Report of the Workshop on Assessing the Population Viability of Endangered Marine Mammals in U.S

Total Page:16

File Type:pdf, Size:1020Kb

Report of the Workshop on Assessing the Population Viability of Endangered Marine Mammals in U.S Report of the Workshop on Assessing the Population Viability of Endangered Marine Mammals in U.S. Waters 13–15 September 2005 Savannah, Georgia Prepared by the Marine Mammal Commission 2007 This is one of five reports prepared in response to a directive from Congress to the Marine Mammal Commission to assess the cost-effectiveness of protection programs for the most endangered marine mammals in U.S. waters TABLE OF CONTENTS List of Tables ..................................................................................................................... iv Executive Summary.............................................................................................................v I. Introduction..............................................................................................................1 II. Biological Viability..................................................................................................1 III. Population Viability Analysis..................................................................................5 IV. Viability of the Most Endangered Marine Mammals ..............................................6 Extinctions and recoveries.......................................................................................6 Assessment of biological viability...........................................................................7 V. Improving Listing Decisions..................................................................................10 Quantifying the listing process ..............................................................................10 A theoretical decision tree for listing under the Endangered Species Act.............10 VI. Improving Other Management Decisions..............................................................11 VII. Acknowledgments..................................................................................................12 VIII. Literature Cited......................................................................................................12 Appendix I. Examples of Existing Marine Mammal Population Models......................19 North Atlantic Right Whales .....................................................................19 Southern Resident Killer Whales...............................................................20 Cook Inlet Beluga Whales .........................................................................21 Florida Manatees........................................................................................22 Hawaiian Monk Seals ................................................................................24 Steller Sea Lions — Western Stock...........................................................25 Steller Sea Lions — Eastern Stock ............................................................26 California Sea Otters..................................................................................27 Appendix II. Workshop Attendees..................................................................................29 Appendix III. Workshop Agenda .....................................................................................30 iii LIST OF TABLES Table 1. Summary of the biological status of 22 marine mammal species and stocks currently listed as endangered or threatened under the Endangered Species Act or designated as depleted under the Marine Mammal Protection Act .............................15 Table 2. Examples of wild populations that have recovered from extremely low population sizes............................................................................................................16 Table 3. A theoretical decision tree and analytical recommendations for listings under the Endangered Species Act ..............................................................................18 iv EXECUTIVE SUMMARY Congress, in its 2004 Omnibus Appropriations Act, directed the Marine Mammal Commission to “review the biological viability of the most endangered marine mammal populations and make recommendations regarding the cost-effectiveness of current protection programs.” As part of its response to the directive, the Commission convened a workshop to examine the state of science regarding population viability analysis (PVA) for marine mammal populations. The workshop was held 13–15 September 2005 in Savannah, Georgia. Its goals were to (1) review estimates of the viability of the most endangered marine mammals, (2) review the status of ongoing modeling efforts, particularly PVA, for endangered marine mammals, and (3) develop recommendations to improve listing and management decisions based on explicit consideration and improved estimation of population extinction risk. The workshop focused on the 22 marine mammal taxa occurring in U.S. waters and either listed as threatened or endangered under the Endangered Species Act or designated as depleted under the Marine Mammal Protection Act. Participants agreed that, with two or possibly three exceptions, all those taxa—with appropriate management—appear to have the potential for persisting into the future. The first exception is the Caribbean monk seal, which has not been observed and documented since 1952 and is presumed to be extinct. The second is the AT1 stock of killer whales, which numbers fewer than 10 individuals, has not produced a single surviving calf for more than 20 years, and is highly unlikely to persist