Calystegines As Chemotaxonomic Markers in the Convolvulaceae Q

Total Page:16

File Type:pdf, Size:1020Kb

Calystegines As Chemotaxonomic Markers in the Convolvulaceae Q PHYTOCHEMISTRY Phytochemistry 66 (2005) 469–480 www.elsevier.com/locate/phytochem Calystegines as chemotaxonomic markers in the Convolvulaceae q Thomas Schimming a, Kristina Jenett-Siems a, Petra Mann a, Britta Tofern-Reblin a, Jenny Milson b, Robert W. Johnson c, Thierry Deroin d, Daniel F. Austin e, Eckart Eich a,* a Institut fu¨r Pharmazie (Pharmazeutische Biologie), Freie Universita¨t Berlin, Ko¨nigin-Luise-Straße 2-4, D-14195 Berlin, Germany b The State of Queensland, Department of Primary Industries, Longreach, Qld., Australia c Queensland Herbarium, Brisbane Botanic Gardens Mt. Coot-tha, Toowong, Qld., Australia d Laboratoire de Phane´rogamie, Muse´um National dÕHistoire Naturelle, 16, rue Buffon, F-75005 Paris, France e Conservation & Science Department, Arizona-Sonora Desert Museum, 2001 N. Kinney Road, Tucson, AZ 85743, USA Received 8 September 2004; received in revised form 20 December 2004 Available online 26 January 2005 Abstract An extended GC–MS study of 129 convolvulaceous species belonging to 29 genera (all 12 tribes) including the results of a previous survey (65 spp.) revealed the occurrence of one to six polyhydroxy alkaloids of the nortropane type (calystegines) in 62 species belong- ing to 22 genera of all tribes except the unique parasitic Cuscuteae. The large genus Ipomoea turned out to comprise calystegine-posi- tive species in at least eight out of ten sections checked. The number of the calystegines used as reference compounds has been increased from seven (previous survey) to 11 (present study). Furthermore, the results concerning these additional four alkaloids could also be completed for all species of the previous survey. The plant material (epigeal vegetative parts and/or roots, flowers, fruits/seeds) was obtained from collections in the wild from a wide range of tropical, subtropical, and temperate locations of all con- tinents as well as from cultivation in the greenhouse. All plant organs turned out to be potential locations for the occurrence of these metabolites though they are detectable often only in certain organs of a given species. Three genera (Cuscuta, Operculina, Polymeria) might have lost the ability to synthesize these plesiomorphic characters in the course of the evolution since the examination of several different organs and/or provenances of five species each failed to show calystegines as constituents. Nevertheless, the present data clearly demonstrate that the occurrence of calystegines is an almost consistent trait in the Convolvulaceae in principle, from basal to most advanced tribes. Ó 2005 Published by Elsevier Ltd. Keywords: Convolvulaceae; GC–MS analysis; Tropane alkaloids; Polyhydroxy alkaloids; Calystegines; Castanospermine; Swainsonine; Glycosidase inhibitors; Chemotaxonomy 1. Introduction sidases inhibiting the enzymes. Thus, they have aroused increasing interest as, e.g., potential antiviral, Polyhydroxy alkaloids, e.g., the calystegines (nor- anticancer, and antidiabetic agents. From the ecolog- tropanes) bind specifically to the active sites of glyco- ical point of view such compounds may cause intox- ications in cattle (Asano et al., 2000 and literature q Part 17 in the series ‘‘Phytochemistry and Chemotaxonomy of the therein) and are also toxic for vertebrates, insects, Convolvulaceae’’. For part 16, see Jenett-Siems et al. [Phytochemistry, and microbes (Fellows et al., 1989 and literature 66 (2005) 223–231]. * Corresponding author. Tel.: +49 30 838 53720; fax: +49 30 838 therein). Furthermore, they exhibit antifeedant effects 53729. against lepidopterans (Simmonds et al., 1990). How- E-mail address: [email protected] (E. Eich). ever, it is not yet clear if there is a physiological role 0031-9422/$ - see front matter Ó 2005 Published by Elsevier Ltd. doi:10.1016/j.phytochem.2004.12.024 470 T. Schimming et al. / Phytochemistry 66 (2005) 469–480 of polyhydroxy alkaloids in general and of calyste- the consequence that all continents are represented gines in particular for the producing plant species it- now. (2) Again for the first time the rare genera Cardio- self (Dra¨ger, 2004; Hoeke and Dra¨ger, 2004). chlamys, Humbertia, Rapona (all endemic to Madagas- The calystegines seem to be confined to the two major car), and Hildebrandtia (East Africa/Madagascar/ Solanales families, Convolvulaceae and Solanaceae, as Arabia) altogether classified as basal (Stefanovic´ et al., well as to the unrelated Moraceae. To date the struc- 2003), as well as the more advanced genera Polymeria tures of 15 calystegines have been elucidated including (endemic to Australia) and Astripomoea (endemic to five trihydroxynortropanes (A3,A5–A8), six tetrahydr- Africa) are involved. (3) We have been able to include oxy congeners (B1–B6), and two pentahydroxy deriva- species from not yet investigated sections of the large tives (C1,C2) (see Fig. 1). Besides free calystegines, genera Ipomoea and Merremia, respectively. (4) The several glycosides