Systematics of the Genus Ptychadena Boulenger

Total Page:16

File Type:pdf, Size:1020Kb

Systematics of the Genus Ptychadena Boulenger University of Texas at El Paso DigitalCommons@UTEP Open Access Theses & Dissertations 2010-01-01 Systematics of the genus Ptychadena Boulenger, 1917 (Anura: Ptychadenidae) from Democratic Republic of the Congo Katrina Marie Weber University of Texas at El Paso, [email protected] Follow this and additional works at: https://digitalcommons.utep.edu/open_etd Part of the Biodiversity Commons, Biology Commons, Evolution Commons, and the Genetics Commons Recommended Citation Weber, Katrina Marie, "Systematics of the genus Ptychadena Boulenger, 1917 (Anura: Ptychadenidae) from Democratic Republic of the Congo" (2010). Open Access Theses & Dissertations. 2612. https://digitalcommons.utep.edu/open_etd/2612 This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. SYSTEMATICS OF THE GENUS PTYCHADENA BOULENGER, 1917 (ANURA: PTYCHADENIDAE) FROM DEMOCRATIC REPUBLIC OF THE CONGO KATRINA M. WEBER Department of Biological Sciences APPROVED: Eli Greenbaum, Ph.D., Chair Max Shpak, Ph.D. Jasper Konter, Ph.D. Patricia D. Witherspoon, Ph.D. Dean of the Graduate School Copyright © by Katrina M. Weber 2010 Dedication This thesis is dedicated to my mother and father, my continual support system, who showed me how to learn for the sake of learning. I have become the person I am today because of you. Also to Shawn T. Dash, I may not have always been appreciative of your assistance but this never would have gotten done without your help. SYSTEMATICS OF THE GENUS PTYCHADENA BOULENGER, 1917 (ANURA: PTYCHADENIDAE) FROM DEMOCRATIC REPUBLIC OF THE CONGO by KATRINA M. WEBER, B.Sc. THESIS Presented to the Faculty of the Graduate School of The University of Texas at El Paso in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Department of Biological Sciences THE UNIVERSITY OF TEXAS AT EL PASO December 2010 Acknowledgements I would like to start by acknowledging my thesis committee, without which this thesis would never have been finished: Dr. Eli Greenbaum, who accepted me as a graduate student and introduced me to a new side of biology, Dr. Max Shpak for helping me with statistical analyses and providing new ideas, and Dr. Jasper Konter, who filled in the many gaps in my geological knowledge. I would also like to thank all the other faculty members that have helped me along the way: Dr. Elizabeth Walsh, who has been a caring mentor since my time as an undergraduate and is always willing to provide help and advice and Dr. Vanessa Lougheed, who patiently explained statistics when I knew next to nothing. Omar Hernandez, Dr. Carolina Lema, and Ana Betancourt in the UTEP DNA Analysis Core Facility (NIH grant #5G12RR008124) completed hundreds of DNA sequencing requests for me. Also, the UTEP Graduate School gave me two Graduate Student Research Grants, which paid for all the supplies needed for DNA sequencing. Field work conducted by Dr. Eli Greenbaum for this study was supported by National Geographic Research and Exploration Grant #8556–08. Garin Cael provided invaluable research assistance at the Royal Museum for Central Africa in Tervuren, Belgium. Cesar Villanueva taught me all the lab procedures I know and was always the one to troubleshoot lab problems. The other members of the Greenbaum lab: Chris Anderson and Federico Valdez provided support and advice throughout my project. To my friends and fellow graduate students: Jennifer Martinez, Kevin Floyd, and Shawn Dash, thank you for endless lunch discussions, project advice, and general encouragement. v Abstract This thesis increases the scope of previous phylogenetic analyses that revealed high levels of genetic differentiation within the anuran genus Ptychadena. Herein, I increase sampling of Central African populations of Ptychadena by over six times to examine their relationships to other African populations and to search for cryptic species. This study represents the most comprehensive molecular phylogeny of Ptychadena to date. A total of three mitochondrial (12S, 16S, and cyt b) and two nuclear (RAG1 and rhodopsin) genes were sequenced for 67 specimens of Ptychadena. Maximum parsimony, maximum likelihood, and Bayesian analyses were conducted. These analyses revealed a great deal of genetic diversity in the genus Ptychadena, suggesting that many species have been separated into distinct genetic lineages that will be recognizable as distinct species as some point. There are five genetically distinct lineages of P. mascareniensis sensu lato, three of which occur in the DRC. Multivariate analyses of morphometric and meristic data did not reveal any distinct morphological differences between any of the clades except P. mascareniensis sensu stricto in Madagascar. Based on habitat structuring, two of these distinct lineages, a savannah-dwelling lineage and a forest-dwelling lineage, should be recognized as distinct species under the names P. nilotica and P. marchei, respectively. The formation of the Albertine Rift combined with subsequent climatic shifts that increased habitat heterogeneity likely led to the establishment of these savannah and forest forms of P. mascareniensis. vi Table of Contents Acknowledgements.............................................................................................. v Abstract .............................................................................................................. vi Table of Contents............................................................................................... vii List of Tables ...................................................................................................... ix List of Figures ..................................................................................................... x Chapter 1: General Introduction ........................................................................... 