beyond the lifetimes of existing individuals. The possible third exception is the eastern population of North Pacific right whales, which has been a matter of concern based largely on the rarity of sightings, lack of information on the population, and its history of commercial exploitation. That concern has been tempered somewhat by recent evidence of successful reproduction (observations of cow-calf pairs). In addition to these obvious exceptions, the stock structure of many marine mammal species is poorly known, and participants noted that some additional stocks, yet to be identified, may be unlikely to persist into the future. For the taxa that were considered to be potentially viable, the available published analyses at the time of the workshop were not sufficient for a systematic and consistent quantification of their respective viabilities. The workshop identified methodological issues that need to be addressed to allow meaningful quantitative comparisons among viability estimates. Participants reviewed the current state of PVA for marine mammals and other wildlife. For candidate species or species that are already listed, the growing trend is to use PVA to support listing and management decisions. PVA provides a mechanism for integrating all relevant data into a quantitative assessment to produce an estimate of extinction risk over a defined period of time. Such analyses are more objective than the qualitative listing approaches used to date, more amenable to explicit inclusion of all relevant data, more transparent with respect to assumptions and uncertainties, more easily standardized, and more conducive to the kind of structured decision-making that is needed to improve listing and management of endangered, threatened, and depleted taxa. v Participants also highlighted several common impediments to quantitative analyses for many marine mammal taxa. These include poor understanding of stock structure, insufficient biological data for recognized taxa, insufficient data for characterizing potential relationships between specific threats or management actions and population responses, and difficulty in predicting future threats and management actions that may affect their risk of extinction. Further, participants expressed a need for caution when using commercially available analytical software without proper documentation and without an understanding of the structure, function, and assumptions incorporated into the software. Participants generally agreed with the findings of the Quantitative Working Group convened by the National Marine Fisheries Service and the U.S. Fish and Wildlife Service (DeMaster et al. 2004) to develop quantitative criteria for listing decisions. Among other things, those findings included the need for (1) performance testing of models used in the listing process to determine the likelihood of correct vs. incorrect decisions, given the life histories of species involved and uncertainties in the data or analytical results, and (2) clear links between policy decisions and quantitative models, particularly with regard to interpreting the uncertainty reflected in model results. Finally, participants in the Savannah workshop considered and expressed support for a proposed decision tree incorporating simple PVAs to assess the status of poorly known taxa and guide listing decisions. The decision tree would use available data on the species of interest; default values where data are lacking; a structured, standardized, and simple analytical framework; and explicit guidelines for interpreting results. With appropriate development, the decision tree might be used to structure listing decisions in much the same manner as the potential biological removal concept is used to identify strategic stocks in the management of marine mammal/fishery interactions under the Marine Mammal Protection Act. vi I. INTRODUCTION In its 2004 Omnibus Appropriations Act, Congress directed the Marine Mammal Commission to “review the biological viability of the most endangered marine mammal populations and make recommendations regarding the cost-effectiveness of current
Recommended publications
  • Evolutionary Genetics and the Major Histocompatibility Complex of New Zealand Robins (Petroicidae)
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Evolutionary Genetics and the Major Histocompatibility Complex of New Zealand Robins (Petroicidae) Hilary C. Miller A thesis submitted for the degree of Doctor of Philosophy in Molecular BioSciences at Massey University, New Zealand June 2003 The founding black robin pair, Old Blue (above), and Old Yellow (right) Photo: Rod Morris The South Island robin Photo: J. Kendrick (DOe) Abstract The genes ofthe major histocompatibility complex (MHC) are highly polymorphic and play a direct role in disease resistance. Loss of variation at MHC loci may increase extinction risk in endangered species, due to an inability to combat a range of pathogens. In this thesis, the evolution of class II B MHC genes is investigated, and levels of variation at these loci are measured in two species of New Zealand robin, the endangered Chatham Island black robin (Petroica traversi), and the non-endangered South Island robin (Petroica australis australis). Transcribed class II B MHC loci from both black robin and South Island robin were characterised prior to analysis ofMHC variation. To this end, a non-lethal protocol fo r isolation of transcribed sequences from blood using 3'RA CE and RT-PCR was developed. Four class II B cDNA sequences were isolated frombla ck robin, and eight sequences were isolated from the South Island robin, indicating there are at least fo ur class II B loci.