could be isolated from solanaceous number of species in certain genera which had turned species. In addition, the N-methylated congeners of out already in the previous study to be calystegine-posi- the calystegines B2 and C1, respectively, have been found tive has been increased disproportionately (the largest again in solanaceous species (Asano et al., 2000; Dra¨ger, genus Ipomoea by additional 21 species, comprising 2004). The occurrence of calystegines in the family Sola- now in total 38 species; the large genus Convolvulus by naceae is documented in the literature for 15 genera (out 13 (now in total: 18), the basal genus Erycibe by 3 of 92) covering 32 species (out of 2300) (Table 3). In the (now in total: 5) in order to confirm these previous find- sister family Convolvulaceae these alkaloids were found ings. (5) In our first study two genera (Jacquemontia, in Calystegia sepium and Convolvulus arvensis (Tepfer Operculina) did not show any occurrence of calystegines et al., 1988), two further Calystegia spp. (Molyneux in different samples of several species. By including fur- et al., 1995) and seven Ipomoea taxa (Asano et al., ther species and/or organs of these genera we wanted to 2001). In our previous study on the occurrence and distri- find out if these will support this previous finding or not. bution of these compounds in the Convolvulaceae com- (6) Our former study was based only on seven calyste- prising 65 species (out of 1850) from 22 genera (out of gines whereas now we could integrate four additional 55) after all 30 species belonging to 15 genera were found congeners. This also means that we are able to enhance to be calystegine-positive (Schimming et al., 1998). the results of the former 65 species by these additional Our present study has been extended considerably in polyhydroxylated alkaloids. Thus, we want to report several respects: (1) It comprises another 64 species on the occurrence/the lack of all these metabolites in including for the first time also Australian taxa with 129 species belonging to 29 genera which include HN HN HN HN OH 5 4 1 2 OH HO HO OH OH HO HO HO HO 3 HO 6 7 HO Calystegine A Calystegine A3 Calystegine A5 6 Calystegine A7 HN HN HN OH HN OH OH OH HO HO OH HO HO OH HO OH HO HO OH HO Calystegine B1 Calystegine B2 Calystegine B3 Calystegine B4 HN CH3 OH CH3 N N HO HO OH OH OH HO HO HO OH HO HO OH HO Calystegine C1 N -Methylcalystegine B N -Methylcalystegine C 2 1 Fig. 1. Structure of the calystegines and N-methylcalystegines included in this study. T. Schimming et al. / Phytochemistry 66 (2005) 469–480 471 members of all 12 convolvulaceous tribes recently estab- erature are involved in the numbers (22 and 42, respec- lished on the basis of molecular cladistic phylogenetic tively): four species which have not been included in our analysis (Stefanovic´ et al., 2002), afterwards correctly study and in addition I. pes-caprae which has been nega- aligned with the traditional phylogenetic point of view tive in our study (for details see Table 1). This genus (Stefanovic´ et al., 2003)(Table 1). turned out to comprise calystegine-positive species in at There are a few reports on the co-occurrence of both, least eight of ten sections checked. For the remaining calystegines and swainsonine, a polyhydroxylated indo- two sections (Leptocallis, Orthipomoea) only one and lizidine alkaloid well-known from certain fabaceous two species, respectively, have been available. Thus, it is species, in the seeds of two Australian Ipomoea taxa, equivocal if these sections are calystegine-negative in gen- I. polpha and I. sp. Q6 (aff. calobra, Weir Vine), the lat- eral. In the case of Merremia the four sections involved in ter supposed to be a subspecies of the former (Molyneux this study seem to contain calystegine-positive species in et al., 1995) and from the leaves of a pantropical toxic contrast to the closely related genus Operculina (see be- Ipomoea species of American origin, I. carnea ssp. fistul- low). Jacquemontia has been the strangest genus since osa (de Balogh et al., 1998; Asano et al., 2001; Haragu- the assay of 20 samples taken from altogether six species chi et al., 2003). Therefore swainsonine as well as its resulted in 19 negative findings; only one sample turned congener castanospermine have been also integrated in out to be positive: the roots of J. tamnifolia with at least our present study. five calystegines. This is especially remarkable because the aerial parts from two provenances and the fruits of this species were also negative. The number of compounds in calystegine-positive 2. Results and discussion species (a few taken from the literature included; see above and Table 1) varied between one and six. Only Since polyhydroxylated alkaloids cannot be isolated one compound each could be detected in the samples by conventional alkaloid separation techniques, ion-ex- of 24% of these species, followed by two and three com- change chromatography was employed for separating pounds each (22% of the species each), four (20%), five this polar alkaloid fraction from neutral and acidic con- (9%), and six compounds (3%).