1 1.1 Amphibian Declines .............................................................................. 1 1.2 Introduction to Democratic Republic of the Congo ................................ 4 1.3 Historical Geology and Climate of Africa .............................................. 5 1.4 Introduction to Ptychadena.................................................................... 7 1.5 Research Objectives ............................................................................ 14 Chapter 2: Materials and Methods...................................................................... 15 2.1 Specimen Acquisition.......................................................................... 15 2.2 Molecular analysis .............................................................................. 15 2.3 Species Concepts ................................................................................. 20 2.4 Morphological Analysis ...................................................................... 20 Chapter 3: Results of Molecular Study ............................................................... 22 3.1 Phylogenetic Analyses ........................................................................ 22 3.2 Combined Dataset ............................................................................... 25 3.3 Genetic diversity in Ptychadena .......................................................... 29 3.4 Genetic diversity in Ptychadena mascareniensis.................................. 30 3.5 Haplotype Networks ............................................................................ 34 Chapter 4: Results of Morphological Analyses ................................................... 40 4.1 Diagnostic characters in Ptychadena mascareniensis ........................... 40 4.2 Multivariate Statistical Analyses ......................................................... 46 Chapter 5: General Discussion and Conclusions ................................................ 57 5.1 Genetic diversity in Ptychadena .......................................................... 57 5.2 Genetic diversity in Ptychadena mascareniensis.................................. 58 5.3 Taxonomic status of Ptychadena mascareniensis ................................ 60 vii 5.4 Biogeography ...................................................................................... 66 5.5 Conservation Implications ................................................................... 72 5.6 Conclusions and future directions ........................................................ 72 Literature Cited .................................................................................................. 74 Appendices ........................................................................................................ 93 Appendix A: Locality Information for All Specimens ............................... 93 Appendix B: Morphometric and Meristic Characters Used for Morphological Analyses ........................................................................................... 99 Appendix C: Complete Measurement Data for All Ptychadena Specimens ...................................................................................... 102 Curriculum Vita ............................................................................................... 118 viii List of Tables Table 1.4.1: Summary of the supraspecific taxonomic history of the family Ptychadenidae.. ................11 Table 2.2.1: Primers used for sequencing mitochondrial and nuclear genes ..........................................16
Recommended publications
  • Bioseries12-Amphibians-Taita-English
    0c m 12 Symbol key 3456 habitat pond puddle river stream 78 underground day / night day 9101112131415161718 night altitude high low vegetation types shamba forest plantation prelim pages ENGLISH.indd ii 2009/10/22 02:03:47 PM SANBI Biodiversity Series Amphibians of the Taita Hills by G.J. Measey, P.K. Malonza and V. Muchai 2009 prelim pages ENGLISH.indd Sec1:i 2009/10/27 07:51:49 AM SANBI Biodiversity Series The South African National Biodiversity Institute (SANBI) was established on 1 September 2004 through the signing into force of the National Environmental Management: Biodiversity Act (NEMBA) No. 10 of 2004 by President Thabo Mbeki. The Act expands the mandate of the former National Botanical Institute to include responsibilities relating to the full diversity of South Africa’s fauna and ora, and builds on the internationally respected programmes in conservation, research, education and visitor services developed by the National Botanical Institute and its predecessors over the past century. The vision of SANBI: Biodiversity richness for all South Africans. SANBI’s mission is to champion the exploration, conservation, sustainable use, appreciation and enjoyment of South Africa’s exceptionally rich biodiversity for all people. SANBI Biodiversity Series publishes occasional reports on projects, technologies, workshops, symposia and other activities initiated by or executed in partnership with SANBI. Technical editor: Gerrit Germishuizen Design & layout: Elizma Fouché Cover design: Elizma Fouché How to cite this publication MEASEY, G.J., MALONZA, P.K. & MUCHAI, V. 2009. Amphibians of the Taita Hills / Am bia wa milima ya Taita. SANBI Biodiversity Series 12. South African National Biodiversity Institute, Pretoria.
