Jupiter. By measuring the spectrum of infrared sunlight reflected by the object, the researchers found the spectrum consistent with frozen water and determined that 24 Themis is coated with a thin film of ice. They also detected organic material. "The organics we detected appear to be complex, long-chained molecules. Raining down on a barren Earth in meteorites, these could have given a big kick-start to the development of life," Emery said. Emery noted that finding ice on the surface of 24 Themis was a surprise because the surface is too warm for ice to stick around for a long time. This image shows the Themis Main Belt which sits between Mars and Jupiter. Asteroid 24 Themis, one of "This implies that ice is quite abundant in the the largest Main Belt asteroids, was examined by interior of 24 Themis and perhaps many other University of Tennessee scientist, Josh Emery, who asteroids. This ice on asteroids may be the answer found water ice and organic material on the asteroid's to the puzzle of where Earth's water came from," he surface. His findings were published in the April 2010 said. issue of Nature. Credit: Josh Emery/University of Tennessee, Knoxville Still, how the water ice got there is unclear. 24 Themis' proximity to the sun causes ice to vaporize. However, the researchers' findings Asteroids may not be the dark, dry, lifeless chunks suggest the asteroid's lifetime of ice ranges from of rock scientists have long thought.
    [Show full text]
  • SOFIA Successfully Completes
    June 2010 - A Quarterly Publication SOFIA successfully completes its ‘first light’ flight BY CATHY WESELBY The Stratospheric Observatory for Infrared Astronomy, or SOFIA, achieved a major milestone May 26, with its first in-flight night observations. Astronomers call this event for a new observatory “first light.” The highly modified Boeing 747SP jetliner fitted with a 100-inch diameter reflecting telescope took off from its home base at the Aircraft Operations Anthony Wesley photo by NASA Facility in Palmdale, Calif., of NASA's Dryden Flight Research Center. The in-flight personnel consisted of an international crew from NASA, the Universities Space Research Associa- tion in Columbia, Md., Cornell Univer- sity and the German SOFIA Institute (DSI) in Stuttgart. During the six-hour This composite infrared image of Jupiter was made by Cornell University’s FORCAST camera flight, at altitudes up to 35,000 feet, during the SOFIA observatory’s "first light" flight. A recent visual-wavelength picture of approxi- the crew of 10 scientists, astronomers, mately the same side of Jupiter is shown for comparison. engineers and technicians gathered We’re back! By popular demand, the Astro- gram is resuming publication this month as a quarterly newsletter. It will be available online and in hard- NASA photo by Jim Ross NASA copy format and mailed to onsite mailstops and Ames retirees. The Astrogram will be published every three months. The Astrogram will be available online at http://www.nasa. gov/centers/ames/news/astrogram/ index.html Ames Public Affairs is soliciting Its primary mirror covered by a protective sun shade, the German-built infrared telescope short articles (600 word maximum) nestled in the rear fuselage of NASA's SOFIA flying observatory is easily visible in this close- up image taken during a recent test flight.
    [Show full text]
  • Constraining the Evolutionary History of the Moon and the Inner Solar System: a Case for New Returned Lunar Samples
    Space Sci Rev (2019) 215:54 https://doi.org/10.1007/s11214-019-0622-x Constraining the Evolutionary History of the Moon and the Inner Solar System: A Case for New Returned Lunar Samples Romain Tartèse1 · Mahesh Anand2,3 · Jérôme Gattacceca4 · Katherine H. Joy1 · James I. Mortimer2 · John F. Pernet-Fisher1 · Sara Russell3 · Joshua F. Snape5 · Benjamin P. Weiss6 Received: 23 August 2019 / Accepted: 25 November 2019 / Published online: 2 December 2019 © The Author(s) 2019 Abstract The Moon is the only planetary body other than the Earth for which samples have been collected in situ by humans and robotic missions and returned to Earth. Scien- tific investigations of the first lunar samples returned by the Apollo 11 astronauts 50 years ago transformed the way we think most planetary bodies form and evolve. Identification of anorthositic clasts in Apollo 11 samples led to the formulation of the magma ocean concept, and by extension the idea that the Moon experienced large-scale melting and differentiation. This concept of magma oceans would soon be applied to other terrestrial planets and large asteroidal bodies. Dating of basaltic fragments returned from the Moon also showed that a relatively small planetary body could sustain volcanic activity for more than a billion years after its formation. Finally, studies of the lunar regolith showed that in addition to contain- ing a treasure trove of the Moon’s history, it also provided us with a rich archive of the past 4.5 billion years of evolution of the inner Solar System. Further investigations of samples returned from the Moon over the past five decades led to many additional discoveries, but also raised new and fundamental questions that are difficult to address with currently avail- able samples, such as those related to the age of the Moon, duration of lunar volcanism, the Role of Sample Return in Addressing Major Questions in Planetary Sciences Edited by Mahesh Anand, Sara Russell, Yangting Lin, Meenakshi Wadhwa, Kuljeet Kaur Marhas and Shogo Tachibana B R.
