Population Structure of Spiny Lobsters in Hawaii Following a Fishery Closure and the Implications for Contemporary Spatial Management

Total Page:16

File Type:pdf, Size:1020Kb

Population Structure of Spiny Lobsters in Hawaii Following a Fishery Closure and the Implications for Contemporary Spatial Management Bull Mar Sci. 90(1):331–357. 2014 research paper http://dx.doi.org/10.5343/bms.2013.1042 After the gold rush: population structure of spiny lobsters in Hawaii following a fishery closure and the implications for contemporary spatial management 1 Hawai‘i Institute of Marine Matthew Iacchei 1, 2 * Biology, School of Ocean and Joseph M O’Malley 3 Earth Science and Technology, 1 University of Hawai‘i at Mānoa, Robert J Toonen P.O. Box 1346, Kaneohe, Hawaii 96744. 2 Department of Biology, ABSTRACT.—We compared mitochondrial genetic data University of Hawai‘i at Mānoa, for two spiny lobsters in Hawaii with different geographic 2450 Campus Road, Honolulu, ranges and histories of fishing pressure. Panulirus Hawaii 96822. marginatus (Quoy and Gaimard, 1825) is endemic to Hawaii, 3 NOAA Fisheries, Pacific Island and experienced a short, intense fishery in the Northwestern Fisheries Science Center, 2570 Hawaiian Islands (NWHI) and long-term, less intense Dole St., Honolulu, Hawaii 96822. exploitation in the Main Hawaiian Islands (MHI). Populations * Corresponding author email: show significant overall structure F( ST = 0.0037, P = 0.007; <[email protected]>. Current Dest_Chao = 0.137), with regional differentiation F( CT = 0.002, P = address: School of Ocean and 0.047) between the MHI and the NWHI. Haplotype diversity Earth Science and Technology, did not differ significantly between regions (F2, 8 = 3.740, P = University of Hawai‘i at Mānoa, 0.071); however, nucleotide diversity is significantly higher at 1000 Pope Rd., Honolulu, Hawaii the primary NWHI fishery banks (0.030) than in the MHI 96822. (0.026, Tukey’s P = 0.013). In contrast, Panulirus penicillatus (Olivier, 1791), found across the tropical Indo-West Pacific region, was not targeted by the NWHI fishery, but has experienced long-term exploitation in the MHI. Panulirus penicillatus has no significant overall population structure in Hawaii (FST = 0.0083, P = 0.063; Dest_Chao = 0.278), although regional differentiation F( CT = 0.0076, P = 0.0083) between the MHI and the NHWI is significant. Neither haplotype nor nucleotide diversity differed significantly between regions for P. penicillatus. While neither species has suffered a loss of genetic diversity from fishing, our results highlight that only by incorporating knowledge of fishing history with genetic connectivity data can we understand the most beneficial management strategy for each species. Neither exemplar Date Submitted: 15 May, 2013. Date Accepted: 20 November, 2013. species nor specific suites of traits are reliable predictors of Available Online: 7 January, 2014. the spatial scales of management. Interest has increased in establishing effective marine protected areas for species conservation and management to meet the goals of ecosystem-based management (Browman and Stergiou 2004, 2005, Gerber et al. 2007, Beger et al. 2014). An es- sential data requirement for evaluating whether marine protected areas are properly sized and located for effective species management is detailed information regarding connectivity among disjunct habitats (e.g., Botsford et al. 2001, Botsford et al. 2003, Halpern and Warner 2003, Palumbi 2004, Cowen et al. 2006). The size and number of connected populations and frequency of larval influxes can profoundly influence Bulletin of Marine Science 331 © 2014 Rosenstiel School of Marine & Atmospheric Science of OA the University of Miami Open access content 332 Bulletin of Marine Science. Vol 90, No 1. 2014 the density and persistence of individuals at specific locales (MacArthur and Wilson 1963, Stacey and Taper 1992, Sale and Kritzer 2003). This fact is notably pertinent for benthic marine invertebrates living in remote island chains where isolated lo- cations are more likely connected through larval dispersal than adult movement. Unfortunately, the pelagic developmental period of most invertebrate larvae, coupled with a small size and often directed movement to either avoid or take advantage of the prevailing oceanographic currents, make larvae extremely difficult to track (reviewed by Levin 2006). The poor understanding of population connectivity in or- ganisms with a biphasic life cycle