Recommended publications
  • Macrophyte Structure in Lotic-Lentic Habitats from Brazilian Pantanal
    Oecologia Australis 16(4): 782-796, Dezembro 2012 http://dx.doi.org/10.4257/oeco.2012.1604.05 MACROPHYTE STRUCTURE IN LOTIC-LENTIC HABITATS FROM BRAZILIAN PANTANAL Gisele Catian2*, Flávia Maria Leme2, Augusto Francener2, Fábia Silva de Carvalho2, Vitor Simão Galletti3, Arnildo Pott4, Vali Joana Pott4, Edna Scremin-Dias4 & Geraldo Alves Damasceno-Junior4 2Master, Program in Plant Biology, Federal University of Mato Grosso do Sul, Center for Biological Sciences and Health, Biology Department. Cidade Universitária, s/no – Caixa Postal: 549 – CEP: 79070-900, Campo Grande, MS, Brazil. 3Master, Program in Ecology and Conservation, Federal University of Mato Grosso do Sul, Center for Biological Sciences and Health, Biology Department. Cidade Universitária, s/no – Caixa Postal: 549 – CEP: 79070-900, Campo Grande, MS, Brazil. 4Lecturer, Program in Plant Biology, Federal University of Mato Grosso do Sul, Center for Biological Sciences and Health, Biology Department. Cidade Universitária, s/no – Caixa Postal: 549 – CEP: 79070-900, Campo Grande, MS, Brazil. E-mail: [email protected]*, [email protected], [email protected], [email protected], [email protected], arnildo. [email protected], [email protected], [email protected], [email protected] ABSTRACT The goal of this study was to compare the vegetation structure of macrophytes in an anabranch-lake system. Sampling was carried out at flood in three types of aquatic vegetation, (wild-rice, floating meadow and Polygonum bank) in anabranch Bonfim (lotic) and in lake Mandioré (lentic) in plots along transects, to estimate the percent coverage and record life forms of species. We collected 59 species in 50 genera and 28 families.
    [Show full text]
  • Appendix Color Plates of Solanales Species
    Appendix Color Plates of Solanales Species The first half of the color plates (Plates 1–8) shows a selection of phytochemically prominent solanaceous species, the second half (Plates 9–16) a selection of convol- vulaceous counterparts. The scientific name of the species in bold (for authorities see text and tables) may be followed (in brackets) by a frequently used though invalid synonym and/or a common name if existent. The next information refers to the habitus, origin/natural distribution, and – if applicable – cultivation. If more than one photograph is shown for a certain species there will be explanations for each of them. Finally, section numbers of the phytochemical Chapters 3–8 are given, where the respective species are discussed. The individually combined occurrence of sec- ondary metabolites from different structural classes characterizes every species. However, it has to be remembered that a small number of citations does not neces- sarily indicate a poorer secondary metabolism in a respective species compared with others; this may just be due to less studies being carried out. Solanaceae Plate 1a Anthocercis littorea (yellow tailflower): erect or rarely sprawling shrub (to 3 m); W- and SW-Australia; Sects. 3.1 / 3.4 Plate 1b, c Atropa belladonna (deadly nightshade): erect herbaceous perennial plant (to 1.5 m); Europe to central Asia (naturalized: N-USA; cultivated as a medicinal plant); b fruiting twig; c flowers, unripe (green) and ripe (black) berries; Sects. 3.1 / 3.3.2 / 3.4 / 3.5 / 6.5.2 / 7.5.1 / 7.7.2 / 7.7.4.3 Plate 1d Brugmansia versicolor (angel’s trumpet): shrub or small tree (to 5 m); tropical parts of Ecuador west of the Andes (cultivated as an ornamental in tropical and subtropical regions); Sect.
