Why Choose Local Ecotypes?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Priority Actions to Improve Provenance Decision-Making
Forum Priority Actions to Improve Provenance Decision-Making MARTIN F. BREED, PETER A. HARRISON, ARMIN BISCHOFF, PAULA DURRUTY, NICK J. C. GELLIE, EMILY K. GONZALES, KAYRI HAVENS, MARION KARMANN, FRANCIS F. KILKENNY, SIEGFRIED L. KRAUSS, ANDREW J. LOWE, PEDRO MARQUES, PAUL G. NEVILL, PATI L. VITT, AND ANNA BUCHAROVA Selecting the geographic origin—the provenance—of seed is a key decision in restoration. The last decade has seen a vigorous debate on whether to use local or nonlocal seed. The use of local seed has been the preferred approach because it is expected to maintain local adaptation and avoid deleterious population effects (e.g., maladaptation and outbreeding depression). However, the impacts of habitat fragmentation and climate change on plant populations have driven the debate on whether the local-is-best standard needs changing. This debate has largely been theoretical in nature, which hampers provenance decision-making. Here, we detail cross-sector priority actions to improve provenance decision-making, including embedding provenance trials into restoration projects; developing dynamic, evidence-based provenance policies; and establishing stronger research–practitioner collaborations to facilitate the adoption of research outcomes. We discuss how to tackle these priority actions in order to help satisfy the restoration sector’s requirement for appropriately provenanced seed. Keywords: assisted migration, ecological restoration, local adaptation, restoration genetics he restoration sector’s demand for seed is Williams et al. 2014, Havens et al. 2015, Prober et al. 2015, Tenormous and is rapidly increasing with the growth Breed et al. 2016b, Christmas et al. 2016b). in the global restoration effort (Verdone and Seidl 2017). -
Effective Population Size and Genetic Conservation Criteria for Bull Trout
North American Journal of Fisheries Management 21:756±764, 2001 q Copyright by the American Fisheries Society 2001 Effective Population Size and Genetic Conservation Criteria for Bull Trout B. E. RIEMAN* U.S. Department of Agriculture Forest Service, Rocky Mountain Research Station, 316 East Myrtle, Boise, Idaho 83702, USA F. W. A LLENDORF Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA Abstract.ÐEffective population size (Ne) is an important concept in the management of threatened species like bull trout Salvelinus con¯uentus. General guidelines suggest that effective population sizes of 50 or 500 are essential to minimize inbreeding effects or maintain adaptive genetic variation, respectively. Although Ne strongly depends on census population size, it also depends on demographic and life history characteristics that complicate any estimates. This is an especially dif®cult problem for species like bull trout, which have overlapping generations; biologists may monitor annual population number but lack more detailed information on demographic population structure or life history. We used a generalized, age-structured simulation model to relate Ne to adult numbers under a range of life histories and other conditions characteristic of bull trout populations. Effective population size varied strongly with the effects of the demographic and environmental variation included in our simulations. Our most realistic estimates of Ne were between about 0.5 and 1.0 times the mean number of adults spawning annually. We conclude that cautious long-term management goals for bull trout populations should include an average of at least 1,000 adults spawning each year. Where local populations are too small, managers should seek to conserve a collection of interconnected populations that is at least large enough in total to meet this minimum. -
Genetic and Demographic Dynamics of Small Populations of Silene Latifolia
Heredity (2003) 90, 181–186 & 2003 Nature Publishing Group All rights reserved 0018-067X/03 $25.00 www.nature.com/hdy Genetic and demographic dynamics of small populations of Silene latifolia CM Richards, SN Emery and DE McCauley Department of Biological Sciences, Vanderbilt University, PO Box 1812, Station B, Nashville, TN 37235, USA Small local populations of Silene alba, a short-lived herbac- populations doubled in size between samples, while others eous plant, were sampled in 1994 and again in 1999. shrank by more than 75%. Similarly, expected heterozygosity Sampling included estimates of population size and genetic and allele number increased by more than two-fold in diversity, as measured at six polymorphic allozyme loci. individual populations and decreased by more than