    [Show full text]
  • Pollen Evolution and Its Taxonomic Significance in Cuscuta (Dodders, Convolvulaceae)
    Plant Syst Evol (2010) 285:83–101 DOI 10.1007/s00606-009-0259-4 ORIGINAL ARTICLE Pollen evolution and its taxonomic significance in Cuscuta (dodders, Convolvulaceae) Mark Welsh • Sasˇa Stefanovic´ • Mihai Costea Received: 12 June 2009 / Accepted: 28 December 2009 / Published online: 27 February 2010 Ó Springer-Verlag 2010 Abstract The pollen morphology of 148 taxa (135 spe- unknown in other Convolvulaceae, has evolved in Cuscuta cies and 13 varieties) of the parasitic plant genus Cuscuta only in two lineages (subg. Monogynella, and clade O of (dodders, Convolvulaceae) was examined using scanning subg. Grammica). Overall, the morphology of pollen electron microscopy. Six quantitative characters were supports Cuscuta as a sister to either the ‘‘bifid-style’’ coded using the gap-weighting method and optimized Convolvulaceae clade (Dicranostyloideae) or to one of the onto a consensus tree constructed from three large-scale members of this clade. Pollen characters alone are insuf- molecular phylogenies of the genus based on nuclear ficient to reconstruct phylogenetic relationships; however, internal transcribed spacer (ITS) and plastid trn-LF palynological information is useful for the species-level sequences. The results indicate that 3-zonocolpate pollen is taxonomy of Cuscuta. ancestral, while grains with more colpi (up to eight) have evolved only in two major lineages of Cuscuta (subg. Keywords Convolvulaceae Á Cuscuta Á Dodders Á Monogynella and clade O of subg. Grammica). Complex Evolution Á Phylogeny Á Pollen morphology Á morphological intergradations occur between species when Scanning electron microscopy Á Taxonomy their tectum is described using the traditional qualitative types—imperforate, perforate, and microreticulate. This continuous variation is better expressed quantitatively as Introduction ‘‘percent perforation,’’ namely the proportion of perforated area (puncta or lumina) from the total tectum surface.
    [Show full text]
  • The Herpetofauna of the Cubango, Cuito, and Lower Cuando River Catchments of South-Eastern Angola
    Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 10(2) [Special Section]: 6–36 (e126). The herpetofauna of the Cubango, Cuito, and lower Cuando river catchments of south-eastern Angola 1,2,*Werner Conradie, 2Roger Bills, and 1,3William R. Branch 1Port Elizabeth Museum (Bayworld), P.O. Box 13147, Humewood 6013, SOUTH AFRICA 2South African Institute for Aquatic Bio- diversity, P/Bag 1015, Grahamstown 6140, SOUTH AFRICA 3Research Associate, Department of Zoology, P O Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031, SOUTH AFRICA Abstract.—Angola’s herpetofauna has been neglected for many years, but recent surveys have revealed unknown diversity and a consequent increase in the number of species recorded for the country. Most historical Angola surveys focused on the north-eastern and south-western parts of the country, with the south-east, now comprising the Kuando-Kubango Province, neglected. To address this gap a series of rapid biodiversity surveys of the upper Cubango-Okavango basin were conducted from 2012‒2015. This report presents the results of these surveys, together with a herpetological checklist of current and historical records for the Angolan drainage of the Cubango, Cuito, and Cuando Rivers. In summary 111 species are known from the region, comprising 38 snakes, 32 lizards, five chelonians, a single crocodile and 34 amphibians. The Cubango is the most western catchment and has the greatest herpetofaunal diversity (54 species). This is a reflection of both its easier access, and thus greatest number of historical records, and also the greater habitat and topographical diversity associated with the rocky headwaters.