    [Show full text]
  • 27April12acquatic Plants
    International Plant Protection Convention Protecting the world’s plant resources from pests 01 2012 ENG Aquatic plants their uses and risks Implementation Review and Support System Support and Review Implementation A review of the global status of aquatic plants Aquatic plants their uses and risks A review of the global status of aquatic plants Ryan M. Wersal, Ph.D. & John D. Madsen, Ph.D. i The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of speciic companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.All rights reserved. FAO encourages reproduction and dissemination of material in this information product. Non-commercial uses will be authorized free of charge, upon request. Reproduction for resale or other commercial purposes, including educational purposes, may incur fees. Applications for permission to reproduce or disseminate FAO copyright materials, and all queries concerning rights and licences, should be addressed by e-mail to [email protected] or to the Chief, Publishing Policy and Support Branch, Ofice of Knowledge Exchange,
    [Show full text]
  • Pollen Evolution and Its Taxonomic Significance in Cuscuta (Dodders, Convolvulaceae)
    Plant Syst Evol (2010) 285:83–101 DOI 10.1007/s00606-009-0259-4 ORIGINAL ARTICLE Pollen evolution and its taxonomic significance in Cuscuta (dodders, Convolvulaceae) Mark Welsh • Sasˇa Stefanovic´ • Mihai Costea Received: 12 June 2009 / Accepted: 28 December 2009 / Published online: 27 February 2010 Ó Springer-Verlag 2010 Abstract The pollen morphology of 148 taxa (135 spe- unknown in other Convolvulaceae, has evolved in Cuscuta cies and 13 varieties) of the parasitic plant genus Cuscuta only in two lineages (subg. Monogynella, and clade O of (dodders, Convolvulaceae) was examined using scanning subg. Grammica). Overall, the morphology of pollen electron microscopy. Six quantitative characters were supports Cuscuta as a sister to either the ‘‘bifid-style’’ coded using the gap-weighting method and optimized Convolvulaceae clade (Dicranostyloideae) or to one of the onto a consensus tree constructed from three large-scale members of this clade. Pollen characters alone are insuf- molecular phylogenies of the genus based on nuclear ficient to reconstruct phylogenetic relationships; however, internal transcribed spacer (ITS) and plastid trn-LF palynological information is useful for the species-level sequences. The results indicate that 3-zonocolpate pollen is taxonomy of Cuscuta. ancestral, while grains with more colpi (up to eight) have evolved only in two major lineages of Cuscuta (subg. Keywords Convolvulaceae Á Cuscuta Á Dodders Á Monogynella and clade O of subg. Grammica). Complex Evolution Á Phylogeny Á Pollen morphology Á morphological intergradations occur between species when Scanning electron microscopy Á Taxonomy their tectum is described using the traditional qualitative types—imperforate, perforate, and microreticulate. This continuous variation is better expressed quantitatively as Introduction ‘‘percent perforation,’’ namely the proportion of perforated area (puncta or lumina) from the total tectum surface.
    [Show full text]
  • Recovery Plan for Tyoj5llllt . I-Bland Plants
    Recovery Plan for tYOJ5llllt. i-bland Plants RECOVERY PLAN FOR MULTI-ISLAND PLANTS Published by U.S. Fish and Wildlife Service Portland, Oregon Approved: Date: / / As the Nation’s principal conservation agency, the Department of the Interior has responsibility for most ofour nationally owned public lands and natural resources. This includes fostering the wisest use ofour land and water resources, protecting our fish and wildlife, preserving the environmental and cultural values ofour national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests ofall our people. The Department also has a major responsibility for American Indian reservation communities and for people who live in island Territories under U.S. administration. DISCLAIMER PAGE Recovery plans delineate reasonable actions that are believed to be required to recover and/or protect listed species. Plans are published by the U.S. Fish and Wildlife Service, sometimes prepared with the assistance ofrecovery teams, contractors, State agencies, and others. Objectives will be attained and any necessary funds made available subject to budgetary and other constraints affecting the parties involved, as well as the need to address other priorities. Costs indicated for task implementation and/or time for achievement ofrecovery are only estimates and are subject to change. Recovery plans do not necessarily represent the views nor the official positions or approval ofany individuals or agencies involved in the plan formulation, otherthan the U.S. Fish and Wildlife Service. They represent the official position ofthe U.S.