    [Show full text]
  • Private Sector Lunar Exploration Hearing
    PRIVATE SECTOR LUNAR EXPLORATION HEARING BEFORE THE SUBCOMMITTEE ON SPACE COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED FIFTEENTH CONGRESS FIRST SESSION SEPTEMBER 7, 2017 Serial No. 115–27 Printed for the use of the Committee on Science, Space, and Technology ( Available via the World Wide Web: http://science.house.gov U.S. GOVERNMENT PUBLISHING OFFICE 27–174PDF WASHINGTON : 2017 For sale by the Superintendent of Documents, U.S. Government Publishing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HON. LAMAR S. SMITH, Texas, Chair FRANK D. LUCAS, Oklahoma EDDIE BERNICE JOHNSON, Texas DANA ROHRABACHER, California ZOE LOFGREN, California MO BROOKS, Alabama DANIEL LIPINSKI, Illinois RANDY HULTGREN, Illinois SUZANNE BONAMICI, Oregon BILL POSEY, Florida ALAN GRAYSON, Florida THOMAS MASSIE, Kentucky AMI BERA, California JIM BRIDENSTINE, Oklahoma ELIZABETH H. ESTY, Connecticut RANDY K. WEBER, Texas MARC A. VEASEY, Texas STEPHEN KNIGHT, California DONALD S. BEYER, JR., Virginia BRIAN BABIN, Texas JACKY ROSEN, Nevada BARBARA COMSTOCK, Virginia JERRY MCNERNEY, California BARRY LOUDERMILK, Georgia ED PERLMUTTER, Colorado RALPH LEE ABRAHAM, Louisiana PAUL TONKO, New York DRAIN LAHOOD, Illinois BILL FOSTER, Illinois DANIEL WEBSTER, Florida MARK TAKANO, California JIM BANKS, Indiana COLLEEN HANABUSA, Hawaii ANDY BIGGS, Arizona CHARLIE CRIST, Florida ROGER W. MARSHALL, Kansas NEAL P. DUNN, Florida CLAY HIGGINS, Louisiana RALPH NORMAN, South Carolina SUBCOMMITTEE ON SPACE HON. BRIAN BABIN, Texas, Chair DANA ROHRABACHER, California AMI BERA, California, Ranking Member FRANK D. LUCAS, Oklahoma ZOE LOFGREN, California MO BROOKS, Alabama DONALD S.
    [Show full text]
  • Asteroid Photometric and Polarimetric Phase Curves: Joint Linear-Exponential Modeling
    Meteoritics & Planetary Science 44, Nr 12, 1937–1946 (2009) Abstract available online at http://meteoritics.org Asteroid photometric and polarimetric phase curves: Joint linear-exponential modeling K. MUINONEN1, 2, A. PENTTILÄ1, A. CELLINO3, I. N. BELSKAYA4, M. DELBÒ5, A. C. LEVASSEUR-REGOURD6, and E. F. TEDESCO7 1University of Helsinki, Observatory, Kopernikuksentie 1, P.O. BOX 14, FI-00014 U. Helsinki, Finland 2Finnish Geodetic Institute, Geodeetinrinne 2, P.O. Box 15, FI-02431 Masala, Finland 3INAF-Osservatorio Astronomico di Torino, strada Osservatorio 20, 10025 Pino Torinese, Italy 4Astronomical Institute of Kharkiv National University, 35 Sumska Street, 61035 Kharkiv, Ukraine 5IUMR 6202 Laboratoire Cassiopée, Observatoire de la Côte d’Azur, BP 4229, 06304 Nice, Cedex 4, France 6UPMC Univ. Paris 06, UMR 7620, BP3, 91371 Verrières, France 7Planetary Science Institute, 1700 E. Ft. Lowell Road, Tucson, Arizona 85719, USA *Corresponding author. E-mail: [email protected] (Received 01 April, 2009; revision accepted 18 August 2009) Abstract–We present Markov-Chain Monte-Carlo methods (MCMC) for the derivation of empirical model parameters for photometric and polarimetric phase curves of asteroids. Here we model the two phase curves jointly at phase angles գ25° using a linear-exponential model, accounting for the opposition effect in disk-integrated brightness and the negative branch in the degree of linear polarization. We apply the MCMC methods to V-band phase curves of asteroids 419 Aurelia (taxonomic class F), 24 Themis (C), 1 Ceres (G), 20 Massalia (S), 55 Pandora (M), and 64 Angelina (E). We show that the photometric and polarimetric phase curves can be described using a common nonlinear parameter for the angular widths of the opposition effect and negative-polarization branch, thus supporting the hypothesis of common physical mechanisms being responsible for the phenomena.
