Understanding the Ecology of Extinction: Are We Close to the Critical Threshold?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effective Population Size and Genetic Conservation Criteria for Bull Trout
North American Journal of Fisheries Management 21:756±764, 2001 q Copyright by the American Fisheries Society 2001 Effective Population Size and Genetic Conservation Criteria for Bull Trout B. E. RIEMAN* U.S. Department of Agriculture Forest Service, Rocky Mountain Research Station, 316 East Myrtle, Boise, Idaho 83702, USA F. W. A LLENDORF Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA Abstract.ÐEffective population size (Ne) is an important concept in the management of threatened species like bull trout Salvelinus con¯uentus. General guidelines suggest that effective population sizes of 50 or 500 are essential to minimize inbreeding effects or maintain adaptive genetic variation, respectively. Although Ne strongly depends on census population size, it also depends on demographic and life history characteristics that complicate any estimates. This is an especially dif®cult problem for species like bull trout, which have overlapping generations; biologists may monitor annual population number but lack more detailed information on demographic population structure or life history. We used a generalized, age-structured simulation model to relate Ne to adult numbers under a range of life histories and other conditions characteristic of bull trout populations. Effective population size varied strongly with the effects of the demographic and environmental variation included in our simulations. Our most realistic estimates of Ne were between about 0.5 and 1.0 times the mean number of adults spawning annually. We conclude that cautious long-term management goals for bull trout populations should include an average of at least 1,000 adults spawning each year. Where local populations are too small, managers should seek to conserve a collection of interconnected populations that is at least large enough in total to meet this minimum. -
Genetic and Demographic Dynamics of Small Populations of Silene Latifolia
Heredity (2003) 90, 181–186 & 2003 Nature Publishing Group All rights reserved 0018-067X/03 $25.00 www.nature.com/hdy Genetic and demographic dynamics of small populations of Silene latifolia CM Richards, SN Emery and DE McCauley Department of Biological Sciences, Vanderbilt University, PO Box 1812, Station B, Nashville, TN 37235, USA Small local populations of Silene alba, a short-lived herbac- populations doubled in size between samples, while others eous plant, were sampled in 1994 and again in 1999. shrank by more than 75%. Similarly, expected heterozygosity Sampling included estimates of population size and genetic and allele number increased by more than two-fold in diversity, as measured at six polymorphic allozyme loci. individual populations and decreased by more than three- When averaged across populations, there was very little fold in others. When population-specific change in number change between samples (about three generations) in and change in measures of genetic diversity were considered population size, measures of within-population genetic together, significant positive correlations were found be- diversity such as number of alleles or expected hetero- tween the demographic and genetic variables. It is specu- zygosity, or in the apportionment of genetic diversity within lated that some populations were released from the and among populations as measured by Fst. However, demographic consequences of inbreeding depression by individual populations changed considerably, both in terms gene flow. of numbers of individuals and genetic composition. Some Heredity (2003) 90, 181–186. doi:10.1038/sj.hdy.6800214 Keywords: genetic diversity; demography; inbreeding depression; gene flow Introduction 1986; Lynch et al, 1995), the interaction of genetics and demography could also influence population persistence How genetics and demography interact to influence in common species, because it is generally accepted that population viability has been a long-standing question in even many abundant species are not uniformly distrib- conservation biology. -
Final Report of the Statewide Ecological Extinction Task Force
FINAL REPORT OF THE STATEWIDE ECOLOGICAL EXTINCTION TASK FORCE ESTABLISHED UNDER THE PROVISIONS OF SENATE CONCURRENT RESOLUTION NO. 20 OF THE 149TH GENERAL ASSEMBLY RESPECTFULLY SUBMITTED TO THE GOVERNOR, PRESIDENT PRO TEMPORE OF THE SENATE, AND SPEAKER OF THE HOUSE DECEMBER 1ST, 2017 TABLE OF CONTENTS MEMBERS OF THE TASK FORCE ............................................................................... 1 PREFACE.................................................................................................................. 2 INTRODUCTION ........................................................................................................ 3 EXECUTIVE SUMMARY BACKGROUND OF THE TASK FORCE .............................................................. 6 OVERVIEW OF MEETINGS .............................................................................. 7 TASK FORCE FINDINGS ............................................................................................ 10 TASK FORCE RECOMMENDATIONS .......................................................................... 11 APPENDICES A. SENATE CONCURRENT RESOLUTION 20 ................................................... 16 B. COMPOSITION OF TASK FORCE AND MEMBER BIOGRAPHIES ................... 19 C. MINUTES FROM TASK FORCE MEETINGS ................................................. 32 D. INTERN REPORT ....................................................................................... 105 E. LINKS TO SUPPLEMENTAL MATERIALS CONTRIBUTED BY TASK FORCE MEMBERS ............................................. -