    [Show full text]
  • Diversity of Ipomoea (Convolvulaceae) in Some of the Regions of Maharashtra
    Int. J. of Life Sciences, Special Issue A3 | September, 2015 ISSN: 2320-7817 |eISSN: 2320-964X RESEARCH ARTICLE Diversity of Ipomoea (Convolvulaceae) in some of the regions of Maharashtra Undirwade DN1, BhadaneVV2 and Baviskar PS 1B.P. Arts, S.M.A. Science & K.K.C. Commerce. College, Chalisgaon, Dist.-Jalgaon, Maharshtra, India 2Pratap College, Amalner, Dist.-Jalgaon, Maharshtra, India * Corresponding author Email: [email protected] Manuscript details: ABSTRACT Available online on The present study deals with genus Ipomoea of family Convolvulaceaefrom http://www.ijlsci.in various regions of Maharashtra state. A total of 17 species of the genus have been collected from various localities of state Maharashtra on the collections ISSN: 2320-964X (Online) made between 2013 and 2015 from different parts. The present paper ISSN: 2320-7817 (Print) illustrates the diversity and morphology of the species of Ipomoea, which are separated from each other on the basis of their morphological characters. Editor: Dr. Arvind Chavhan Keywords: Diversity, Ipomoea, Convolvulaceae, Maharashtra. Cite this article as: Undirwade DN, Bhadane VV and Baviskar PS (2015) Diversity of Ipomoea (Convolvulaceae) in some of INTRODUCTION the regions of Maharashtra, International J. of Life Sciences, The family Convolvulaceae is known as morning glory family. About Special issue, A3: 136-139. 2000 species of 58 genera are distributed overall the world, mainly in the tropics and subtropics region (Staple and Yang, 1998). More than one third of Copyright: © Author, This is the species are included into major genera Ipomoea and Convolvulus an open access article under (Conquist, 1988). Genus Ipomoea represented by 650 species distributed the terms of the Creative worldwide (Mabberley, 1997).
    [Show full text]
  • BOTANY SECTION Compiled by Richard E. Weaver, Jr., Ph.D., and Patti J
    TRI-OLOGY, Vol. 47, No. 5 Patti J. Anderson, Ph.D., Managing Editor SEPTEMBER-OCTOBER 2008 DACS-P-00124 Wayne N. Dixon, Ph. D., Editor Page 1 of 13 BOTANY SECTION Compiled by Richard E. Weaver, Jr., Ph.D., and Patti J. Anderson, Ph.D. For this period, 167 specimens were submitted to the Botany Section for identification, and 1,418 were received from other sections for identification/name verification for a total of 1,585. In addition, 57 specimens were added to the herbarium, and 48 specimens of invasive species were prepared for the Division of Forestry’s Forest Health Project. Some of the samples received for identification are discussed below: Helianthus simulans E. E. Wats. (an endemic North American genus of 49 species, occurring throughout the United States and adjacent Canada, as well as in Baja California). Compositae (Asteraceae). Muck sunflower. It is unfortunate that such an attractive plant has such an unattractive common name. Growing to more than 2 m tall, this sunflower makes a showy and impressive specimen in the garden. In its best forms, the lanceolate leaves are leathery and dark green, somewhat reminiscent of those of the oleander (Nerium oleander). The flower heads, with bright yellow rays and usually a reddish- purple disk, are borne in profusion in October and November and vary from 7-10 cm across. Although it grows at least twice as tall and the leaves are broader and not revolute (turned under along the margins), it is often confused with the very common Helianthus simulans Photograph courtesy of Sally Wasowski and swamp sunflower (H.