and pelagic larval development has confounded the management of these marine species (Carr et al. 2003, López-Duarte et al. 2012). An example of this is the Northwestern Hawaiian Islands (NWHI) lobster fishery, which began in 1976 and principally targeted the endemic Hawaiian spiny lobster, Panulirus marginatus (Quoy and Gaimard, 1825), as well as the scaly slipper lobster, Scyllarides squammosus (H. Milne-Edwards, 1837). The Hawaiian Archipelago consists of the Main Hawaiian Islands (MHI, Hawaii to Niihau), and the NWHI, a series of islands, reefs, seamounts, and atolls (hereafter referred to as banks) that extend approximately 2000 km across the subtropical Pacific (Fig. 1). From 1976 to 2000, this NWHI lobster fishery reported landings of spiny and slipper lobsters totaling 11 million individuals (table 1 in Schultz et al. 2011). Landings peaked within 7–9 yrs (1983–1985; DiNardo et al. 2001), during which time it was Hawaii’s most valuable demersal fishery (Polovina 1993). However, both reported landings (DiNardo et al. 2001) and catch per unit effort C( PUE; fig. 2 in O’Malley 2009) steadily declined over the next decade (1986–1995). Despite almost yearly stock assessments and a variety of management measures, the National Marine Fisheries Service (NMFS) ultimately closed the fishery in 2000 because of increasing uncertainty in population and stock assessment models, particularly with regard to spatial heterogeneity and the assumption of synchronous dynamics among bank-specific stocks B( otsford et al. 2002). Since the closure of the fishery, there has been no evidence of recovery of either species (O’Malley 2009, 2011). In 2006, the entire NWHI region was protected as the Papahānaumokuākea Marine National Monument (PMNM). The non- extraction nature of the PMNM ensures that lobster fishing will not likely resume in the NWHI. Extensive subsequent research has justified the concerns of NMFS lobster fish- ery managers. O’Malley presents evidence for both spatial and temporal differences in growth rates of P. marginatus (2009) and S. squammosus (2011) across the three primary banks targeted by the fishery (Necker Island, Maro Reef, and Gardner Pinnacles), and an additional location closed to fishing throughout most of the fish- ery’s duration (Laysan Island). The results of these studies indicate that both spiny and slipper lobsters at each of these islands or atolls are experiencing different envi- ronmental conditions and/or varied prey regimes (O’Malley et al. 2012). Less well known is whether lobsters at each of the islands and atolls in the Hawaiian Archipelago are genetically isolated populations that are locally adapting to these bank-specific dynamics, or if this is one single population with phenotypically plastic traits that vary from bank to bank. Quantitative estimates of population connectiv- ity are required to develop models that more accurately represent island/bank spe- cific population dynamics. Results from tagging studies indicate that adult lobsters do not traverse the deep-water channels between banks. Not one of approximately 85,000-tagged lobsters was recaptured on a different bank (O’Malley and Walsh Iacchei et al.: Comparative population structure in spiny lobsters 333 Figure 1. Map of lobster specimen collection locations and number of individuals of Panulirus marginatus (bold font) and Panulirus penicillatus (italicized font) sampled at each location. Due to low sample size, site/species combinations identified with an asterisk were not included in the pairwise population analysis, but were included in the overall analysis of genetic diversity, as well as in the median joining networks. The distinction between the Main Hawaiian Islands (MHI) and the Northwest Hawaiian Islands (NWHI) is also identified in the figure: note that the Papahānaumokuākea Marine National Monument (PMNM) encompasses all of the NWHI locations, but not the MHI sites. Map is courtesy of J Lecky and NOAA PMNM. Photo credit: Panulirus marginatus, in the upper right hand corner: N Silbiger; Panulirus penicillatus, in the lower left hand corner: T Lilley. 