Ecosystem Impact of the Decline of Large Whales in the North Pacific
SIXTEEN Ecosystem Impact of the Decline of Large Whales in the North Pacific DONALD A. CROLL, RAPHAEL KUDELA, AND BERNIE R. TERSHY Biodiversity loss can significantly alter ecosystem processes over a 150-year period (Springer et al. 2003). Although large (Chapin et al. 2000), and ecological extinction can have whales are significant consumers of pelagic prey, such as similar effects (Jackson et al. 2001). For marine vertebrates, schooling fish and euphausiids (krill), the trophic impacts of overharvesting is the main driver of ecological extinction, their removal is not clear (Trites et al. 1999). Indeed, it is and the expansion of fishing fleets into the open ocean has possible that the biomass of prey consumed by large whales precipitated rapid declines in pelagic apex predators such as prior to exploitation exceeded that currently taken by com- whales (Baker and Clapham 2002), sharks (Baum et al. 2003), mercial fisheries (Baker and Clapham 2002), but estimates of tuna, and billfishes (Cox et al. 2002; Christensen et al. 2003), prey consumption by large whales before and after the period leading to a trend in global fisheries toward exploitation of of intense human exploitation are lacking. Given the large lower trophic levels (Pauly et al. 1998a). Globally, many fish biomass of pre-exploitation whale populations (see, e.g., stocks are overexploited (Steneck 1998), and the resulting Whitehead 1995; Roman and Palumbi 2003), their high ecological extinctions have been implicated in the collapse mammalian metabolic rate, and their relatively high trophic of numerous nearshore coastal ecosystems (Jackson et al. position (Trites 2001), it is likely that the removal of large 2001). -
The Oyster : Contributions to Habitat, Biodiversity, & Ecological Resiliency
The Oyster : Contributions to Habitat, Biodiversity, & Ecological Resiliency Factors Affecting Oyster Distribution & Abundance Physical = salinity, temperature Salinity & Temperature •S - dynamic change ~daily basis; T - changes seasonally •Affects community organization - high S & T= predators, disease By Steve Morey, FAMU ‘Oysters suffered significant disease- related mortality under high-salinity, drought conditions, particularly in the summer.’ Dermo Perkinsus marinus Petes et al. 2012. Impacts of upstream drought and water withdrawals on the health & survival of downstream estuarine oyster populations. Ecology & Evolution 2(7):1712-1724 Factors Affecting Oyster Distribution & Abundance Physical = River flow Seasonal River Flow •Major influence on physical & biological relationships •Delivers low salinity H2O, turbidity, high nutrient & detritus concentrations •River flow, when high, can extend far offshore influencing shelf-edge productivity Factors Affecting Oyster Distribution & Abundance Competition for space & food at different life stages • Can be intraspecific -oysters competing with oysters- or interspecific - other species competing with oysters) Oysters • Can affect settlement patterns, and so alter community structure • Can reduce oyster density, growth, or physical condition Oysters eat phytoplankton & other organisms within a small size range, competing with other Barnacles filter feeders Mussels & Tunicates Factors Affecting Oyster Distribution & Abundance Species interactions – predation & disease •Habitat complexity -
Long-Term Declines of a Highly Interactive Urban Species
Biodiversity and Conservation (2018) 27:3693–3706 https://doi.org/10.1007/s10531-018-1621-z ORIGINAL PAPER Long‑term declines of a highly interactive urban species Seth B. Magle1 · Mason Fidino1 Received: 26 March 2018 / Revised: 9 August 2018 / Accepted: 24 August 2018 / Published online: 1 September 2018 © Springer Nature B.V. 2018 Abstract Urbanization generates shifts in wildlife communities, with some species increasing their distribution and abundance, while others decline. We used a dataset spanning 15 years to assess trends in distribution and habitat dynamics of the black-tailed prairie dog, a highly interactive species, in urban habitat remnants in Denver, CO, USA. Both available habitat and number of prairie dog colonies declined steeply over the course of the study. However, we did observe new colonization events that correlated with habitat connectivity. Destruc- tion of habitat may be slowing, but the rate of decline of prairie dogs apparently remained unafected. By using our estimated rates of loss of colonies throughout the study, we pro- jected a 40% probability that prairie dogs will be extirpated from this area by 2067, though that probability could range as high as 50% or as low as 20% depending on the rate of urban development (i.e. habitat loss). Prairie dogs may fulfll important ecological roles in urban landscapes, and could persist in the Denver area with appropriate management and habitat protections. Keywords Connectivity · Prairie dog · Urban habitat · Interactive species · Habitat fragmentation · Landscape ecology Introduction The majority of the world’s human population lives in urban areas, which represent the earth’s fastest growing ecotype (Grimm et al. -