    [Show full text]
  • Disaggregation of Bird Families Listed on Cms Appendix Ii
    Convention on the Conservation of Migratory Species of Wild Animals 2nd Meeting of the Sessional Committee of the CMS Scientific Council (ScC-SC2) Bonn, Germany, 10 – 14 July 2017 UNEP/CMS/ScC-SC2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II (Prepared by the Appointed Councillors for Birds) Summary: The first meeting of the Sessional Committee of the Scientific Council identified the adoption of a new standard reference for avian taxonomy as an opportunity to disaggregate the higher-level taxa listed on Appendix II and to identify those that are considered to be migratory species and that have an unfavourable conservation status. The current paper presents an initial analysis of the higher-level disaggregation using the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World Volumes 1 and 2 taxonomy, and identifies the challenges in completing the analysis to identify all of the migratory species and the corresponding Range States. The document has been prepared by the COP Appointed Scientific Councilors for Birds. This is a supplementary paper to COP document UNEP/CMS/COP12/Doc.25.3 on Taxonomy and Nomenclature UNEP/CMS/ScC-Sc2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II 1. Through Resolution 11.19, the Conference of Parties adopted as the standard reference for bird taxonomy and nomenclature for Non-Passerine species the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World, Volume 1: Non-Passerines, by Josep del Hoyo and Nigel J. Collar (2014); 2.
    [Show full text]
  • The Black Robin :The Saving of the World's Most Endangered Bird, by David Butler & Don Merton, 1992
    1992 235 REVIEWS The Black Robin :the Saving of the World's Most Endangered Bird, by David Butler & Don Merton, 1992. Oxford University Press, 304 pp., ISBN : 0-19-558260-8. Price $49.95. This book, so far seen only as proofs, is due for publication in late September or early October; it should be of wide interest to readers of Notonis. On the one hand, it provides a detailed record of how the Black Robin was brought back from the verge of extinction and, on the other, a lively and interesting account of the activities of the dedicated people who made this remarkable achievement possible despite many difficulties. The book is to have 91 photographs (21 in colour), 24 figures (including maps) and 18 tables, plus appendices and end notes. The first two of the 18 chapters provide an historical perspective covering the period from 1871, when the Black Robin was discovered by H. H. Travers, to 1938, when Fleming's expedition confiied the survival of the species on Little Mangere Island. The third chapter supplies useful information about the geological history of the Chatham Islands, their discovery and geography, and about the history and relationships of the flora and fauna. The fourth chapter, summarising events during the 1950s and 1960s, records the acquiring of reserve status for South East and Mangere Islands and the increasing involvement of the NZ Wildlife Service in the management of endangered bird species at the Chathams and elsewhere. The remaining chapters explain chronologically, and in detail, how the wildlife officers and their helpers reversed the decline in the Black Robin's population.
    [Show full text]
  • Order CETACEA Suborder MYSTICETI BALAENIDAE Eubalaena Glacialis (Müller, 1776) EUG En - Northern Right Whale; Fr - Baleine De Biscaye; Sp - Ballena Franca
    click for previous page Cetacea 2041 Order CETACEA Suborder MYSTICETI BALAENIDAE Eubalaena glacialis (Müller, 1776) EUG En - Northern right whale; Fr - Baleine de Biscaye; Sp - Ballena franca. Adults common to 17 m, maximum to 18 m long.Body rotund with head to 1/3 of total length;no pleats in throat; dorsal fin absent. Mostly black or dark brown, may have white splotches on chin and belly.Commonly travel in groups of less than 12 in shallow water regions. IUCN Status: Endangered. BALAENOPTERIDAE Balaenoptera acutorostrata Lacepède, 1804 MIW En - Minke whale; Fr - Petit rorqual; Sp - Rorcual enano. Adult males maximum to slightly over 9 m long, females to 10.7 m.Head extremely pointed with prominent me- dian ridge. Body dark grey to black dorsally and white ventrally with streaks and lobes of intermediate shades along sides.Commonly travel singly or in groups of 2 or 3 in coastal and shore areas;may be found in groups of several hundred on feeding grounds. IUCN Status: Lower risk, near threatened. Balaenoptera borealis Lesson, 1828 SIW En - Sei whale; Fr - Rorqual de Rudolphi; Sp - Rorcual del norte. Adults to 18 m long. Typical rorqual body shape; dorsal fin tall and strongly curved, rises at a steep angle from back.Colour of body is mostly dark grey or blue-grey with a whitish area on belly and ventral pleats.Commonly travel in groups of 2 to 5 in open ocean waters. IUCN Status: Endangered. 2042 Marine Mammals Balaenoptera edeni Anderson, 1878 BRW En - Bryde’s whale; Fr - Rorqual de Bryde; Sp - Rorcual tropical.