three- When averaged across populations, there was very little fold in others. When population-specific change in number change between samples (about three generations) in and change in measures of genetic diversity were considered population size, measures of within-population genetic together, significant positive correlations were found be- diversity such as number of alleles or expected hetero- tween the demographic and genetic variables. It is specu- zygosity, or in the apportionment of genetic diversity within lated that some populations were released from the and among populations as measured by Fst. However, demographic consequences of inbreeding depression by individual populations changed considerably, both in terms gene flow. of numbers of individuals and genetic composition. Some Heredity (2003) 90, 181–186. doi:10.1038/sj.hdy.6800214 Keywords: genetic diversity; demography; inbreeding depression; gene flow Introduction 1986; Lynch et al, 1995), the interaction of genetics and demography could also influence population persistence How genetics and demography interact to influence in common species, because it is generally accepted that population viability has been a long-standing question in even many abundant species are not uniformly distrib- conservation biology. -
Evolutionary Restoration Ecology
ch06 2/9/06 12:45 PM Page 113 189686 / Island Press / Falk Chapter 6 Evolutionary Restoration Ecology Craig A. Stockwell, Michael T. Kinnison, and Andrew P. Hendry Restoration Ecology and Evolutionary Process Restoration activities have increased dramatically in recent years, creating evolutionary chal- lenges and opportunities. Though restoration has favored a strong focus on the role of habi- tat, concerns surrounding the evolutionary ecology of populations are increasing. In this con- text, previous researchers have considered the importance of preserving extant diversity and maintaining future evolutionary potential (Montalvo et al. 1997; Lesica and Allendorf 1999), but they have usually ignored the prospect of ongoing evolution in real time. However, such contemporary evolution (changes occurring over one to a few hundred generations) appears to be relatively common in nature (Stockwell and Weeks 1999; Bone and Farres 2001; Kin- nison and Hendry 2001; Reznick and Ghalambor 2001; Ashley et al. 2003; Stockwell et al. 2003). Moreover, it is often associated with situations that may prevail in restoration projects, namely the presence of introduced populations and other anthropogenic disturbances (Stockwell and Weeks 1999; Bone and Farres 2001; Reznick and Ghalambor 2001) (Table 6.1). Any restoration program may thus entail consideration of evolution in the past, present, and future. Restoration efforts often involve dramatic and rapid shifts in habitat that may even lead to different ecological states (such as altered fire regimes) (Suding et al. 2003). Genetic variants that evolved within historically different evolutionary contexts (the past) may thus be pitted against novel and mismatched current conditions (the present). The degree of this mismatch should then determine the pattern and strength of selection acting on trait variation in such populations (Box 6.1; Figure 6.1). -
Journal of Ecology, 109 (1)
Article (refereed) - postprint This is the peer reviewed version of the following article: Formenti, Ludovico; Caggìa, Veronica; Puissant, Jeremy; Goodall, Tim; Glauser, Gaétan; Griffiths, Robert; Rasmann, Sergio. 2021. The effect of root‐associated microbes on plant growth and chemical defence traits across two contrasted elevations. Journal of Ecology, 109 (1). 38-50, which has been published in final form at https://doi.org/10.1111/1365-2745.13440 This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. © 2020 British Ecological Society This version is available at https://nora.nerc.ac.uk/id/eprint/528184/ Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at https://nora.nerc.ac.uk/policies.html#access. This document is the authors’ final manuscript version of the journal article, incorporating any revisions agreed during the peer review process. There may be differences between this and the publisher’s version. You are advised to consult the publisher’s version if you wish to cite from this article. The definitive version is available at https://onlinelibrary.wiley.com/ Contact UKCEH NORA team at [email protected] The NERC and UKCEH trademarks and logos (‘the Trademarks’) are registered trademarks of NERC and UKCEH in the UK and other countries, and may not be used without the prior written consent of the Trademark owner. Journal of Ecology DR SERGIO RASMANN -
What Are Plant Ecotypes?