Maintaining Humanity's Life Support Systems in the 21St Century
Scientific Consensus on Maintaining Humanity’s Life Support Systems in the 21st Century Information for Policy Makers 02 Contents Essential PointS for PoliCy MakErS ii One-Page Executive Summary ovErviEw of thE fivE Key Problems iii One-Page Overview of Problems and Broad-Brush Solutions Preface: Purpose of this Consensus Statement 1 background information: Dangerous Trends in our Life Support Systems 2 rising to the Challenge 3 Climate Disruption 4 Extinctions 7 Ecosystem Transformation 11 Pollution 14 Population Growth and Resource Consumption 16 Interactions 19 Cited Supporting Studies 21 Some other relevant reports 26 liSt of Supporting-SCiEntiSt Signatures 27 i ESSEntial PointS FOR PoliCy MakErS Scientific Consensus on Maintaining Humanity’s Life Support Systems in the 21st Century Earth is rapidly approaching a tipping point. Human impacts are causing alarming levels of harm to our planet. As scientists who study the interaction of people with the rest of the biosphere using a wide range of approaches, we agree that the evidence that humans are damaging their ecological life-support systems is overwhelming. We further agree that, based on the best scientific information available, human quality of life will suffer substantial degradation by the year 2050 if we continue on our current path. Science unequivocally demonstrates the human impacts of key concern: • Climate disruption — more, faster climate change than since humans first became a species • Extinctions — not since the dinosaurs went extinct have so many species and populations died out so fast, both on land and in the oceans. • Wholesale loss of diverse ecosystems — we have plowed, paved, or otherwise transformed more than 40% of Earth’s ice-free land, and no place on land or in the sea is free of our direct or indirect influences. -
4 Genetics of Small Populations: the Case of the Laysan Finch
Case Studies in Ecology and Evolution DRAFT 4 Genetics of Small Populations: the case of the Laysan Finch In 1903, rabbits were introduced to a tiny island in the Hawaiian archipelago called Laysan Island. That island is only 187 ha in size, in the middle of the Pacific Ocean about 1000 km northeast of Hawaii. Despite the benign intentions for having rabbits on the island, the released rabbits quickly multiplied and devoured most of the vegetation. Oceanic islands are often home to unique or endemic species that have evolved in isolation. Laysan was no exception. Well-known examples of island endemics include the finches on the Galapagos Islands and the dodo that was only known from the islands of Mauritius. On Laysan there were several species of birds and plants that were known only from that single island. The introduced rabbits on the island destroyed the food supply for various species of land birds. Several endemic species of plants and animals were driven extinct, including the Laysan rail, the Laysan honeycreeper, the millerbird, and plants like the Laysan fan palm. Only 4 of 26 species of plants remained on the island in 1923, 20 years after the rabbits first arrived. Populations of other species declined to very small levels. One of the two surviving endemic land birds was a small finch called the Laysan finch, Telespiza cantans. After the rabbits were finally exterminated in 1923, the population of finches recovered on Laysan Island. Over the last four decades the average population size of on Laysan Island has been about 11,000 birds. -
Forest Habitat Loss and Fragmentation in Central Poland During the Last 100 Years
Silva Fennica 44(4) research notes SILVA FENNICA www.metla.fi/silvafennica · ISSN 0037-5330 The Finnish Society of Forest Science · The Finnish Forest Research Institute Forest Habitat Loss and Fragmentation in Central Poland during the Last 100 Years Tomasz D. Mazgajski, Michał Żmihorski and Katarzyna Abramowicz Mazgajski, T.D., Żmihorski, M. & Abramowicz, K. 2010. Forest habitat loss and fragmentation in Central Poland during the last 100 years. Silva Fennica 44(4): 715–723. The process of habitat fragmentation consists of two components – habitat loss and fragmenta- tion per se. Both are thought to be among the most important threats to biodiversity. However, the biological consequences of this process such as species occurrence, abundance, or genetic structure of population are driven by current, as well as previous, landscape configurations. Therefore, historical analyses of habitat distribution are of great importance in explaining the current species distribution. In our analysis, we describe the forest fragmentation process for an area of 178 km2 in the northern part of Mazowsze region of central Poland. Topographical maps from the years 1890, 1957 and 1989 were used. Over the 100-year period, forest cover- age in this area changed from 17% to 5.6%, the number of patches increased from 19 to 42, while the area of the forest interior decreased from 1933 ha to 371 ha. The two components of fragmentation were clearly separated in time. Habitat loss occurred mainly during the first period (1890–1957) and fragmentation per se in the second (1957–1989). Moreover, we recorded that only 47.7% of all the currently (in 1989) afforested areas constitute sites where forests previously occurred (in 1890 and 1957). -