    [Show full text]
  • Classification of Convolvulaceae: a Phylogenetic Approach
    Systematic Botany (2003), 28(4): pp. 791±806 q Copyright 2003 by the American Society of Plant Taxonomists Classi®cation of Convolvulaceae: A Phylogenetic Approach SASÏA STEFANOVICÂ ,1,3 DANIEL F. A USTIN,2 and RICHARD G. OLMSTEAD1 1Department of Botany, University of Washington, Box 355325, Seattle, Washington 98195-5325; 2Conservation and Science Department, Sonora Desert Museum, 2021 N Kinney Road, Tucson, Arizona 85743; 3Author for correspondence, present address: Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, Indiana, 47405 ([email protected]) Communicating Editor: Paul S. Manos ABSTRACT. Because recent molecular studies, based on multiple data sets from all three plant genomes, have indicated mutually congruent, well-resolved, and well-supported relationships within Convolvulaceae (the morning-glory family), a formal reclassi®cation of this family is presented here. Convolvulaceae, a large family of worldwide distribution, exhibiting a rich diversity of morphological characteristics and ecological habitats, are now circumscribed within twelve tribes. A key to these tribes of Convolvulaceae is offered. The group of spiny-pollen bearing Convolvulaceae (forming ``Echinoconiae'') and tribe Cuscuteae are retained essentially in their traditional sense, Cresseae are circumscribed with only minor modi®- cations, Convolvuleae and Erycibeae are recognized in a restricted sense, while Dichondreae and Maripeae are expanded. Also, to produce a tribal taxonomy that better re¯ects phylogenetic relationships, the concept of Poraneae is abandoned as arti®cial, three new tribes are recognized (Aniseieae, Cardiochlamyeae, and Jacquemontieae), and a new tribal status is proposed for the Malagasy endemic Humbertia (Humbertieae). ``Merremieae'' are tentatively retained even though the mono- phyly of this tribe is not certain.
    [Show full text]
  • Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY
    Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY BIBLIOGRAPHY Ackerfield, J., and J. Wen. 2002. A morphometric analysis of Hedera L. (the ivy genus, Araliaceae) and its taxonomic implications. Adansonia 24: 197-212. Adams, P. 1961. Observations on the Sagittaria subulata complex. Rhodora 63: 247-265. Adams, R.M. II, and W.J. Dress. 1982. Nodding Lilium species of eastern North America (Liliaceae). Baileya 21: 165-188. Adams, R.P. 1986. Geographic variation in Juniperus silicicola and J. virginiana of the Southeastern United States: multivariant analyses of morphology and terpenoids. Taxon 35: 31-75. ------. 1995. Revisionary study of Caribbean species of Juniperus (Cupressaceae). Phytologia 78: 134-150. ------, and T. Demeke. 1993. Systematic relationships in Juniperus based on random amplified polymorphic DNAs (RAPDs). Taxon 42: 553-571. Adams, W.P. 1957. A revision of the genus Ascyrum (Hypericaceae). Rhodora 59: 73-95. ------. 1962. Studies in the Guttiferae. I. A synopsis of Hypericum section Myriandra. Contr. Gray Herbarium Harv. 182: 1-51. ------, and N.K.B. Robson. 1961. A re-evaluation of the generic status of Ascyrum and Crookea (Guttiferae). Rhodora 63: 10-16. Adams, W.P. 1973. Clusiaceae of the southeastern United States. J. Elisha Mitchell Sci. Soc. 89: 62-71. Adler, L. 1999. Polygonum perfoliatum (mile-a-minute weed). Chinquapin 7: 4. Aedo, C., J.J. Aldasoro, and C. Navarro. 1998. Taxonomic revision of Geranium sections Batrachioidea and Divaricata (Geraniaceae). Ann. Missouri Bot. Gard. 85: 594-630. Affolter, J.M. 1985. A monograph of the genus Lilaeopsis (Umbelliferae). Systematic Bot. Monographs 6. Ahles, H.E., and A.E.
    [Show full text]
  • Comparative Biology of Seed Dormancy-Break and Germination in Convolvulaceae (Asterids, Solanales)
    University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2008 COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) Kariyawasam Marthinna Gamage Gehan Jayasuriya University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Jayasuriya, Kariyawasam Marthinna Gamage Gehan, "COMPARATIVE BIOLOGY OF SEED DORMANCY- BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES)" (2008). University of Kentucky Doctoral Dissertations. 639. https://uknowledge.uky.edu/gradschool_diss/639 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Kariyawasam Marthinna Gamage Gehan Jayasuriya Graduate School University of Kentucky 2008 COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) ABSRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Art and Sciences at the University of Kentucky By Kariyawasam Marthinna Gamage Gehan Jayasuriya Lexington, Kentucky Co-Directors: Dr. Jerry M. Baskin, Professor of Biology Dr. Carol C. Baskin, Professor of Biology and of Plant and Soil Sciences Lexington, Kentucky 2008 Copyright © Gehan Jayasuriya 2008 ABSTRACT OF DISSERTATION COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) The biology of seed dormancy and germination of 46 species representing 11 of the 12 tribes in Convolvulaceae were compared in laboratory (mostly), field and greenhouse experiments.