United States Department of Agriculture Natural Resources Conservation Service Technical Note No: TX-PM-10-5 August 2010 What Are Plant Ecotypes? Plant Materials Technical Note Variation in early greenup of switchgrass collections in a common garden plot, Shelly Maher, E. “Kika” de la Garza PMC Range scientists and agronomists have shown that individual species having a large geographical distribution vary considerably in such characteristics as plant height, growth habits, maturation dates, leaf appearance, and reproductive habits. These characteristics are not distributed randomly throughout the range of the species but are clustered into ecological regions (ecoregions) or seed transfer zones. Plants within these ecological regions are known as ecotypes. Ecotypes were first recognized by scientists as far back as the 1920’s. Grass ecotypes assembled in common garden studies revealed that northern ecotypes of sideoats grama flower earlier than more southern ecotypes, resulting in shorter plants. Ecotypes of little bluestem originating from either sandy or clay soils did not do well when placed on soils of the opposite texture. More recently Dr. Danny Gustafson found that genetic, morphological and phenological differences existed between ecoregional sources of big bluestem, Indiangrass and purple prairie clover. Locally adapted plant materials are widely recommended because of their increased chances of establishment success and genetic compatibility with surrounding populations. However, it is important to consider the isolation and thus the potential genetic inbreeding of limiting oneself solely to localized remnant populations. Frequently people try to simplify what an ecotype is by stating that it is a plant that is within 100-200 miles of its center of origin. -
Emergent Biogeography of Microbial Communities in a Model Ocean
REPORTS germ insects not only uncovers those features es- mRNA localization indeed appears to be an sential to this developmental mode but also sheds important component of long-germ embryogene- light on how the bcd-dependent anterior patterning sis, perhaps even playing a role in the transition program might have evolved. Through analysis of from the ancestral short-germ to the derived long- the regulation of the trunk gap gene Kr in Dro- germ fate. sophila and Nasonia,wehavebeenabletodem- onstrate that anterior repression of Kr is essential References and Notes for head and thorax formation and is a common 1. G. K. Davis, N. H. Patel, Annu. Rev. Entomol. 47, 669 (2002). feature of long-germ patterning. Both insects 2. T. Berleth et al., EMBO J. 7, 1749 (1988). accomplish this task through maternal, anteriorly 3. W. Driever, C. Nusslein-Volhard, Cell 54, 83 (1988). localized factors that either indirectly (Drosophila) 4. J. Lynch, C. Desplan, Curr. Biol. 13, R557 (2003). or directly (Nasonia) repress Kr and, hence, trunk 5. J. A. Lynch, A. E. Brent, D. S. Leaf, M. A. Pultz, C. Desplan, Nature 439, 728 (2006). fates. In Drosophila, the terminal system and bcd 6. J. Savard et al., Genome Res. 16, 1334 (2006). regulate expression of gap genes, including Dm-gt, 7. G. Struhl, P. Johnston, P. A. Lawrence, Cell 69, 237 (1992). that repress Dm-Kr. Nasonia’s bcd-independent 8. A. Preiss, U. B. Rosenberg, A. Kienlin, E. Seifert, long-germ embryos must solve the same problem, H. Jackle, Nature 313, 27 (1985). Fig. 4. -
A Review of Caribou Population Dynamics in Alaska Emphasizing Limiting Factors, Theory, and Management Implications
DAVIS A REVIEW OF CARIBOU POPULATION DYNAMICS IN ALASKA EMPHASIZING LIMITING FACTORS, THEORY, AND MANAGEMENT IMPLICATIONS James L. Davis, Alaska Department of Fish and Game, 1300 College Road, Fairbanks, AK 99701 U.S.A. Patrick Valkenburg, Alaska Department of Fish and Ga;me, 1300 College Road, Fairbanks, AK 99701 USA 1 Abstract: Alaska's 29 recognized caribou (Rangifer tarandus granti) herds are classified to identify those that are both migratory and inhabit areas where moose (Alces alces) (or other ungulates) are important alternate prey. During the time that detailed demographic data have been obtained (i.e., 1960s-1980s), natural mortality and human-induced mortality have