    [Show full text]
  • Cetaceans: Whales and Dolphins
    CETACEANS: WHALES AND DOLPHINS By Anna Plattner Objective Students will explore the natural history of whales and dolphins around the world. Content will be focused on how whales and dolphins are adapted to the marine environment, the differences between toothed and baleen whales, and how whales and dolphins communicate and find food. Characteristics of specific species of whales will be presented throughout the guide. What is a cetacean? A cetacean is any marine mammal in the order Cetaceae. These animals live their entire lives in water and include whales, dolphins, and porpoises. There are 81 known species of whales, dolphins, and porpoises. The two suborders of cetaceans are mysticetes (baleen whales) and odontocetes (toothed whales). Cetaceans are mammals, thus they are warm blooded, give live birth, have hair when they are born (most lose their hair soon after), and nurse their young. How are cetaceans adapted to the marine environment? Cetaceans have developed many traits that allow them to thrive in the marine environment. They have streamlined bodies that glide easily through the water and help them conserve energy while they swim. Cetaceans breathe through a blowhole, located on the top of their head. This allows them to float at the surface of the water and easily exhale and inhale. Cetaceans also have a thick layer of fat tissue called blubber that insulates their internals organs and muscles. The limbs of cetaceans have also been modified for swimming. A cetacean has a powerful tailfin called a fluke and forelimbs called flippers that help them steer through the water. Most cetaceans also have a dorsal fin that helps them stabilize while swimming.
    [Show full text]
  • FC Inshore Cetacean Species Identification
    Falklands Conservation PO BOX 26, Falkland Islands, FIQQ 1ZZ +500 22247 [email protected] www.falklandsconservation.com FC Inshore Cetacean Species Identification Introduction This guide outlines the key features that can be used to distinguish between the six most common cetacean species that inhabit Falklands' waters. A number of additional cetacean species may occasionally be seen in coastal waters, for example the fin whale (Balaenoptera physalus), the humpback whale (Megaptera novaeangliae), the long-finned pilot whale (Globicephala melas) and the dusky dolphin (Lagenorhynchus obscurus). A full list of the species that have been documented to date around the Falklands can be found in Appendix 1. Note that many of these are typical of deeper, oceanic waters, and are unlikely to be encountered along the coast. The six species (or seven species, including two species of minke whale) described in this document are observed regularly in shallow, nearshore waters, and are the focus of this identification guide. Questions and further information For any questions about species identification then please contact the Cetaceans Project Officer Caroline Weir who will be happy to help you try and identify your sighting: Tel: 22247 Email: [email protected] Useful identification guides If you wish to learn more about the identification features of various species, some comprehensive field guides (which include all cetacean species globally) include: Handbook of Whales, Dolphins and Porpoises by Mark Carwardine. 2019. Marine Mammals of the World: A Comprehensive Guide to Their Identification by Thomas A. Jefferson, Marc A. Webber, and Robert L. Pitman. 2015. Whales, Dolphins and Seals: A Field Guide to the Marine Mammals of the World by Hadoram Shirihai and Brett Jarrett.
    [Show full text]
  • Fall12 Rare Southern California Sperm Whale Sighting
    Rare Southern California Sperm Whale Sighting Dolphin/Whale Interaction Is Unique IN MAY 2011, a rare occurrence The sperm whale sighting off San of 67 minutes as the whales traveled took place off the Southern California Diego was exciting not only because slowly east and out over the edge of coast. For the first time since U.S. of its rarity, but because there were the underwater ridge. The adult Navy-funded aerial surveys began in also two species of dolphins, sperm whales undertook two long the area in 2008, a group of 20 sperm northern right whale dolphins and dives lasting about 20 minutes each; whales, including four calves, was Risso’s dolphins, interacting with the the calves surfaced earlier, usually in seen—approximately 24 nautical sperm whales in a remarkable the company of one adult whale. miles west of San Diego. manner. To the knowledge of the During these dives, the dolphins researchers who conducted this aerial remained at the surface and Operating under a National Marine survey, this type of inter-species asso- appeared to wait for the sperm Fisheries Service (NMFS) permit, the ciation has not been previously whales to re-surface. U.S. Navy has been conducting aerial reported. Video and photographs surveys of marine mammal and sea Several minutes after the sperm were taken of the group over a period turtle behavior in the near shore and whales were first seen, the Risso’s offshore waters within the Southern California Range Complex (SOCAL) since 2008. During a routine survey the morning of 14 May 2011, the sperm whales were sighted on the edge of an offshore bank near a steep drop-off.