2013). On average, tagged adults of both P. marginatus and S. squammosus move <1 km from their initial tagging location, even after 5 yrs at liberty (O’Malley and Walsh 2013). Therefore, if the different islands and atolls are forming an effectively panmic- tic population or even a structured metapopulation, the gene flow between islands is maintained through the pelagic larval phase. Spiny and slipper lobsters have some of the longest larval durations of any taxa (6 mo to >1 yr, and 3–6 mo, respectively; Phillips et al. 2006, Lavalli and Spanier 2007). Such long pelagic durations make larval dispersal patterns extremely difficult to predict, but intuitively, species with larval durations of this length are expected to be effectively panmictic across broad geographic ranges (Shanks et al. 2003, Siegel et al. 2003). More recent analyses sug- gest only a weak relationship exists between larval duration and the degree of popu- lation structure across a species’ range (Shanks 2009, Weersing and Toonen 2009, Riginos et al. 2011, Selkoe and Toonen 2011). Accordingly, although many previous genetic studies on spiny lobsters have found high levels of gene flow across broad geo- graphic scales (Shaklee and Samollow 1984, Ovenden et al. 1992, Tolley et al. 2005,
Recommended publications
  • Marine Ecology Progress Series 469:195
    Vol. 469: 195–213, 2012 MARINE ECOLOGY PROGRESS SERIES Published November 26 doi: 10.3354/meps09862 Mar Ecol Prog Ser Contribution to the Theme Section ‘Effects of climate and predation on subarctic crustacean populations’ OPENPEN ACCESSCCESS Ecological role of large benthic decapods in marine ecosystems: a review Stephanie A. Boudreau*, Boris Worm Biology Department, Dalhousie University, 1355 Oxford Street, PO Box 15000, Halifax, Nova Scotia B3H 4R2, Canada ABSTRACT: Large benthic decapods play an increasingly important role in commercial fisheries worldwide, yet their roles in the marine ecosystem are less well understood. A synthesis of exist- ing evidence for 4 infraorders of large benthic marine decapods, Brachyura (true crabs), Anomura (king crabs), Astacidea (clawed lobsters) and Achelata (clawless lobsters), is presented here to gain insight into their ecological roles and possible ecosystem effects of decapod fisheries. The reviewed species are prey items for a wide range of invertebrates and vertebrates. They are omnivorous but prefer molluscs and crustaceans as prey. Experimental studies have shown that decapods influence the structuring of benthic habitat, occasionally playing a keystone role by sup- pressing herbivores or space competitors. Indirectly, via trophic cascades, they can contribute to the maintenance of kelp forest, marsh grass, and algal turf habitats. Changes in the abundance of their predators can strongly affect decapod population trends. Commonly documented non- consumptive interactions include interference-competition for food or shelter, as well as habitat provision for other invertebrates. Anthropogenic factors such as exploitation, the creation of pro- tected areas, and species introductions influence these ecosystem roles by decreasing or increas- ing decapod densities, often with measurable effects on prey communities.
    [Show full text]
  • Northwestern Hawaiian Islands Lobster Fishery
    No. 9, October 2020 Northwestern Hawaiian Islands Lobster Fishery By Michael Markrich About the Author Michael Markrich is the former public information officer for the State of Hawai‘i Department of Land and Natural Resources; communications officer for State of Hawai‘i Department of Business, Economic Development and Tourism; columnists for the Honolulu Advertiser; socioeconomic analyst with John M. Knox and Associates; and consultant/owner of Markrich Research. He holds a bachelor of arts degree in history from the University of Washington and a master of science degree in agricultural and resource economics from the University of Hawai‘i. Disclaimer: The statements, findings and conclusions in this publication are those of the author and do not necessarily represent the views of the Western Pacific Regional Fishery Management Council or the National Marine Fisheries Service (NOAA). © Western Pacific Regional Fishery Management Council, 2020. All rights reserved, Published in the United States by the Western Pacific Regional Fishery Management Council under NOAA Award # NA20NMF4410013. ISBN 978-1-944827-73-1 Cover Art: NWHI lobster fishery. Photo: NOAA Contents List of Illustrations .................................................................................................................. i List of Tables .......................................................................................................................... i Acknowledgments ................................................................................................................