    [Show full text]
  • Wood and Stem Anatomy of Convolvulaceae Sherwin Carlquist Rancho Santa Ana Botanic Garden; Pomona College
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Scholarship@Claremont Aliso: A Journal of Systematic and Evolutionary Botany Volume 13 | Issue 1 Article 3 1991 Wood and Stem Anatomy of Convolvulaceae Sherwin Carlquist Rancho Santa Ana Botanic Garden; Pomona College Michael A. Hanson Rancho Santa Ana Botanic Garden Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Carlquist, Sherwin and Hanson, Michael A. (1991) "Wood and Stem Anatomy of Convolvulaceae," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 13: Iss. 1, Article 3. Available at: http://scholarship.claremont.edu/aliso/vol13/iss1/3 ALISO 13(1), 1991, pp. 51-94 WOOD AND STEM ANATOMY OF CONVOLVULACEAE: A SURVEY SHERWIN CARLQUIST Rancho Santa Ana Botanic Garden and Department of Biology, Pomona College Claremont, California 91711 AND MICHAEL A. HANSON Rancho Santa Ana Botanic Garden Claremont, California 91711 ABSTRACf Quantitative and qualitative features of wood and stem anatomy are presented for 44 collections of 16 genera and 35 species ofConvolvulaceae. Markedly furrowed xylem characterizes the genera of tribe Cresseae. Successive cambia occur in 11 of the genera studied. Large patches of axial parenchyma occur in many of these; only in one species was interxylary phloem (formed internally by the cambium) observed in the parenchyma patches. Intraxylary phloem at the periphery of the pith is universal in Convolvulaceae, but newly reported is the fact that in many species, cambial activity adds secondary phloem to the intraxylary phloem strands. These cambia were also observed to add limited amounts of secondary xylem externally in Ericybe and Operculina.
    [Show full text]
  • Decrypting the Environmental Sources of Mycobacterium Canettii by High-Throughput Biochemical Profiling
    RESEARCH ARTICLE Decrypting the environmental sources of Mycobacterium canettii by high-throughput biochemical profiling 1☯ 1,2☯ 3 1,4 Ahmed Loukil , FeÂriel Bouzid , Djaltou Aboubaker Osman , Michel DrancourtID * 1 Aix-Marseille Univ., IRD, MEPHI, IHU MeÂditerraneÂe-Infection, Marseille, France, 2 Universite de Gafsa, Faculte des Sciences de Gafsa, Gafsa, Tunisia, 3 Institut de Recherche MeÂdicinale, Centre d'Etudes et de Recherche de Djibouti (CERD), Djibouti, ReÂpublique de Djibouti, 4 IHU MeÂditerraneÂe Infection, Marseille, France a1111111111 ☯ These authors contributed equally to this work. a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract Mycobacterium canettii is a smooth bacillus related to the Mycobacterium tuberculosis com- plex. It causes lymph nodes and pulmonary tuberculosis in patients living in countries of the Horn of Africa, including Djibouti. The environmental reservoirs of M. canettii are still OPEN ACCESS unknown. We aimed to further decrypt these potential reservoirs by using an original Citation: Loukil A, Bouzid F, Osman DA, Drancourt approach of High-Throughput Carbon and Azote Substrate Profiling. The Biolog Phenotype M (2019) Decrypting the environmental sources of Mycobacterium canettii by high-throughput profiling was performed on six clinical strains of M. canettii and one M. tuberculosis strain biochemical profiling. PLoS ONE 14(9): e0222078. was used as a positive control. The experiments were duplicated and authenticated by neg- https://doi.org/10.1371/journal.pone.0222078 ative controls. While M. tuberculosis metabolized 22/190 (11%) carbon substrates and 3/95 Editor: Lanbo Shi, New Jersey Medical School, (3%) nitrogen substrates, 17/190 (8.9%) carbon substrates and three nitrogen substrates Rutgers University, UNITED STATES were metabolized by the six M.
    [Show full text]