Sea Turtles : the Importance of Sea Turtles to Marine Ecosystems
PHOTO TIM CALVER WHY HEALTHY OCEANS NEED SEA TURTLES : THE IMPORTANCE OF SEA TURTLES TO MARINE ECOSYSTEMS Wilson, E.G., Miller, K.L., Allison, D. and Magliocca, M. oceana.org/seaturtles S E L T R U T Acknowledgements The authors would like to thank Karen Bjorndal for her review of this report. We would also like to thank The Streisand Foundation for their support of Oceana’s work to save sea turtles. PHOTO MICHAEL STUBBLEFIELD OCEANA | Protecting the World’s Oceans TABLE OF CONTENTS WHY HEALTHY OCEANS NEED SEA TURTLES 3 Executive Summary 4 U.S. Sea Turtles 5 Importance of Sea Turtles to Healthy Oceans 6 Maintaining Habitat Importance of Green Sea Turtles on Seagrass Beds Impact of Hawksbill Sea Turtles on Coral Reefs Benefit of Sea Turtles to Beach Dunes 9 Maintaining a Balanced Food Web Sea Turtles and Jellyfish Sea Turtles Provide Food for Fish 11 Nutrient Cycling Loggerheads Benefit Ocean Floor Ecosystems Sea Turtles Improve Nesting Beaches 12 Providing Habitat 14 The Risk of Ecological Extinction 15 Conclusions oceana.org/seaturtles 1 S E L T R U T PHOTO TIM CALVER 2 OCEANA | Protecting the World’s Oceans EXECUTIVE SUMMARY Sea turtles have played vital roles in maintaining the health of the world’s oceans for more than 100 million years. These roles range from maintaining productive coral reef ecosystems to transporting essential nutrients from the oceans to beaches and coastal dunes. Major changes have occurred in the oceans because sea turtles have been virtually eliminated from many areas of the globe. Commercial fishing, loss of nesting habitat and climate change are among the human-caused threats pushing sea turtles towards extinction. -
Amphibian Cascades Frog SOC X X Mountain Meadows, Bogs, Ponds Or
Taxa Species Species SMU/ESU/D Federal State BM CP CR EC KM NR WC WV NS Special needs Limiting factors Data gaps Conservation actions Key reference or plan, if available Common Scientific PS/Group Listing listing Name Name Status status Amphibian Cascades SOC X X Mountain meadows, bogs, ponds or potholes Montane species vulnerable to genetic Habitat requirements and how they may vary by Maintain connectivity of habitat. Monitor effects of fish http://www.fs.fed.us/psw/publications/documents/ frog above 2,400 feet elevation. Requires access isolation. Experiencing substantial elevation within the species' range. Habitat stocking and water quality on populations. Carefully manage psw_gtr244/psw_gtr244.pdf to permanent water. Lays eggs in shallow reductions in southern parts of range characteristics that could enhance migration livestock grazing in occupied wet meadows. Use prescribed sunny edges of ponds, or on low vegetation (e.g., CA). Potentially sensitive to and gene flow. Feeding habits. Effects of burning or hand-felling of trees periodically to set plant near ponds where warm sunlight speeds egg waterborne pathogens. pathogens airborne environmental pollution. succession. If reintroductions are warranted, use individuals development. Larvae may “school” in large Feasibility studies on reintroduction at historic from nearby populations and consult results of feasibility masses. sites. studies. Conservation actions in Oregon are particularly valuable given reductions in other parts of range. Amphibian Cascade X X Cold, fast-flowing, clear, permanent headwater Larvae take several years to reach sexual Basic inventory, abundance and population Maintain stream buffers to maintain cool water Howell, B.L. and N. M. Maggiulli. 2011. -
Assessing Ecological Function in the Context of Species Recovery H
Assessing ecological function in the context of species recovery H. Resit Akçakaya, Ana S.L. Rodrigues, David Keith, E.J. Milner-gulland, Eric Sanderson, Simon Hedges, David Mallon, Molly Grace, Barney Long, Erik Meijaard, et al. To cite this version: H. Resit Akçakaya, Ana S.L. Rodrigues, David Keith, E.J. Milner-gulland, Eric Sanderson, et al.. Assessing ecological function in the context of species recovery. Conservation Biology, Wiley, 2020, 10.1111/cobi.13425. hal-02383294 HAL Id: hal-02383294 https://hal.archives-ouvertes.fr/hal-02383294 Submitted on 18 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Article type: Essay Assessing Ecological Function in the Context of Species Recovery H. Resit Akçakaya1,2, Ana S.L. Rodrigues3, David A. Keith2,4,5, E.J. Milner-Gulland6, Eric W. Sanderson7, Simon Hedges8,9, David P. Mallon10,11, Molly K. Grace12, Barney Long13, Erik Meijaard14,15, P.J. Stephenson16,17 1 Dept. of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA. email: [email protected] 2 IUCN Species Survival Commission 3 Centre d'Ecologie Fonctionnelle et Evolutive CEFE UMR 5175, CNRS – Univ.