    [Show full text]
  • Reproduction in the Tropical Rock Lobster Panulirus Ornatus in Captivity
    ResearchOnline@JCU This file is part of the following reference: Sachlikidis, Nikolas Graham (2010) Reproduction in the tropical rock lobster Panulirus ornatus in captivity. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/29308/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://eprints.jcu.edu.au/29308/ Reproduction in the Tropical Rock Lobster Panulirus ornatus in Captivity Thesis submitted by Nikolas Graham Sachlikidis For the Degree of Doctor of Philosophy, School of Tropical Biology and Marine Biology, James Cook University, 2010. Statement of Access I, the undersigned, the author of this thesis, understand that James Cook University will make this thesis available for use within the university library and, by other means, allow access to other users in other approved libraries. Users of this thesis must first sign the following statement: I agree not to copy or closely paraphrase this thesis in whole or in part without the written consent of the author. I will make proper public written acknowledgment for any assistance which I have obtained from it. Beyond this, I do not place any restrictions on access to this thesis. _ _ _ _ _ _ _ _ _ _ _ _ _ _ Nikolas Graham Sachlikidis Statement of Sources I declare that this thesis is my own work and has not been submitted in any form for any other degree or diploma at any other university or other institution of tertiary education.
    [Show full text]
  • S Pin Y Lobsters
    ?SI S pin y Lobsters UNITED STATES DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE SERVICE BUREAU OF COMMERCIAL FISHERIES WASHINGTON 25, D.C. September 1961 Fishery Leaflet 523 CONTENTS Page Introduction.............................................................................. 1 Specie 8.................................................................................... 1 Life history.............................................................................. 1 Description........................................................................ 1 Sexe s .•....................... .... ...... ..................................•......... Z Food and feeding............ ..................................................... Z Habits ....•. •... .................. .. ....•... ... ....•........... ...... ...... ... ....... 3 Molting and growth .............................................................. 3 Reproduction...................................................................... 3 The young .......................................................................... 5 Migrations............................................................................... 5 Enemie s and protection against them ............................................ 5 Capture .......... ........ ... .....•..........•........ ...... ... ..•......... ....... ...... ... 5 Utilization....... ................................ ....... ...... ...... ... ...... ..... ... ..... 6 Culture... .. ..............................................................................
    [Show full text]
  • The Spiny Lobster (Panulirus Argus) in the Wider Caribbean: a Review of Life Cycle Dynamics and Implications for Responsible Fisheries Management
    The Spiny Lobster (Panulirus argus) in the Wider Caribbean: A Review of Life Cycle Dynamics and Implications for Responsible Fisheries Management RAÚL CRUZ 1 and RODNEY D. BERTELSEN 2 1Centro de Investigaciones Marinas, Universidad de la Habana, Calle 16 #114 entre 1era y 3era, Playa, Miramar, Cuba. 2Florida Fish and Wildlife Conservation Commission, Florida Marine Research Institute, 2796 Overseas Highway, #119, Marathon, Florida 33050, USA ABSTRACT The spiny lobster Panulirus argus (Latreille, 1804) is the most important fishery resource in the western central Atlantic and north-eastern Brazil. The complex life cycle has been studied over the last 50 years in five locations in the wider Caribbean: Cuba archipelago, Florida Keys, Bermuda, Mexico and Brazil. Field studies have increased our understanding of variations in the reproductive season by location and depth, size at first maturity, fecundity, and relative magnitude of egg production as indicated by an index of reproductive potential. This review of the life cycle dynamics of spiny lobster suggests that new regulatory measures for the western Atlantic population should be adopted to increase the reproductive potential and ensure sustainable recruitment. A regional focus is therefore needed in investigations of the life cycle and the fisheries to assist in improving responsible fisheries management KEY WORDS: Panulirus argus, life cycle, reproduction, Caribbean La Langosta Espinosa (Panulirus argus) en el Gran Caribe: Una Revisión de la Dinámica del Ciclo de Vida e Implicaciones en el Manejo Responsable de la Pesquería La langosta espinosa Panulirus argus (Latreille, 1804) es el recurso pesquero más importante en el Atlántico centro occidental y en el nordeste del Brasil.