    [Show full text]
  • Moon Landings - Luna 9
    Age Research cards 7-11 years Moon landings - Luna 9 About Credit-Pline On the 3 February 1966, Luna 9 made history by being the first crewless space mission to make a soft landing on the surface of the Moon. It was the ninth mission in the Soviet Union’s Luna programme (the previous five missions had all experienced spacecraft failure). The Soviet Union existed from 1922 to 1991 and was the largest country in the world; it was made up of 15 states, the largest of which was the Russian Republic, now called Russia. The Space Race is a term that is used to describe the competition between the United States of America and the Soviet Union which lasted from 1955 to 1969, as both countries aimed to be the first to get humans to the Moon. Working scientifically The Luna 9 spacecraft had a mass of 98kg (about outwards to make sure the spacecraft was stable the same as a baby elephant) and it carried before it began its scientific exploration. communication equipment to send information back to Earth, a clock, a heating system, a power The camera on board took many photographs of source and a television system. The spacecraft the lunar surface including some panoramic included scientific equipment for two enquiries: images. These images were transmitted back to one to find out what the lunar surface was like; Earth using radio waves. Although the Soviet and another to find out how much dangerous Union didn’t release these photographs to the rest radiation there was on the lunar surface.
    [Show full text]
  • Lady Justice
    Lady Justice Lady Justice (Latin: Iustitia) is an allegorical personification of the moral force in judicial systems.[1][2] Her attributes are a blindfold, scales, and a sword. She often appears as a pair with Prudentia. Lady Justice originates from the personification of Justice in Ancient Roman art known as Iustitia or Justitia,[3] who is equivalent to the Greek goddess Dike. Contents The goddess Justicia Depiction Scales Blindfold Sword Toga In computer systems Justitia blindfolded and holding a In art balance and a sword. Court of Final Sculpture Appeal, Hong Kong Painting Heraldry See also Goddesses of Justice and related concepts Astronomy Notable programs Female justices of the US Supreme Court Female justices of the UK Supreme Court In fiction References External links The goddess Justicia The origin of Lady Justice was Justitia, the goddess of Justice within Roman mythology. Justitia was introduced by emperor Augustus, and was thus not a very old deity in the Roman pantheon. Justice was one of the virtues celebrated by emperor Augustus in his clipeus virtutis, and a temple of Iustitia was established in Rome on 8 January 13 BC by emperor Tiberius.[3] Iustitia became a symbol for the virtue of justice with which every emperor wished to associate his regime; emperor Vespasian minted coins with the image of the goddess seated on a throne called Iustitia Augusta, and many emperors after him used the image of the goddess to proclaim themselves protectors of justice.[3] Though formally called a goddess with her own temple and cult shrine in Rome, it appears that she was from the onset viewed more as an artistic symbolic personification rather than as an actual deity with religious significance.