    [Show full text]
  • Nyika and Vwaza Reptiles & Amphibians Checklist
    LIST OF REPTILES AND AMPHIBIANS OF NYIKA NATIONAL PARK AND VWAZA MARSH WILDLIFE RESERVE This checklist of all reptile and amphibian species recorded from the Nyika National Park and immediate surrounds (both in Malawi and Zambia) and from the Vwaza Marsh Wildlife Reserve was compiled by Dr Donald Broadley of the Natural History Museum of Zimbabwe in Bulawayo, Zimbabwe, in November 2013. It is arranged in zoological order by scientific name; common names are given in brackets. The notes indicate where are the records are from. Endemic species (that is species only known from this area) are indicated by an E before the scientific name. Further details of names and the sources of the records are available on request from the Nyika Vwaza Trust Secretariat. REPTILES TORTOISES & TERRAPINS Family Pelomedusidae Pelusios rhodesianus (Variable Hinged Terrapin) Vwaza LIZARDS Family Agamidae Acanthocercus branchi (Branch's Tree Agama) Nyika Agama kirkii kirkii (Kirk's Rock Agama) Vwaza Agama armata (Eastern Spiny Agama) Nyika Family Chamaeleonidae Rhampholeon nchisiensis (Nchisi Pygmy Chameleon) Nyika Chamaeleo dilepis (Common Flap-necked Chameleon) Nyika(Nchenachena), Vwaza Trioceros goetzei nyikae (Nyika Whistling Chameleon) Nyika(Nchenachena) Trioceros incornutus (Ukinga Hornless Chameleon) Nyika Family Gekkonidae Lygodactylus angularis (Angle-throated Dwarf Gecko) Nyika Lygodactylus capensis (Cape Dwarf Gecko) Nyika(Nchenachena), Vwaza Hemidactylus mabouia (Tropical House Gecko) Nyika Family Scincidae Trachylepis varia (Variable Skink) Nyika,
    [Show full text]
  • Classification of Convolvulaceae: a Phylogenetic Approach
    Systematic Botany (2003), 28(4): pp. 791±806 q Copyright 2003 by the American Society of Plant Taxonomists Classi®cation of Convolvulaceae: A Phylogenetic Approach SASÏA STEFANOVICÂ ,1,3 DANIEL F. A USTIN,2 and RICHARD G. OLMSTEAD1 1Department of Botany, University of Washington, Box 355325, Seattle, Washington 98195-5325; 2Conservation and Science Department, Sonora Desert Museum, 2021 N Kinney Road, Tucson, Arizona 85743; 3Author for correspondence, present address: Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, Indiana, 47405 ([email protected]) Communicating Editor: Paul S. Manos ABSTRACT. Because recent molecular studies, based on multiple data sets from all three plant genomes, have indicated mutually congruent, well-resolved, and well-supported relationships within Convolvulaceae (the morning-glory family), a formal reclassi®cation of this family is presented here. Convolvulaceae, a large family of worldwide distribution, exhibiting a rich diversity of morphological characteristics and ecological habitats, are now circumscribed within twelve tribes. A key to these tribes of Convolvulaceae is offered. The group of spiny-pollen bearing Convolvulaceae (forming ``Echinoconiae'') and tribe Cuscuteae are retained essentially in their traditional sense, Cresseae are circumscribed with only minor modi®- cations, Convolvuleae and Erycibeae are recognized in a restricted sense, while Dichondreae and Maripeae are expanded. Also, to produce a tribal taxonomy that better re¯ects phylogenetic relationships, the concept of Poraneae is abandoned as arti®cial, three new tribes are recognized (Aniseieae, Cardiochlamyeae, and Jacquemontieae), and a new tribal status is proposed for the Malagasy endemic Humbertia (Humbertieae). ``Merremieae'' are tentatively retained even though the mono- phyly of this tribe is not certain.