    [Show full text]
  • Whale Identification Posters
    Whale dorsal fins Humpback whale Sperm whale Photo: Nadine Bott Photo: Whale Watch Kaikoura Blue whale Southern right whale (no dorsal) Photo: Nadine Bott Photo: Nadine Bott False killer whale Pilot whale Photo: Jochen Zaeschmar Photo: Jochen Zaeschmar • Report all marine mammal sightings to DOC via the online sighting form (www.doc.govt.nz/marinemammalsightings) • Email photos of marine mammal sightings to [email protected] Thank you for your help! 24hr emergency hotline Orca Photo: Ailie Suzuki Keep your distance – do not approach closer than 50 m to whales Whale tail flukes Humpback whale Sperm whale Photo: Nadine Bott Photo: Nadine Bott Blue whale Southern right whale Photo: Gregory Smith (CC BY-SA 2.0) Photo: Tui De Roy False killer whale Pilot whale Photo: Jochen Zaeschmar Photo: Jochen Zaeschmar • Report all marine mammal sightings to DOC via the online sighting form (www.doc.govt.nz/marinemammalsightings) • Email photos of marine mammal sightings to [email protected] Thank you for your help! 24hr emergency hotline Orca Photo: Nadine Bott Keep your distance – do not approach closer than 50 m to whales Whale surface behaviour Humpback whale Sperm whale Photo: Nadine Bott Photo: Whale Watch Kaikoura Blue whale Southern right whale Photo: Jochen Zaeschmar Photo: Don Goodhue False killer whale Pilot whale Photo: Jochen Zaeschmar Photo: Jochen Zaeschmar • Report all marine mammal sightings to DOC via the online sighting form (www.doc.govt.nz/marinemammalsightings) • Email photos of marine mammal sightings to [email protected]
    [Show full text]
  • Southern Right Whale Recovery Plan 2005
    SOUTHERN RIGHT WHALE RECOVERY PLAN 2005 - 2010 The southern right whale (Eubalaena australis) is listed as endangered under the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act). This plan outlines the measures necessary to ensure recovery of the Australian population of southern right whales and is set out in accordance with Part 13, Division 5 of the EPBC Act. Objectives for recovery The objectives are: • the recovery of the southern right whale population utilising Australian waters so that the population can be considered secure in the wild; • a distribution of southern right whales utilising Australian waters that is similar to the pre- exploitation distribution of the species; and • to maintain the protection of southern right whales from human threats. For the purposes of this plan ‘secure in the wild’ is defined qualitatively, recognising that stricter definitions are not yet available, but will be refined and where possible quantified during the life of this plan by work currently underway and identified in the actions of this plan. ‘Secure in the wild’ with respect to southern right whales in Australian waters means: a population with sufficient geographic range and distribution, abundance, and genetic diversity to provide a stable population over long time scales. Criteria to measure performance of the plan against the objectives It is not anticipated that the objectives for recovery will be achieved during the life of this plan. However, the following criteria can be used to measure the ongoing performance of this plan against the objectives: 1. the Australian population of southern right whales continued to recover at, or close to, the optimum biological rate (understood to be approximately 7% per annum at the commencement of this plan); 2.