    [Show full text]
  • Ceres: Astrobiological Target and Possible Ocean World
    ASTROBIOLOGY Volume 20 Number 2, 2020 Research Article ª Mary Ann Liebert, Inc. DOI: 10.1089/ast.2018.1999 Ceres: Astrobiological Target and Possible Ocean World Julie C. Castillo-Rogez,1 Marc Neveu,2,3 Jennifer E.C. Scully,1 Christopher H. House,4 Lynnae C. Quick,2 Alexis Bouquet,5 Kelly Miller,6 Michael Bland,7 Maria Cristina De Sanctis,8 Anton Ermakov,1 Amanda R. Hendrix,9 Thomas H. Prettyman,9 Carol A. Raymond,1 Christopher T. Russell,10 Brent E. Sherwood,11 and Edward Young10 Abstract Ceres, the most water-rich body in the inner solar system after Earth, has recently been recognized to have astrobiological importance. Chemical and physical measurements obtained by the Dawn mission enabled the quantification of key parameters, which helped to constrain the habitability of the inner solar system’s only dwarf planet. The surface chemistry and internal structure of Ceres testify to a protracted history of reactions between liquid water, rock, and likely organic compounds. We review the clues on chemical composition, temperature, and prospects for long-term occurrence of liquid and chemical gradients. Comparisons with giant planet satellites indicate similarities both from a chemical evolution standpoint and in the physical mechanisms driving Ceres’ internal evolution. Key Words: Ceres—Ocean world—Astrobiology—Dawn mission. Astro- biology 20, xxx–xxx. 1. Introduction these bodies, that is, their potential to produce and maintain an environment favorable to life. The purpose of this article arge water-rich bodies, such as the icy moons, are is to assess Ceres’ habitability potential along the same lines Lbelieved to have hosted deep oceans for at least part of and use observational constraints returned by the Dawn their histories and possibly until present (e.g., Consolmagno mission and theoretical considerations.
    [Show full text]
  • Arxiv:1803.01452V1 [Astro-Ph.EP] 5 Mar 2018
    The when and where of water in the history of the universe Karla de Souza Torres1, and Othon Cabo Winter2 1CEFET-MG, Curvelo, Brazil; E-mail: [email protected] 2UNESP, Grupo de Din^amica Orbital & Planetologia, Guaratinguet´a,Brazil E-mail: [email protected] Abstract It is undeniable that life as we know it depends on liquid water. It is difficult to imagine any biochemical machinery that does not require water. On Earth, life adapts to the most diverse environments and, once established, it is very resilient. Considering that water is a common compound in the Universe, it seems possible (maybe even likely) that one day we will find life elsewhere in the universe. In this study, we review the main aspects of water as an essential compound for life: when it appeared since the Big Bang, and where it spread throughout the diverse cosmic sites. Then, we describe the strong relation between water and life, as we know it. Keywords water; life; universe; H2O; astrobiology 1. Introduction. Why water is essential for life? It is well known that liquid water has played the essential and undeniable role in the emergence, development, and maintenance of life on Earth. Two thirds of the Earth's surface is covered by water, however fresh water is most valuable as a resource for animals and plants. Thus, sustain- ability of our planet's fresh water reserves is an important issue as population numbers increase. Water accounts for 75% of human body mass and is the major constituent of organism fluids. All these facts indicate that water is one of the most important elements for life on Earth.
    [Show full text]
  • Programme : Towards the Use of Lunar Resources
    Programme : Towards the Use of Lunar Resources Day 1, Tuesday 3 July: Setting the Scene (Erasmus High Bay) Time Duration Presenter Subject Affiliation 9:15 00:15 J. Carpenter Welcome and introduction remarks ESA 09:30 00:05 J. Woerner Welcome address (Video Message) ESA Director General 09:35 00:10 D. Parker Lunar Exploration in the ESA European Exploration ESA Director of Envelope Programme Human and Robotic Exploration Programmes 09:45 00:15 J. Carpenter Towards a Lunar Resources Strategy ESA 10:00 00:15 G. Sanders Lunar Resources in NASA NASA 10:15 00:15 A. Abbud- The current status of lunar resources Colorado Madrid School of Mines 10:30 00:10 Clive Neal Lunar Resources in the LEAG Exploration Roadmap University of Notre Dame 10:40 00:20 Coffee Break Rationales for Utilising Lunar Resources 1: Use Cases 11:00 00:15 M. Landgraf Products and quantities to close ISRU ESA 11:15 00:05 R. Gonzalez- In-situ resource needs for production of energy in UPC- Cinca future lunar exploration scenarios Barcelona Tech 11:20 00:05 Agata Space Logistics mindset in Ariane Group Ariane Group Jozwicka- Perlant 11:25 00:05 R. Buchwald Airbus vision of sustained lunar exploration Airbus architecture based on ISRU Defence and Space 11:30 00:05 L. Kiewiet Concept of Operations for harvesting ice in the Lunar SpacE P. Delande south pole to produce rocket propellant Exploration and Development Systems (SEEDS) 11:35 00:05 M. Viturro Transport architecture based on lunar water". ISAE- Balufo & S. SUPAERO 1 Programme : Towards the Use of Lunar Resources Segura Munoz 11:40 00:05 M.
    [Show full text]