    [Show full text]
  • Barotse Floodplain
    Public Disclosure Authorized REPUBLIC OF ZAMBIA DETAILED ASSESSMENT, CONCEPTUAL DESIGN AND ENVIRONMENTAL AND SOCIAL IMPACT ASSESSMENT (ESIA) STUDY Public Disclosure Authorized FOR THE IMPROVED USE OF PRIORITY TRADITIONAL CANALS IN THE BAROTSE SUB-BASIN OF THE ZAMBEZI ENVIRONMENTAL AND SOCIAL IMPACT Public Disclosure Authorized ASSESSMENT Final Report October 2014 Public Disclosure Authorized 15 juillet 2004 BRL ingénierie 1105 Av Pierre Mendès-France BP 94001 30001 Nîmes Cedex5 France NIRAS 4128 , Mwinilunga Road, Sunningdale, Zambia Date July 23rd, 2014 Contact Eric Deneut Document title Environmental and Social Impact Assessment for the improved use of priority canals in the Barotse Sub-Basin of the Zambezi Document reference 800568 Code V.3 Date Code Observation Written by Validated by May 2014 V.1 Eric Deneut: ESIA July 2014 V.2 montage, Environmental baseline and impact assessment Charles Kapekele Chileya: Social Eric Verlinden October 2014 V.3 baseline and impact assessment Christophe Nativel: support in social baseline report ENVIRONMENTAL AND SOCIAL IMPACT ASSESSMENT FOR THE IMPROVED USE OF PRIORITY TRADITIONAL CANALS IN THE BAROTSE SUB-BASIN OF THE ZAMBEZI Table of content 1. INTRODUCTION .............................................................................................. 2 1.1 Background of the project 2 1.2 Summary description of the project including project rationale 6 1.2.1 Project rationale 6 1.2.2 Summary description of works 6 1.3 Objectives the project 7 1.3.1 Objectives of the Assignment 8 1.3.2 Objective of the ESIA 8 1.4 Brief description of the location 10 1.5 Particulars of Shareholders/Directors 10 1.6 Percentage of shareholding by each shareholder 10 1.7 The developer’s physical address and the contact person and his/her details 10 1.8 Track Record/Previous Experience of Enterprise Elsewhere 11 1.9 Total Project Cost/Investment 11 1.10 Proposed Project Implementation Date 12 2.
    [Show full text]
  • Miombo Ecoregion Vision Report
    MIOMBO ECOREGION VISION REPORT Jonathan Timberlake & Emmanuel Chidumayo December 2001 (published 2011) Occasional Publications in Biodiversity No. 20 WWF - SARPO MIOMBO ECOREGION VISION REPORT 2001 (revised August 2011) by Jonathan Timberlake & Emmanuel Chidumayo Occasional Publications in Biodiversity No. 20 Biodiversity Foundation for Africa P.O. Box FM730, Famona, Bulawayo, Zimbabwe PREFACE The Miombo Ecoregion Vision Report was commissioned in 2001 by the Southern Africa Regional Programme Office of the World Wide Fund for Nature (WWF SARPO). It represented the culmination of an ecoregion reconnaissance process led by Bruce Byers (see Byers 2001a, 2001b), followed by an ecoregion-scale mapping process of taxa and areas of interest or importance for various ecological and bio-physical parameters. The report was then used as a basis for more detailed discussions during a series of national workshops held across the region in the early part of 2002. The main purpose of the reconnaissance and visioning process was to initially outline the bio-physical extent and properties of the so-called Miombo Ecoregion (in practice, a collection of smaller previously described ecoregions), to identify the main areas of potential conservation interest and to identify appropriate activities and areas for conservation action. The outline and some features of the Miombo Ecoregion (later termed the Miombo– Mopane Ecoregion by Conservation International, or the Miombo–Mopane Woodlands and Grasslands) are often mentioned (e.g. Burgess et al. 2004). However, apart from two booklets (WWF SARPO 2001, 2003), few details or justifications are publically available, although a modified outline can be found in Frost, Timberlake & Chidumayo (2002). Over the years numerous requests have been made to use and refer to the original document and maps, which had only very restricted distribution.