    [Show full text]
  • Whale Watching New South Wales Australia
    Whale Watching New South Wales Australia Including • About Whales • Humpback Whales • Whale Migration • Southern Right Whales • Whale Life Cycle • Blue Whales • Whales in Sydney Harbour • Minke Whales • Aboriginal People & Whales • Dolphins • Typical Whale Behaviour • Orcas • Whale Species • Other Whale Species • Whales in Australia • Other Marine Species About Whales The whale species you are most likely to see along the New South Wales Coastline are • Humpback Whale • Southern Right Whale Throughout June and July Humpback Whales head north for breading before return south with their calves from September to November. Other whale species you may see include: • Minke Whale • Blue Whale • Sei Whale • Fin Whale • False Killer Whale • Orca or Killer Whale • Sperm Whale • Pygmy Right Whale • Pygmy Sperm Whale • Bryde’s Whale Oceans cover about 70% of the Earth’s surface and this vast environment is home to some of the Earth’s most fascinating creatures: whales. Whales are complex, often highly social and intelligent creatures. They are mammals like us. They breath air, have hair on their bodies (though only very little), give birth to live young and suckle their calves through mammary glands. But unlike us, whales are perfectly adapted to the marine environment with strong, muscular and streamlined bodies insulated by thick layers of blubber to keep them warm. Whales are gentle animals that have graced the planet for over 50 million years and are present in all oceans of the world. They capture our imagination like few other animals. The largest species of whales were hunted almost to extinction in the last few hundred years and have survived only thanks to conservation and protection efforts.
    [Show full text]
  • Species Assessment for North Atlantic Right Whale
    Species Status Assessment Class: Mammalia Family: Balaenidae Scientific Name: Eubalaena glacialis Common Name: North Atlantic right whale Species synopsis: The North Atlantic right whale, which was first listed as endangered under the Endangered Species Act in 1973, is considered to be critically endangered (Clapham et al 1999, NMFS 2013). The western population of North Atlantic right whales (NARWs or simply right whales) has seen a recent slight increase. The most recent stock assessment gives a minimum population size of 444 animals with a growth rate of 2.6% per year (NMFS 2013). It is believed that the actual number of right whales is about 500 animals (Pettis 2011, L. Crowe, pers. comm.). At this time, the species includes whales in the North Pacific and the North Atlantic oceans (NMFS 2005). However, recent genetic evidence showed that there were at least three separate lineages of right whales, and there are now three separate species that are recognized. These three species include: the North Atlantic right whale (Eubalaena glacialis), which ranges in the North Atlantic Ocean; the North Pacific right whale (Eubalaena japonica), which ranges in the North Pacific Ocean; and the southern right whale (Eubalaena australis), which ranges throughout the Southern Hemisphere (NMFS 2005). The distribution of right whales is partially determined by the presence of its prey, which consists of copepods and krill (Baumgartner et al 2003). Most of the population migrates in the winter to calving grounds from in low latitudes from high latitude feeding grounds in the spring and summer. A portion of the population does not migrate to the calving grounds during the winter and it is unknown where they occur during that season (NMFS website, NMFS 2013).
    [Show full text]
  • Forest Habitat Loss and Fragmentation in Central Poland During the Last 100 Years
    Silva Fennica 44(4) research notes SILVA FENNICA www.metla.fi/silvafennica · ISSN 0037-5330 The Finnish Society of Forest Science · The Finnish Forest Research Institute Forest Habitat Loss and Fragmentation in Central Poland during the Last 100 Years Tomasz D. Mazgajski, Michał Żmihorski and Katarzyna Abramowicz Mazgajski, T.D., Żmihorski, M. & Abramowicz, K. 2010. Forest habitat loss and fragmentation in Central Poland during the last 100 years. Silva Fennica 44(4): 715–723. The process of habitat fragmentation consists of two components – habitat loss and fragmenta- tion per se. Both are thought to be among the most important threats to biodiversity. However, the biological consequences of this process such as species occurrence, abundance, or genetic structure of population are driven by current, as well as previous, landscape configurations. Therefore, historical analyses of habitat distribution are of great importance in explaining the current species distribution. In our analysis, we describe the forest fragmentation process for an area of 178 km2 in the northern part of Mazowsze region of central Poland. Topographical maps from the years 1890, 1957 and 1989 were used. Over the 100-year period, forest cover- age in this area changed from 17% to 5.6%, the number of patches increased from 19 to 42, while the area of the forest interior decreased from 1933 ha to 371 ha. The two components of fragmentation were clearly separated in time. Habitat loss occurred mainly during the first period (1890–1957) and fragmentation per se in the second (1957–1989). Moreover, we recorded that only 47.7% of all the currently (in 1989) afforested areas constitute sites where forests previously occurred (in 1890 and 1957).
    [Show full text]