    [Show full text]
  • Spiny Lobster
    CHAPTER 17 Spiny Lobster C. Roland Pitcher I. INTRODUCTION Lobsters are in great demand, particularly for the restaurants of such wealthy nations as the United States and Japan, which are major importers of lobsters and lobster products. Consequently, lobsters are a high-value commodity and stocks of lobsters of all types are exploited around the world. Most stocks are fully exploited - possibly even overexploited - and very few stocks are underexploited. But demand continues to grow, as does world production although it can not keep pace with demand; thus, prices have tended to increase or, at least, remain high. The high value and marketability of lobsters, together with their simple harvest technology, live-storage potential and the durability conferred by the hard exoskeleton, make them attractive for fishery development in tropical Pacific nations (Prescott, 1988). In spite of this, the production of lobsters by Pacific Islands nations is relatively small (Table I), largely because of the small area of suitable shallow water habitat and low productivity of the tropical oceans. Two species of spiny lobster (family Palinuridae) support significant fisher­ ies in the tropical south-western Pacific (Prescott, 1988). The double-spined lobster, Panulinis penicillatus (Olivier) is the most widespread and most commonly fished lobster in the region. It supports an annual harvest of about 150 to 300 t whole weight. The ornate spiny lobster, Panulinis ornatus (Fabricius), is found mainly on continental shelf areas of the larger islands and continents, particularly in north-eastern Australia and south-western Papua New Guinea, where annual harvests range from 450 to 1100 t whole weight.
    [Show full text]
  • Penicillatus
    Genetic Isolation between the Western and Eastern Pacific Populations of Pronghorn Spiny Lobster Panulirus penicillatus Seinen Chow1*, Andrew Jeffs2, Yoichi Miyake3, Kooichi Konishi4, Makoto Okazaki4, Nobuaki Suzuki5, Muhamad F. Abdullah6, Hideyuki Imai6, Toshie Wakabayasi7, Mitsuo Sakai7 1 Stock Enhancement and Aquaculture Division, National Research Institute of Aquaculture, Yokosuka, Kanagawa, Japan, 2 Department of Marine Science, University of Auckland, Auckland, New Zealand, 3 Department of Marine Science, Nagasaki University, Nagasaki, Japan, 4 Research Center for Fisheries Oceanography and Marine Ecosystem, National Research Institute of Fisheries Science, Yokohama, Kanagawa, Japan, 5 Ishigaki Tropical Station, Seikai National Research Institute, Okinawa, Japan, 6 University of the Ryukyus, Okinawa, Japan, 7 Oceanic Resources Division, National Research Institute of Far Seas Fisheries, Yokohama, Kanagawa, Japan Abstract The pronghorn spiny lobster, Panulirus penicillatus, is a circumtropical species which has the widest global distribution among all the species of spiny lobster, ranging throughout the entire Indo-Pacific region. Partial nucleotide sequences of mitochondrial DNA COI (1,142–1,207 bp) and 16S rDNA (535–546 bp) regions were determined for adult and phyllosoma larval samples collected from the Eastern Pacific (EP)(Gala´pagos Islands and its adjacent water), Central Pacific (CP)(Hawaii and Tuamotu) and the Western Pacific (WP)(Japan, Indonesia, Fiji, New Caledonia and Australia). Phylogenetic analyses revealed two distinct large clades corresponding to the geographic origin of samples (EP and CP+WP). No haplotype was shared between the two regional samples, and average nucleotide sequence divergence (Kimura’s two parameter distance) between EP and CP+WP samples was 3.860.5% for COI and 1.060.4% for 16S rDNA, both of which were much larger than those within samples.