    [Show full text]
  • Addis Ababa University Science Faculty School of Graduate Studies Department of Environmental Science Zoology Module
    ADDIS ABABA UNIVERSITY SCIENCE FACULTY SCHOOL OF GRADUATE STUDIES DEPARTMENT OF ENVIRONMENTAL SCIENCE ZOOLOGY MODULE AN INVESTIGATION OF AMPHIBIAN DIVERSITY AND ABUNDANCE IN RELATION TO ENVIRONMENTAL CHANGE IN HARENNA FOREST, BALE MOUNTAINS NATIONAL PARK, ETHIOPIA A Thesis Submitted to the School of Graduate Studies of Addis Ababa University, in Partial Fulfillment of the Requirements for the Degree of Master of Environmental Science By Roman Kassahun Advisors: Professor Samy A.Saber, A.A.U. Ethiopia Dr. Simon Loader, Institute of Biogeography, Basel, Switzerland July, 2009 ADDIS ABABA UNIVERSITY SCHOOL OF GRADUATE STUDIES An investigation of Amphibian diversity and abundance in relation to environmental change in Harenna Forest, Bale Mountains National Park. By Roman Kassahun A Thesis presented to the School of Graduate Studies of Addis Ababa University, in partial fulfillment of the requirements for the Degree of Master of Environmental Science Approved by Examining Board: _______________________ _____________ _____________________________ ________________ _____________________________ ________________ ______________________________ ________________ Acknowledgement I owe my sincere gratitude to my adviser Prof Samy A. Saber for his advice and encouragement prior to the start of research work and for his enormously consistent and valuable guidance and advice without which this research project would not have been realized. I am also grateful to my Co-advisor Dr. Simon Loader from the University of Basel, for the logistical support and great help during the wet season of the project, for his guidance in the identifications of the specimens and for giving me this opportunity in the first place. My gratitude also goes to the Ethiopian Wild Life Conservation Authority (EWCA) for allowing me to pursue the M.S.C.
    [Show full text]
  • HERPETOFAUNA of the CUBANGO-OKOVANGO RIVER CATCHMENT a Report on a Rapid Biodiversity Survey Conducted in May 2012
    HERPETOFAUNA OF THE CUBANGO-OKOVANGO RIVER CATCHMENT A report on a rapid biodiversity survey conducted in May 2012 Prepared by Werner Conradie (M. Env. Sc)* Museum Natural Scientist - Herpetologist Port Elizabeth Museum (Bayworld) P.O.Box 13147 Humewood Port Elizabeth 6013 Tel: +27 (41) 5840 650 Fax: +27 (41) 5840 661 E-mail: [email protected] * Werner Conradie has a Masters in Environmental Science (M.Env.Sc), specialising in Herpetology and Zoology in general with 8 years experience. Contents 1. Background ..................................................................................................................................... 2 2. Study area ....................................................................................................................................... 2 3. Methods .......................................................................................................................................... 3 4. Amphibian and reptile Species lists ................................................................................................ 3 5. Results ............................................................................................................................................. 7 5.1 Cubango River Basin .............................................................................................................. 7 5.2 Cuito River Basin .................................................................................................................... 8 5.3 Important Discoveries ..........................................................................................................
    [Show full text]
  • Decrypting the Environmental Sources of Mycobacterium Canettii by High-Throughput Biochemical Profiling
    RESEARCH ARTICLE Decrypting the environmental sources of Mycobacterium canettii by high-throughput biochemical profiling 1☯ 1,2☯ 3 1,4 Ahmed Loukil , FeÂriel Bouzid , Djaltou Aboubaker Osman , Michel DrancourtID * 1 Aix-Marseille Univ., IRD, MEPHI, IHU MeÂditerraneÂe-Infection, Marseille, France, 2 Universite de Gafsa, Faculte des Sciences de Gafsa, Gafsa, Tunisia, 3 Institut de Recherche MeÂdicinale, Centre d'Etudes et de Recherche de Djibouti (CERD), Djibouti, ReÂpublique de Djibouti, 4 IHU MeÂditerraneÂe Infection, Marseille, France a1111111111 ☯ These authors contributed equally to this work. a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract Mycobacterium canettii is a smooth bacillus related to the Mycobacterium tuberculosis com- plex. It causes lymph nodes and pulmonary tuberculosis in patients living in countries of the Horn of Africa, including Djibouti. The environmental reservoirs of M. canettii are still OPEN ACCESS unknown. We aimed to further decrypt these potential reservoirs by using an original Citation: Loukil A, Bouzid F, Osman DA, Drancourt approach of High-Throughput Carbon and Azote Substrate Profiling. The Biolog Phenotype M (2019) Decrypting the environmental sources of Mycobacterium canettii by high-throughput profiling was performed on six clinical strains of M. canettii and one M. tuberculosis strain biochemical profiling. PLoS ONE 14(9): e0222078. was used as a positive control. The experiments were duplicated and authenticated by neg- https://doi.org/10.1371/journal.pone.0222078 ative controls. While M. tuberculosis metabolized 22/190 (11%) carbon substrates and 3/95 Editor: Lanbo Shi, New Jersey Medical School, (3%) nitrogen substrates, 17/190 (8.9%) carbon substrates and three nitrogen substrates Rutgers University, UNITED STATES were metabolized by the six M.