varied more and have more influenced Alaska's caribou herd demographics than have natality changes. Dispersal has not significantly influenced population dynamics during this time and has not been consistent with theory in the caribou literature. Detailed demographic data have been obtained primarily during low and increasing phases of populations. Recent conclusions regarding limiting and regulating factors are compared and contrasted with past reviews of Alaskan caribou population dynamics. INTRODUCTION For discussion at the 4th North American Caribou Workshop, caribou in North America were envisioned as comprising 3 ecotypes (F. Messier, pers. commun.): ecotype 1- woodland caribou (B-~ caribou) - 184 -- ---------~-------------------- living in association with alternate ungulate prey (e.g., British Columbia caribou); ecotype 2- migratory caribou herds that inhabit areas also used by alternate ungulate prey (particularly moose) (e.g. , Alaska caribou) ; and ecotype 3 - migratory caribou herds having limited contact with alternate ungulate prey (e.g., the George River Herd in Quebec/Labrador). This paper discusses population dynamics in the Alaskan caribou ecotype. -
4 Genetics of Small Populations: the Case of the Laysan Finch
Case Studies in Ecology and Evolution DRAFT 4 Genetics of Small Populations: the case of the Laysan Finch In 1903, rabbits were introduced to a tiny island in the Hawaiian archipelago called Laysan Island. That island is only 187 ha in size, in the middle of the Pacific Ocean about 1000 km northeast of Hawaii. Despite the benign intentions for having rabbits on the island, the released rabbits quickly multiplied and devoured most of the vegetation. Oceanic islands are often home to unique or endemic species that have evolved in isolation. Laysan was no exception. Well-known examples of island endemics include the finches on the Galapagos Islands and the dodo that was only known from the islands of Mauritius. On Laysan there were several species of birds and plants that were known only from that single island. The introduced rabbits on the island destroyed the food supply for various species of land birds. Several endemic species of plants and animals were driven extinct, including the Laysan rail, the Laysan honeycreeper, the millerbird, and plants like the Laysan fan palm. Only 4 of 26 species of plants remained on the island in 1923, 20 years after the rabbits first arrived. Populations of other species declined to very small levels. One of the two surviving endemic land birds was a small finch called the Laysan finch, Telespiza cantans. After the rabbits were finally exterminated in 1923, the population of finches recovered on Laysan Island. Over the last four decades the average population size of on Laysan Island has been about 11,000 birds. -
Amphibian Cascades Frog SOC X X Mountain Meadows, Bogs, Ponds Or
Taxa Species Species SMU/ESU/D Federal State BM CP CR EC KM NR WC WV NS Special needs Limiting factors Data gaps Conservation actions Key reference or plan, if available Common Scientific PS/Group Listing listing Name Name Status status Amphibian Cascades SOC X X Mountain meadows, bogs, ponds or potholes Montane species vulnerable to genetic Habitat requirements and how they may vary by Maintain connectivity of habitat. Monitor effects of fish http://www.fs.fed.us/psw/publications/documents/ frog above 2,400 feet elevation. Requires access isolation. Experiencing substantial elevation within the species' range. Habitat stocking and water quality on populations. Carefully manage psw_gtr244/psw_gtr244.pdf to permanent water. Lays eggs in shallow reductions in southern parts of range characteristics that could enhance migration livestock grazing in occupied wet meadows. Use prescribed sunny edges of ponds, or on low vegetation (e.g., CA). Potentially sensitive to and gene flow. Feeding habits. Effects of burning or hand-felling of trees periodically to set plant near ponds where warm sunlight speeds egg waterborne pathogens. pathogens airborne environmental pollution. succession. If reintroductions are warranted, use individuals development. Larvae may “school” in large Feasibility studies on reintroduction at historic from nearby populations and consult results of feasibility masses. sites. studies. Conservation actions in Oregon are particularly valuable given reductions in other parts of range. Amphibian Cascade X X Cold, fast-flowing, clear, permanent headwater Larvae take several years to reach sexual Basic inventory, abundance and population Maintain stream buffers to maintain cool water Howell, B.L. and N. M. Maggiulli. 2011. -