    [Show full text]
  • Queuing Behavior of the Hawaiian Spiny Lobster <I>Panulirus
    BULLETIN OF MARINE SCIENCE, 35(1): 111-114, 1984 QUEUING BEHAVIOR OF THE HAWAIIAN SPINY LOBSTER PANULIRUS MARGINATUS Craig D, MacDonald, Stanley C. Jazwinski and James H. Prescott Queuing behavior of spiny lobsters consists of highly stereotyped single file formations and is best known for the western Atlantic species Panu/irus argus (Herrnkind and Cummings, 1964; Hernkind, 1969; 1977; 1980; Herrnkind and McLean, 1971, Herrnkind et a1., 1973; Herrnkind and Kanciruk, 1978; Berrill, 1975; Bill and Herrnkind, 1976; Kanciruk and Herrnkind, 1976; 1978; Davis and Dodrill, 1980). Queuing in P. argus generally is reported in the context of extensive linear formations of up to 65 individuals that assemble inshore during a seasonal migratory phase and which move offshore. Returning queues have not been reported. The queues are noncommuna1, gregarious groups in which rela- tionships between consecutive individuals are established continually as old ones are dropped and as group membership shifts (Herrnkind et a1., 1973). However, P. argus also forms short, aseasonal queues of just a few individuals in situations such as when deprived of shelter (Herrnkind, 1969), and when two or more individuals encounter one another over open bottom during the day (Berrill, 1975). Although there are 49 extant species of spiny lobsters (Phillips et al., 1980), heretofore queuing is described only in one species. Here we record observations. of queuing in a nonmigratory lobster species, P. marginatus (Quoy and Gaimard, 1825) in Hawaii. TIME SPENT IN OBSERVATIONS The apportionment of total diver-hours of observation by die1 period and geographic location during 1977-1982 is summarized in Table 1.
    [Show full text]
  • Status and Trend in the Southern California Spiny Lobster Fishery and Population: 1980-2011
    Bulletin of the Southern California Academy of Sciences Volume 113 | Issue 1 Article 2 5-15-2014 Status and Trend in the Southern California Spiny Lobster Fishery and Population: 1980-2011. Eric Miller MBC Applied Environmental Sciences, [email protected] Follow this and additional works at: https://scholar.oxy.edu/scas Part of the Population Biology Commons Recommended Citation Miller, Eric (2014) "Status and Trend in the Southern California Spiny Lobster Fishery and Population: 1980-2011.," Bulletin of the Southern California Academy of Sciences: Vol. 113: Iss. 1. Available at: https://scholar.oxy.edu/scas/vol113/iss1/2 This Article is brought to you for free and open access by OxyScholar. It has been accepted for inclusion in Bulletin of the Southern California Academy of Sciences by an authorized editor of OxyScholar. For more information, please contact [email protected]. Miller: TREND IN THE SOUTHERN CALIFORNIA SPINY LOBSTER Bull. Southern California Acad. Sci. 113(1), 2014, pp. 14–33 E Southern California Academy of Sciences, 2014 Status and Trends in the Southern California Spiny Lobster Fishery and Population: 1980–2011 Eric F. Miller MBC Applied Environmental Sciences, 3000 Red Hill Ave., Costa Mesa, CA 92626, [email protected] Abstract.—The California spiny lobster (Panulirus interruptus) fishery in southern California ranks amongst the State’s most economically important fisheries. An analysis of commercial harvest data confirms that the fishery was landing near- record catches in the late-2000s through early-2010s. Advances in recreational fishing technology likely tempered commercial fishery landings per unit effort. The commercial catch per trap pulled declined 15%, on average, in years after the introduction of a new rigid-style hoop net in the recreational fishery.
    [Show full text]
  • Kipahulu Moku CBSFA Proposal and Management Plan
    Community-Based Subsistence Fishing Area KĪPAHULU MOKU | Proposal & Management Plan Photo: Kīpahulu ‘Ohana Backed by years of careful observation, research, and feedback from those most intimately connected to these resources, the proposed Community-Based Subsistence Fishing Area (CBSFA) and its attendant management plan will proactively protect subsistence resources subject to a range of ever-growing pressures and threats, and reduce the potential for human conflict that may arise from differing perspectives on appropriate harvesting behavior. The recommended regulations in the Kīpahulu Moku Proposal and Management Plan represent a positive step toward perpetuating critically important public trust resources, while recognizing the traditional and customary practices and subsistence lifestyles unique to Kīpahulu. The proposed rules formalize a “code of conduct” that can guide the harvesting practices of all who may seek to gather nearshore resources in the waters of Kīpahulu moku. Submitted by Kīpahulu ‘Ohana, Inc. to the State of Hawai‘i Department of Land and Natural Resources, Division of Aquatic Resources Created July 27, 2017 Last updated October 30, 2019 TABLE OF CONTENTS KĪPAHULU MOKU CBSFA PROPOSAL & MANAGEMENT PLAN i. Executive Summary . i 1. Organization Information . 1 2. Nearshore Environment and Human Uses . 2 3. Traditional, Customary, and Subsistence Fishing Practices . 5 4. Proposed Boundaries and Regulations . 8 5. Subsistence Resources Targeted for Management . 13 6. Management Objectives, Actions, and Draft Work Plan . 20 7. Abbreviations, Definitions, and Species Lists . 26 8. Bibliography . 27 Figures Figure 1. Map: Kīpahulu Moku Site Reference . 2 Figure 2. Map: Proposed Kīpahulu Moku CBSFA Designation Area . 8 Tables Table 1. Proposed Regulatory Solutions . 9 Table 2.