    [Show full text]
  • 1.Kary Venance OUNGBE, Kassi Georges BLAHOUA, Valentin N'douba
    Human Journals Research Article December 2019 Vol.:14, Issue:2 © All rights are reserved by Kary Venance OUNGBE et al. Nematode Parasites of Anurans from the Farm of the Banco National Park (South-Eastern Côte d’Ivoire) Keywords: Parasitic Nematodes, Amphibians, Rainforest, Banco National Park, Côte d’Ivoire ABSTRACT Kary Venance OUNGBE*, Kassi Georges This study proposes to know the parasitic Nematodes of the BLAHOUA, Valentin N’DOUBA Anurans from the fish farm of the Banco National Park, south-eastern Cote d’Ivoire. Spanning a one year period Department of Biological Sciences, Laboratory of (November 2016 to October 2017), the dissection of 354 Hydrobiology, Faculty of Science and Technology, anurans specimens belonging to 23 species revealed 11 parasitic nematode taxa (Amplicaecum africanum, Anisakis University of Félix Houphoüet-Boigny, Abidjan, Côte simplex, Camallanus dimitrovi, Chabaudus leberrei, d’Ivoire. Cosmocerca ornata, Filaria sp., Oswaldocruzia sp., Oxysomatium brevicaudatum, Rhabdias bufonis, Rhabdias Submission: 21 November 2019 sp1. and Rhabdias sp 2). The recorded global prevalence Accepted: 27 November 2019 (68.36%) shows a high parasitic infestation of nematodes in anurans. This infestation is influenced by the microhabitats Published: 30 December 2019 and parasitic specificity of the Nematodes. Most of the Nematodes harvested in the small intestine have a broad spectrum infestation. They parasitize several species of different families. They therefore have a broad or euryxene specificity. The prevalence of the Anurans is higher in the rainy season than in the dry season. The presence of water in www.ijsrm.humanjournals.com the environments creates favorable conditions for the development of the Anurans. Thus, the increase in the number of host species causes an increase in the number of parasitic Helminth species.
    [Show full text]
  • Food Rate of Ptychadena Mascareniensis, P. Pumilio And
    International Journal of Fisheries and Aquatic Studies 2016; 4(6): 01-04 ISSN: 2347-5129 (ICV-Poland) Impact Value: 5.62 (GIF) Impact Factor: 0.549 Food rate of Ptychadena mascareniensis, P. pumilio and IJFAS 2016; 4(6): 01-04 © 2016 IJFAS Hoplobatrachus occipitalis, three Anura of degraded www.fisheriesjournal.com Received: 01-09-2016 areas of Banco National Park, Côte d’Ivoire Accepted: 02-10-2016 Blayda Tohé Blayda Tohé and Germain Gourène Nangui Abrogoua University Laboratory of Environment and Aquatic Biology, UFR-SGE, 02 Abstract BP 801, Abidjan 02 Côte d’Ivoire Food rhythms of Ptychadena mascareniensis, P. pumilio and Hoplobatrachus occipitalis were studied in Banco National Park (Côte d'Ivoire) during the dry and rainy seasons. The food intake of the species of Germain Gourène Ptychadena genus takes place in the morning from 6h to 12h and in the evening between 18h and 24h Nangui Abrogoua University with peaks located at 12h and 24 h respectively. Hoplobatrachus occipitalis feeds on 3h to 9h and from Laboratory of Environment and 15h to 21h with peaks located at 9h and 21h. Most of the food bolus in both species of Ptychadena genus Aquatic Biology, UFR-SGE, 02 corresponding to the peaks is composed of Insects. Hoplobatrachus occipitalis is mainly feeds on BP 801, Abidjan 02 Côte d’Ivoire amphibians at 9h and molluscs at 21h. Keywords: Banco national park, feeding rhythm, Ptychadena mascareniensis, P. pumilio, Hoplobatrachus occipitalis, Côte d’Ivoire 1. Introduction The frogs are a very important source of food in Africa [1]. This resource, as animal protein, is a power supply base of rural communities.
    [Show full text]