Key Restoration Methods of a Polluted River Ecosystem
Key Restoration Methods of a Polluted River Chalachew Yenew* Ecosystem: A Systematic Review Environmental Health Science, Social and Population Health (SPH) Unit, College of Medicine and Health Sciences, Debre Tabor University, Ethiopia Abstract Background: River is one of a freshwater ecosystem that plays an important role in people's living, aquatic and terrestrial living organisms, and agricultural production. Compared to other ecosystems, rivers support a disproportionately large number of *Corresponding author: plant and animal species. However, excessive human activities have busted the original Chalachew Yenew ecological balance by polluting the river ecosystem. As a result, partial or total affected the structure and functions of the river ecosystem. This review aimed to investigate the major ecological restoration methods of the polluted river ecosystem. [email protected] Methods: We have adopted the procedures from the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The required data were Environmental Health Science, Social and collected via a literature search of MEDLINE/PubMed, Google Scholar, Science Direct, Population Health (SPH) Unit, College of EMBASE, HINARI, and Cochrane Library from the 9th of September, 2019 to the 5th Medicine and Health Sciences, Debre Tabor of March, 2020 using combined terms. Articles were included in our review; only if University, Ethiopia it assessed empirically and comparison and contrast between two or more different restoration methods. This review; it is mainly included published research articles, national reports, and annual reports and excluded opinion essays. Citation: Yenew C (2021) Key Restoration Results: Commonly used methods for restoration of polluted rivers around the Methods of a Polluted River Ecosystem: A globe could be categorized depending on the physical, chemical, and biological Systematic Review. -
Taxonomic Resolution, Ecotypes and the Biogeography of Prochlorococcus
Environmental Microbiology (2009) 11(4), 823–832 doi:10.1111/j.1462-2920.2008.01803.x Taxonomic resolution, ecotypes and the biogeography of Prochlorococcus Adam C. Martiny,1,2,3*AmosP.K.Tai,1† by a hierarchy of environmental factors as well dis- Daniele Veneziano,1 François Primeau2 and persal limitation. Sallie W. Chisholm1** 1Department of Civil & Environmental Engineering, Introduction Massachusetts Institute of Technology, Cambridge, MA 02139, USA. The marine cyanobacterium Prochlorococcus is an impor- Departments of 2Earth System Science and 3Ecology tant contributor to global nutrient cycles, as it contributes and Evolutionary Biology, University of California – a significant fraction of the primary production in mid- Irvine, Irvine, CA 92697, USA. latitude oceans (Liu et al., 1997). Prochlorococcus is known to thrive under a wide range of environmental conditions, which in part may be due to the existence of Summary several closely related (> 97% 16S rRNA similarity) but In order to expand our understanding of the diversity physiological and genetically distinct lineages. At broad and biogeography of Prochlorococcus ribotypes, we taxonomic resolution, Prochlorococcus strains can be PCR-amplified, cloned and sequenced the 16S/23S divided into two ecotypes, high-light (HL)-adapted and rRNA ITS region from sites in the Atlantic and Pacific low-light (LL)-adapted (Moore et al., 1998). Most of the oceans. Ninety-three per cent of the ITS sequences LL-adapted ecotypes are found in significant abundance could be assigned to existing Prochlorococcus only in deeper waters, while the HL-adapted cells typically clades, although many novel subclades were dominate surface waters (West and Scanlan, 1999).