    [Show full text]
  • Evaluation of Anticoagulant- and Hemocyte-Maintaining Solutions For
    1 [Techniques and Methods article: edited R1 JCB-2264] Running head: PERDOMO-MORALES et al.: ANTICOAGULANTS AND HEMOCYTE WORKING SOLUTIONS FOR SPINY LOBSTER Evaluation of anticoagulant- and hemocyte-maintaining solutions for the study of hemolymph components in the spiny lobster Panulirus argus (Latreille, 1804) (Decapoda: Achelata: Palinuridae) Rolando Perdomo-Morales1, Vivian Montero-Alejo1, Leandro Rodríguez- Viera2 and Erick Perera3 [email protected] 1Center for Pharmaceuticals Research and Development. Avenida 26 No. 1605e/ Boyeros y 51,Plaza, CP 10600La Habana, Cuba; 2Center for Marine Research, Universidad de La Habana, La Habana, Cuba; and 3Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, CSIC, xx, Castellón, Spain Instituto de aquicultura Torre de la Sal, Ribera de Cavanes, S/N, Consejo Superior de Investigaciones Cientificas. Correspondence: R. Perdomo-Morales; e-mail: [email protected], [email protected] 2 (Received 19 October 2019; accepted December 2019) ABSTRACT Functional studies on humoral or cellular responses in the hemolymph ofcrustaceans require the selection of suitable anticoagulant and hemocyteworking solutions.Although preventing plasma-clotting could be straightforward, avoiding activation and clotting of hemocytes is a challengethat varies even among related species. We studied the suitability of several anticoagulant- and hemocyte-maintaining solutions in the spiny lobster Panulirus argus (Latreille, 1804), with emphasis in the preservation of hemocyte number and viability. It was found that the modified Alsever solution was the ideal anticoagulant, while modified L-15 medium and Panulirus argus saline (PAS) were the best hemocyte-maintaining solutions. Hemolymph volume average in P. argus was 10.5% of fresh body weight (more than 50 ml per adult individual), which makes this species an attractive model for functional studies of hemolymph components in crustaceans.
    [Show full text]
  • Fishery Atlas of the Northwestern Hawaiian Islands
    NOAA Technical Report NMFS 38 'September 1986 Fishery Atlas of the Northwestern Hawaiian Islands Richard N. Uchida and James H. Uchiyama (Editors) U.s. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service NOAA TECHNICAL REPORT NMFS _ The major responsibilities of the National Marine Fisheries Service (NMFS) are to monitor and assess the abundance and geographic distribution of fishery resources, to understand and predict fluctuations in the quantity and distribution of these resources, and to establish levels for their optimum use. NMFS is also charged with the developmen' and implementation of policies for managing national fishing grounds, development and enforcement of domestic fisheries regulations, surveillance of foreign fishing off United States coastal waters, and the development and enforcement of international fishery agreements and policies. NMFS also assists the fishing industry through marketing service and economic analysis programs, and mortgage insurance and vessel construction subsidies. It collects, analyzes, and publishes statistics on various phases of the industry. The NOAA Technical Report NMFS series was established in 1983 to replace two subcategories of the Technical Reports series: "Special Scientific Report-Fisheries" and "Circular." The series contains the following types of reports: Scientific investigations that document long-term continuing programs of NMFS; intensive scientific reports on studies of restricted scope; papers on applied fishery problems; technical reports of general interest intended to aid conservation and management; reports that review in con­ siderable detail and at a high technical level certain broad areas of research; and technical papers originating in economics studies and from management investigations. Since this is a formal series, all submitted papers receive peer review and those accepted receive professional editing before publication.
    [Show full text]